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Abstract—Videos and images are commonly used in home
monitoring systems. However, detecting emergencies in-home
while preserving privacy is a challenging task concerning Human
Activity Recognition (HAR). In recent years, HAR combined
with deep learning has drawn much attention from the general
public. Besides that, relying entirely on a single sensor modal-
ity is not promising. In this paper, depth images and radar
presence data were used to investigate if such sensor data can
tackle the challenge of a system’s ability to detect abnormal
and normal situations while preserving privacy. The recurrence
plots and wavelet transformations were used to make a two-
dimensional representation of the presence radar data. Moreover,
we fused data from both sensors using data-level, feature-level,
and decision-level fusions. The decision-level fusion showed its
superiority over the other two techniques. For the decision-level
fusion, a combination of the depth images and presence data
recurrence plots trained first on convolutional neural networks
(CNN). The output was fed into support vector machines, which
yielded the best accuracy of 99.98%.

Index Terms—CNN, LSTM, Multi-modal sensing, Home-care,
Sensor fusion, XeThru UWB sensor.

I. INTRODUCTION

According to a 2017 report by the United Nations De-
partment of Economic and Social Affairs, the number of
older individuals is growing at a faster rate than that of
other age groups [1]. In 2015, one in every eight persons
would be 60 years or older. By 2050, the world’s population
of senior citizens is anticipated to reach over 2.1 billion.
With the advancement of technology, people are becoming
more independent. The combination of increasing age and
independence leads to many social and financial challenges,
especially nursing for older people. Autonomous systems to
aid in older people’s well-being in their homes have been
getting increased attention lately. However, analysis based
on human behavior has proven to be challenging due to the
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complexity of human behavior and privacy regulations [2]. As
a health monitoring system, HAR has been getting significant
attention to tackle the challenges related to behavior analysis,
e.g., normal and abnormal, for older people. HAR seeks to
classify a person’s behavior or actions in real-time from a
series of measurements [3], [4]. Even though HAR is looking
promising, the task encounters several class challenges, such
as the null-class dominance (non-relevant activities), interclass
similarity, intraclass variability, and the complexity and diver-
sity of physical activities [5].

When a single sensor is unable to measure all relevant
attributes or when the perception is unclear, vulnerability in
the sensor arises as a result of occlusions or missing features
[6]. Due to uncertainties, relying entirely on a single sensor
modality to detect human behaviors is not very practical.
Health or activity monitor systems having several sensors can
be more useful to discriminate complex activities. Integrating
data from various sensors enhance reliability and confidence
while reducing ambiguity and uncertainty. The utilization of
different sensors data and autonomous reports to the caregiver
would be highly beneficial from such a system [7].

Regarding home care of older people, privacy needs to be
compromised with a system’s ability to notify the caregiver
when something seems abnormal. Also, light conditions in a
home can vary significantly with sunlight in the daytime and
darkness at night-time, hindering video surveillance effective-
ness. Rather than transmitting a lot of personal sensor data
to the caregiver facility, it is desirable to have an autonomous
system that makes qualified decisions based on the sensor data.
Today, older people might prefer to live in the comfort of their
own homes instead of nursing homes. However, they might
be subject to emergencies where they are unable to alarm the
authorities. So, to make this a viable living situation, there is
an apparent need for a surveillance system. It is desirable that
the referred system is autonomous and contributes to reducing
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Fig. 1: A schematic setup to detect the abnormal situation
when the person is lying on the floor.

the human workload and increasing the person’s privacy.
Smart sensor systems have been demonstrated in human-

computer interactions, which help recognize human actions.
For instance, recognizing when a person suddenly falls on the
floor or has an abnormal heart-rate while the person is resting.
With the increasing demand for privacy for older people, this
work will demonstrate how a combination of different sensors
in a care robot at home can reduce privacy-related concerns
compared to surveillance-based system and, at the same time,
increase quality in the prediction of emergencies.

