
LoRCoN-LO: Long-term Recurrent Convolutional
Network-based LiDAR Odometry

Donghwi Jung
Seoul National University

Seoul, South Korea
donghwijung@snu.ac.kr

Jae-Kyung Cho
Seoul National University

Seoul, South Korea
jackyoung96@snu.ac.kr

Younghwa Jung
Seoul National University

Seoul, South Korea
xzxzmmnn@snu.ac.kr

Soohyun Shin
Seoul National University

Seoul, South Korea
soohyunshin@snu.ac.kr

Seong-Woo Kim
Seoul National University

Seoul, South Korea
snwoo@snu.ac.kr

Abstract—We propose a deep learning-based LiDAR odometry
estimation method called LoRCoN-LO that utilizes the long-
term recurrent convolutional network (LRCN) structure. The
LRCN layer is a structure that can process spatial and temporal
information at once by using both CNN and LSTM layers. This
feature is suitable for predicting continuous robot movements as
it uses point clouds that contain spatial information. Therefore,
we built a LoRCoN-LO model using the LRCN layer, and pre-
dicted the pose of the robot through this model. For performance
verification, we conducted experiments exploiting a public dataset
(KITTI). The results of the experiment show that LoRCoN-LO
displays accurate odometry prediction in the dataset. The code
is available at https://github.com/donghwijung/LoRCoN-LO.

I. INTRODUCTION

LiDAR is being widely used in autonomous driving [1]–[3]
based on its advantages such as a 360-degree field of view
(FOV) and accurate distance measurement. In the case of Li-
DAR odometry estimation, existing methods have been mainly
researched based on non-deep learning approaches. Non-deep
learning-based methods calculate the odometry between two
sequences using ICP and NDT on a consecutive LiDAR point
clouds [4]–[8], or calculate the odometry after extracting
specific features such as edge or planar features from point
clouds [9]–[12]. In addition to the non-deep learning methods,
recent research employ deep learning methods [13]–[19]. A
few of the studies have applied the deep learning model to
specific parts such as key point matching [13], [14], and some
studies calculated odometry by using the point cloud as input
data of the deep learning model in an end-to-end method [15]–
[19]. In the case of point cloud data, it was used directly in
3D [19] or after being projected in 2D [13]–[18].

Among the non-deep learning based methods, the ICP (or
NDT)-based has high accuracy in that it uses almost all points.
However, there is a disadvantage in that it is hard to guarantee
real-time performance because the operation speed is relatively
slow. In the case of feature-based, the main purpose is to

All authors are with Seoul National University, South Korea, and D. Jung
is with Smart City Engineering major, and Integrated Major in Smart City
Global Convergence.

predict changes between sequences through feature extrac-
tion, thus feature dependence is high. For example, for edge
or planar features used in LOAMs [9]–[12], it is difficult
to extract features when there are few structures such as
buildings or columns, such as off-road. These characteristics
make the algorithm difficult to apply. In addition, the non-
deep learning-based method requires a lot of computation,
hence the computational cost is high compared to the deep
learning-based method. On the other hand, in the case of
existing deep learning-based methods, if only model training
is properly performed, high-accuracy results can be obtained
at high speed by utilizing GPU. At this time, the previous
deep learning-based methods mainly utilize CNN and fully
connected layers to calculate only the odometry between two
consecutive sequences.

However, the movement of a real robot is continuous,
thus the current motion is related to the previous motions.
Therefore, when predicting the current movement, it is helpful
to improve the performance by utilizing the information of
the past movements. For this reason, in this paper, we pro-
pose LoRCoN-LO, a deep learning-based LiDAR odometry
estimation algorithm using an LRCN proposed in the paper
[20]. The LRCN layer is a structure that can process spatial
and temporal information at once by using both CNN and
LSTM structures. This feature is suitable for predicting con-
tinuous robot movement using a point cloud containing spatial
information. Therefore, we constructed a LoRCoN-LO model
using the LRCN layer, and predicted the robot pose through
this model. In this paper, we used the KITTI dataset to test the
model. As a result, LoRCoN-LO represents accurate odometry
prediction performance.

II. METHODS

A. Data Pre-Processing

The 3D point cloud is projected as a 2D image to be used as
input data of LoRCoN-LO. This projection corresponds to the
conversion of coordinates from x, y, z to u, v. In the process
of projection, the vertical resolution of LiDAR is used for the

ar
X

iv
:2

30
3.