Many works have been done related to human activity
recognition [8], [9], [10], [11], [12]. Noori et al. [8], [10]
investigated the multiple representations of a single sensor
data and fusion of multiple representations together with deep
convolution neural networks (CNNs) and showed promising
results. Xia et al. [13] used a combination of Long-Short
term memory (LSTM) and CNN architecture to perform
automatic activity feature extraction using very few model
parameters. Bulling et al. [14] focused on using on-body
inertial sensors and addressed the problems with recognizing
different hand gestures from the sensors attached to the arms.
Krizhevsky et al. [15] investigated classifying high-resolution
images into 1000 classes using CNN, performed using non-
saturation neurons and efficient GPU implementation, and
showed favorable results. Guo et al. [16] explored the use of
multimodal information to classify human activities based on
wearable sensors and yield a competitive HAR performance.

The main focus of this work is to monitor the human
activities and capture the heart-rate. For instance, if the person
does some daily exercise, a sudden increase in heart-rate (HR)
is expected, and vice versa. On the other hand, if a change in
HR can not easily be explained, it could be a cause of concern
and should be reported. To detect the sudden abnormality
accurately, this work will use multi-sensor data, together with
different sensor fusion techniques to cover a wide range of
features. An RGB-D camera, XeThru ultra-wideband (UWB)
radar, and a smartwatch (for heart-rate recording) were used
to collect the data. A UWB radar is a compact impulse-radio
ultra-wideband radar system on a chip UWB sensors [17].

In this work, we explore the potential HAR for providing
detection of normal or abnormal behavior. The goal is to
explore different sensor fusion methods and machine learning
algorithms to make models that can classify normal vs ab-
normal situations by combining RGB-D images and presence
data from the UWB radar. This work focus on using depth
images and presence data instead of using the RGB images
to preserve privacy. To the best of our knowledge, this is

Fig. 2: Experimental setups for different model configurations.
Setup 1: single sensor data model; Setup 2: data-level fusion;
Setup 3: feature-level fusion; Setup 4: decision-level fusion.

the first work done using only depth images and presence
data to predict emergency situations. Deep learning methods
have shown promising results in recognizing different human
activities. The CNNs and LSTM-based RNNs were used to
classify normal and abnormal situations in this work. The
contributions of this paper is as follows:

• Different levels of sensor fusion are explored to classify
normal or abnormal situation in a home emergency sys-
tem while preserving the privacy of people.

• The UWB sensor’s data was presented in recurrence plots
and wavelet transform.

• The use of sensor fusion secures redundancy concerning
sensor malfunction.

• Our methods make a more robust system with respect
to previous works while also demonstrates good perfor-
mance.

The paper is organized as follows: Section II presents the
methodology. Section III presents results and discussions. The
paper is concluded in Section IV.

II. METHODOLOGY

The methodology of our proposed approach will be pre-
sented in this section.

A. Preprocessing of sensor data

The dataset is collected at the University of Oslo, Norway.
During the data recording, the subjects wore a smartwatch to
record the heart-rate as the ground truth. The normal activities
consist of typical activities, such as lying, sitting, and standing
while having normal heart-rate. The abnormal activity consists
of situations while lying on the floor and having a heart-rate
of more than 90 BPM. For recording the abnormal situation,
the participants were asked to exercise until their heart-rates
reached 140 BPM. Afterward, they immediately lied down
on the floor, and the robot recorded the radar data of their
movements.

Initially, pre-processing of the data was done to generate
labels and extract relevant and significant features from the
dataset. The dataset comprises 137 GB of data stored in 1.6
million files for 20 different users. The images (RGB and
depth) takes up the larger part of the dataset. Out of the



1.6 million images, the images that correspond to each user’s
actual heart-rate acquired at the same time were extracted. The
heart-rate is sampled in the dataset once per second, while the
images are sampled with 30 images per second. Therefore,
a separate program was made to generate a new condensed
version of the dataset where all the heart-rate measurements
are aligned with exactly one image from the same second in
time. We also re-sampled the data in pre-processing, which
resulted in fewer samples of class 0, to better balance the
classes. Moreover, we decided to work with gray-scale images
to make it easier to train for the CNN model. Computational
wise it was necessary to reduce the image by automatically
remove the regions that were irrelevant background. This
removal resulted in the images being reduced from 240× 320
down to 200 × 200. This process enabled us computational
wise to train the model with 19777 images while still keeping
the relevant information inside the images. The preprocessed
data was stored into binary files for easier access. The binary
files took up 3.16 GB of storage, and the condensed dataset
was more manageable in terms of storage capacity, ease of
access, and computational read speed.