11
85

3v
1

 [
cs

.R
O

]
 2

1
M

ar
 2

02
3

https://github.com/donghwijung/LoRCoN-LO

Fig. 1. System architecture of LoRCoN-LO. Input is 2D projected point cloud image, and the output is a 6-DOF robot pose.

width, and the horizontal resolution of LiDAR is used for the
height. For points with the same x and y values, the closest
point from the LiDAR is selected as the corresponding pixel.

(x, y, z)→ (u, v), (1)

d =
√
x2 + y2 + z2, (2)(

u
v

)
=

(
1
2 ·
[
1− π−1 · arctan (y, x)

]
· w[

1−
(
arcsin

(
z · d−1

)
+ fup

)
· f−1

]
· h

)
, (3)

~n =
~a×~b

|~a| · |~b| · sin θ
, (4)

where (x, y, z) and u, v denote 3D point cloud and 2D
projected image coordinates. Moreover, x, y, z in Eq. (2)
correspond to the x, y, z values for the point in a point
cloud. Therefore, d indicates the distance from the LiDAR.
In addition, w and h are width and height of the 2D image.
fup and fdown denote minimum and maximum of vertical
filed-of-view of LiDAR sensor. Furthermore, f indicates sum
of fup and fdown. The 3D point cloud is projected as a 2D
image according to Eq (3). For Eq (3), we referred to the
spherical projection described in the paper [8]. Additionally,
~a and~b are vectors that connect the center pixel and the nearest
neighbor pixels. θ denote the angle between two vectors ~a and
~b. Furthermore, ~n is the unit vector that is perpendicular to the
plane containing two vectors ~a and ~b.

Three types of 2D images (depth, intensity, and normal)
are used as an input data. For depth, it corresponds to the
distance d. In the case of intensity, the intensity value of each
point obtained by LiDAR is used. For the normal, considering
the real-time of the calculation, we find the nearest neighbors
(pixels) in pixel unit in the 2D image and compute the normal
vector ~n by performing cross product using the x, y, z values
between the pixels and the center pixel. Finally, to represent
in the form of an image, the x, y, and z values of the normal
vector are matched to the r, g, and b values of the image,
respectively.

B. Architecture

The overall architecture of the model is shown in Fig. 1.
A detailed description is as follows:

1) Input Data: Input data consists of a total of 10 channels
by connecting 2 consecutive data of 5 channels. In one of
these sequences, the three types of input images form a total
of 5 channels (Depth 1 channel, Intensity 1 channel, Normal
3 channels). At this time, the difference in width and height
of the image projected in 2D occurs due to the difference in
resolution between axes of LiDAR. Width is relatively longer
than height. Therefore, if the image is used as it is, it will
have almost zero height after several CNN layers. To prevent
this, first we apply max pooling to reduce the width in half.

2) CNN Layers: To embed the image data, a 6-layer CNN
is used. At this time, considering that the 2D panoramic image
is a 360-degree point cloud projection, we apply circular
padding between each layer. Moreover, for the purpose of
regularization, batch normalization is added between each
layer. In addition, as we mentioned in Sec. II-B1, width is
relatively longer than height. Therefore, a stride that is bigger
than 1 for the horizontal axis is utilized except for the last
layer.

3) LSTM Layer: The data passed through the CNN layers
goes into the LSTM layer. The LSTM layer is set up as a
deep bi-directional LSTM consisting of four layers to increase
the prediction accuracy. Moreover, for avoiding overfitting,
dropout is used after the LSTM layer.

4) Fully Connected Layer: A fully connected layer is
connected to predict the robot pose with 6-degree of freedom
(DOF) (x,y,z for translation, roll, pitch, yaw for rotation).
When training the model, data from all sequences of the
LSTM layer are used to predict the robot pose and reflected
it in learning. However, in the case of inference, only the
data from the last sequence is used to predict the robot pose.

III. EXPERIMENTS

In this paper, the KITTI dataset was used to test the
algorithm performance, and the results were compared with
the baseline. Moreover, for the baseline, LOAM was chosen
to compare the performance of LoRCoN-LO, as LOAM is a
feature-based LiDAR SLAM which until recently performed

Fig. 2. Visualized results of odometry estimation with KITTI dataset.

well on the KITTI odometery benchmark [21]. In addition,
because the code is publicly available, it is currently being
used as a baseline in many studies. For metrics, the average
translation and rotation errors in the Table. I were calculated to
compare the odometry estimation performances in the KITTI
dataset. These errors were computed using the calculation
method suggested by the KITTI benchmark [21]. It was mea-
sured as a root mean squared error (RMSE), and the overall
average was obtained after calculating each error by increasing
the path interval from 100m to 800m in 100m increments.
Moreover, it displays the error in % for translation and in
degrees per 100 m for rotation. On the other hand, unlike
Table. I, RMSE of instantaneous odometry was calculated and
compared without accumulation of odometry. We applied this
additional metric to check how large the error of cumulative
odometry can be compared to single odometry error.