B. Data representations

Wavelet transformation was selected as one of the two-
dimensional representations of the presence dataset. The
wavelet transformation will allow us to know at which fre-
quency our signal oscillates and at what time these oscillations
occur. The scaleogram was used to make the two-dimensional
spectrum for wavelet transformation. The x-axis in the scale-
ogram represents the absolute value of the wavelet transfor-
mation coefficients of our signal, and the y-axis represents the
distance from the sensor.

In addition to the wavelet transformation, recurrence plot
[18] was also created. It produces a square matrix, and the
matrix elements in the recurrence plot correspond to the times
where a state recurs in a dynamical system [19].

Ri,j =

{
1 if ‖xi − xj‖ ≤ ε
0 otherwise

(1)

x represents the states, ε is a threshold distance, if the
difference between xi and xj is smaller than the threshold
ε, Ri,j will be 1, otherwise 0.

C. Sensor fusion methods

When one work with multi-modal sensor data, fusing data
from different modalities can increase the model performance
[16], [20]. In this work, three methods are used in multi-modal
sensor fusion, as shown in Fig. 2. Data-level fusion [21] is
setup 2, where the depth image with presence dataset were
concatenated. The feature-level [22] fusion will combine the
features extracted using a CNN model from the depth image
and the two-dimensional representation of presence data and
then merge the features before the classifiers, as shown in
setup 3. In the decision level fusion, meta-classification was
used.

D. CNN architecture

CNNs are often used in image recognition due to their
ability to automatically extract features, allowing them to dif-
ferentiate between images accurately. Through convolutional
layers, the CNNs can capture the spatial features in the images,
and the pooling layer will then reduce the size of the data
output so that it is easier to process further [23]. The last
dense layer performs the final part in a CNN model; in our
case, there are two outputs, 0 for the normal case and ”1” for
the abnormal case. The CNN architecture used is as follows:

• A kernel size of 3, dilation rate of 2 and padding ”same”
are used for each of the convolutional layers.

• Max pooling layer of size 2 was used.
• Activation function ”RELU” was used for both convolu-

tional and fully connected layers.
• 2 units with the ”softmax” activation function was used

for the last classification layer, which corresponds to
”normal” and ”abnormal” activities.

E. LSTM architecture

The LSTM is a special kind of recurrent neural network
(RNN). It has an internal mechanism ”gates” which regulates
the flow of information. These gates decide which information
is essential and should be kept and which information should
be disregarded [13]. That is to say, the model has memory of
its historical data. With this mechanism, the LSTM models do
not suffer from the vanishing and exploding gradient problem
as traditional RNNs. This method was chosen because the
historical information may provide us important features
The LSTM architecture used is as follows:

• Three LSTM layers were used together with a hidden
layer

• Batch normalization was added between the layers to
perform automatic standardization

• Dropout was used to reduce the overfitting problem
• 2 units with the ”softmax” activation function was used

for the last classification layer, which corresponds to
”normal” and ”abnormal” activities.

F. Performance Measures

The metrics accuracy, F1 score, and recall were chosen
to evaluate models performance. They were calculated using
True Positives (TP), True Negatives (TN), False Positives
(FP), and False Negatives (FN). Accuracy is a measure of
the overall performance considering all classes. Precision is a
measure for predicted performance for each class specifically.
Recall is also a metric specifically for each class, and it takes
into account class imbalance between classes. The F1 score
conveys the balance between precision and recall between all
classes. F1 score is, therefore, a good metric for evaluating
model performance since it gives deeper insight into how the
model performs.

III. RESULTS AND DISCUSSIONS

For the classification of emergencies, we conducted two
sets of experiments; one is three classes classification where



the dataset was separated into resting (ClassResting), lying
(ClassLying) and moving (ClassMoving) classes and binary classi-
fication where normal and abnormal situations were detected.
For two class classification, which is based on the lying class,
the ground truth labels are 0 for abnormal situation and 1
for normal situation, and they were constructed directly from
the heart-rate measurements. If a person is lying on the floor,
and the heart-rate is above the threshold, it is classified as an
abnormal situation (ClassLying). The goal is illustrated in Fig. 1.
For the three class classification, we further classify abnormal
and normal situation based upon the lying class. We define
an abnormal situation for binary classification to be heart-rate
above 90 BPM if the person is lying on the floor as shown in
equation (2).

ClassLying =

{
Abnormal HR > 90
Normal Otherwise (2)

Different models were tested with RGB, depth images,
and presence data, both individually and using sensor fusion
methods. Both CNN and LSTM were built in Keras with
TensorFlow backend. 20 models were made with four different
setups shown in Fig. 2.

We used both single sensor data and three different sensor
fusion method for the two sets of the experiment, namely data-
level fusion, feature-level fusion, and decision level fusion.
Experiments were conducted with setup 1,2,3 and 4 shown
in Fig. 2 for both two class classification and three class
classification. Setup 1 with configuration using RGB images
with the CNN model was used as our reference model. By
comparing performance from other setups and configurations
to the reference model, we were able to find the most optimal
method while preserving privacy concerning human identifi-
cation from RGB images. The following configurations were
conducted for our experiment:

• Setup 1

– CNN trained with RGB images only (base model).
– CNN trained with depth images only.
– LSTM trained with presence data using all features

(1466), which corresponds to 9.9 meters of radar
detection.

– LSTM trained with presence data using just 400
features, which corresponds to 2.6 meters of radar
detection.

• Setup 2 (Data - level fusion)

Hyperparameter Values tested
Learning rate η [10−5, 10−4, 10−3, 10−2]
Regularization parameter λ [10−6, 10−5, 10−4, 10−3]
Minibatch size [8, 16, 32, 64]
CNN/LSTM units [16, 32, 64]
Dropout [0.2, 0.3, 0.4]

TABLE I: Hyperparameters tested for both CNN and LSTM
models.

Fig. 3: The three plots on the first row represents the back-
ground, abnormal situation where the person is lying on
the ground and the person alone where the background has
been subtracted. The second and third rows represent the
corresponding two dimensional representation of both the
recurrence plot and the wavelet transformation using the first
200 features.

– CNN trained with depth images merged with re-
currence plot or wavelet representation of presence
dataset.

• Setup 3 (Feature - level fusion)
– CNN for feature extraction for depth images and re-

currence plots or wavelet representation of presence
dataset. The extracted features are concatenated be-
fore feeding them into new dense layers and utilizing
softmax activation function to discriminate between
the classes. At the output, we ultimately choose the
most probable class from the distribution given by
softmax.

• Setup 4 (Decision - level fusion)
– Utilizing feature extraction for depth images and

the recurrence plots or wavelet representation of
presence dataset using CNN. The extracted features
were fed into two separate softmax classifiers. The
predicted probability distribution was merged before
feeding them as input to the final classifier either
Support Vector Machine (SVM) or Random Forest
classifier (RF).

The recurrence plot and wavelet transformation were used to
represent the presence data in two-dimensional space. Using
this data representation, it was possible to merge the image
grid of presence data with depth images for our data fusion
while still keeping the temporal and spacial dimensions in
the presence data. Fig. 3 shows the result of pre-processed
data concerning RGB images and presence (Xethru) data.



(a) (b) (c)

Fig. 4: (a) shows the Confusion matrix of setup 1, CNN model trained with depth images only, (b) shows the confusion matrix
of setup 4, CNN model trained with depth images, and recurrence plot representation of presence data (Decision - level fusion),
(c) shows the confusion matrix for setup 1, LSTM model trained with presence data only.

Model performance for three classes classification
Setup ANN Sensor data Sensor fusion Accuracy F1-Score Recall

1
(reference) CNN RGB N/A 0.9969 0.9968 0.9969

1 CNN Depth N/A 0.9973 0.9959 0.9943
2 CNN Depth & Recurrence plots Data-level 0.9981 0.9981 0.9981
3 CNN Depth & Recurrence plots Feature-level 0.9959 0.9958 0.9959
4 CNN Depth & Recurrence plots Decision-level (SVM) 0.9998 0.9997 0.9995
2 CNN Depth & Wavelet transform Data-level 0.9974 0.9973 0.9974
3 CNN Depth & Wavelet transform Feature-level 0.9956 0.9955 0.9956
4 CNN Depth & Wavelet transform Decision-level (RF) 0.9973 0.9972 0.9973
1 LSTM Presence (all features) N/A 0.9846 0.9755 0.9666
1 LSTM Presence (200 features) N/A 0.9590 0.9589 0.9590

TABLE II: Model performance for three classes classification. Highlighted cases indicate better performance compared to the
reference case.

The effect of both normalizing the data and subtracting the
background was significant concerning model performance.
We got a good portion of increased accuracy by working with
normalized presence data that contained relative change with
respect to a fixed baseline (background).

In total, 19,777 images and measurements from 20 persons
were used for RGB, depth images, and the presence data,
respectively. From the total dataset, 44%, 22%, and 33%
of the data are chosen for training, validation, and testing,
respectively. For all the models, the training process was
performed for 100 epochs. The best hyperparameters were
determined by repeated grid search procedure. Table I shows
a complete list of the hyperparameters used for all the experi-
ments. Confusion matrix was used to describe the performance
of our classifier. Several confusion matrices were generated
among the different setups in order to visualize the model
performances. Fig. 4 shows selected confusing matrix for three
classes classification.

Table III shows the accuracy for two classes classification.
Using only RGB images gives the best accuracy at 0.9998.
Comparing different sensor fusion methods, decision-level
fusion outperformed both the data-level fusion and the feature-
level fusion, which is in agreement with results from earlier
studies [8], [10]. Both SVM and RF models were tested as the
final classifier; in most cases, the SVM performs better than
the RF classifier. Comparing Table III and Table II with the
reference model, results from different sensor fusion methods

are a bit worse than 0.9998 from the reference model for
two classes classification. However, 4 of the models with
sensor fusion methods outperformed the reference model for
three classes classification. Among those models, the CNN
model trained on a combination of depth images and the
recurrence plot representation of presence data stands out with
an accuracy of 99.98 %. Some of the sensor fusion methods
we experimented with performed worse than models using
only single sensor data. We believe that this is stemming from
the most optimal hyperparameters not taking part in the grid
search. In addition, deep learning methods are becoming more
and more complex, which results in black-box models where
the interpretations of the relation between different variables
are not very explainable [24]. In this regard, the most optimal
parameters were not found, and better performance may still
be possible.

IV. CONCLUSIONS

In this work, we evaluated different sensor fusion (data,
feature and decision) levels and different deep learning al-
gorithms to detect normal and abnormal situations based on
heart-rate. Depth images and presence data from XeThru
ultra-wideband (UWB) radar together with a smartwatch for
heart-rate detection were used to validate our sensor fusion
approaches. Considering a person’s privacy, we chose to use
depth images instead of RGB images. We found that the
decision-level fusion outperformed the other approaches in
classifying normal and abnormal situations with 99.98 %



Model performance for two classes classification
Setup ANN Sensor data Sensor fusion Accuracy F1-Score Recall

1
(reference) CNN RGB N/A 0.9998 0.9987 0.9989

1 CNN Depth N/A 0.9218 0.9216 0.9217
2 CNN Depth & Recurrence plots Data-level 0.9212 0.9209 0.9211
3 CNN Depth & Recurrence plots Feature-level 0.9613 0.9612 0.9612
4 CNN Depth & Recurrence plots Decision-level (SVM) 0.9863 0.9859 0.9863
2 CNN Depth & Wavelet transform Data-level 0.9225 0.9221 0.9224
3 CNN Depth & Wavelet transform Feature-level 0.9633 0.9630 0.9633
4 CNN Depth & Wavelet transform Decision-level (RF) 0.9973 0.9979 0.9971
1 LSTM Presence (all features) N/A 0.9431 0.9430 0.9431
1 LSTM Presence (200 features) N/A 0.9270 0.9268 0.9270

TABLE III: Model performance for classification of normal and abnormal situations for ClassLying.

accuracy, which is even better than using RGB images directly.
This gives us another method to supervise the health status of
older people and protect their private lives.

In the future, we plan to predict future heart-rate with
regression approach using LSTM and the transformers model.
Furthermore, we will apply CNN-LSTM model for classifica-
tion where we use the CNN model to extract features from
the images and LSTM for historical context.
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