All code implementations were done using PyTorch. More-
over, for the 2D panoramic images described in Sec. II-A, 64
was used for the height corresponding to the number of LiDAR
channels, and 900 was applied to the width with a resolution
of 0.4 degrees per pixel. In addition, 4 was selected as the
LSTM sequence length, and a probability of 0.5 was applied

to the dropout placed after the LSTM layer. Furthermore, we
set the batch size to 32, used the Adagrad optimizer, and set the
learning rate to 0.0005 for training the model. Additionally, the
loss function was calculated as the mean squared error (MSE).
Because, the rotation error has a greater effect on the odometry
prediction accuracy than the translation error, the rotation error
is multiplied by a weight of 100. For training, 400 epochs were
performed on the KITTI dataset. Lastly, to compare equally
with LOAM, training and testing were conducted by changing
all poses to LiDAR coordinates.

Among the sequences of KITTI dataset, sequences 09 and
10 were used as test data, and the remainders from 00 to 08
were used as training data. As shown in Table I, the odometry
prediction results show high accuracy in odometry estimation.
This is confirmed not only in the sequences 00-08 used as the
training data, but also in the sequences 09, 10 used as the test
data. Moreover, as shown in Fig. 2, LoRCoN-LO represents
better performance not only in sequences composed of almost
straight paths like 04, but also in sequences containing many
rotations, such as 00 or 05. Therefore, we can conclude that
LoRCoN-LO provides accurate odometry in both translations
and rotations.

TABLE I
RESULTS OF ODOMETRY ESTIMATION WITH KITTI DATASET.

00 01 02 03 04 05 06 07 08 09 10

LOAM [9] trel 5.36 5.45 4.10 4.68 1.82 3.47 5.68 4.64 4.04 9.88 9.68

rrel 2.23 1.91 1.79 2.53 1.46 1.60 2.14 2.45 1.75 3.78 4.40

Our method trel 4.71 5.96 4.74 3.44 1.66 2.77 3.74 3.14 5.07 11.08 7.18

rrel 2.16 2.12 1.83 1.63 1.42 1.43 1.43 2.11 2.15 4.13 5.16

IV. CONCLUSION

In this paper, we propose a LoRCoN-LO which is a deep
learning-based LiDAR odometry estimation method using
LRCN structure. The LRCN layer is a structure that can
process spatial and temporal information at once by using
both CNN and LSTM structures. This feature is suitable for
predicting continuous robot movements using a point cloud
containing spatial information. To evaluate the performance
of the LoRCoN-LO model using the LRCN layer, the perfor-
mance of the model was tested in KITTI dataset. As a result,
we confirmed that the model can predict LiDAR odometry
with good accuracy.

ACKNOWLEDGEMENT

This work was supported by Korea Institute for Advance-
ment of Technology(KIAT) grant funded by the Korea Gov-
ernment(MOTIE) (P0020536, HRD Program for Industrial
Innovation), by the National Research Foundation of Ko-
rea through the Ministry of Science and ICT under Grant
2021R1A2C1093957, by Korean Ministry of Land, Infrastruc-
ture, and Transport as Innovative Talent Education Program for
Smart City, by the Daewoo Shipbuilding & Marine Engineer-
ing through the Future Ocean Cluster, and by the Institute of
Engineering Research at Seoul National University.

REFERENCES

[1] Y. Jung, S.-W. Seo, and S.-W. Kim, “Curb detection and tracking in
low-resolution 3d point clouds based on optimization framework,” IEEE
Transactions on Intelligent Transportation Systems, vol. 21, no. 9, pp.
3893–3908, 2019.

[2] Y. Jung, M. Jeon, C. Kim, S.-W. Seo, and S.-W. Kim, “Uncertainty-
aware fast curb detection using convolutional networks in point clouds,”
in 2021 IEEE International Conference on Robotics and Automation
(ICRA). IEEE, 2021, pp. 12 882–12 888.

[3] Y. Jung, S.-W. Seo, and S.-W. Kim, “Fast point clouds upsampling with
uncertainty quantification for autonomous vehicles,” in 2022 Interna-
tional Conference on Robotics and Automation (ICRA). IEEE, 2022,
pp. 7776–7782.

[4] W. Hess, D. Kohler, H. Rapp, and D. Andor, “Real-time loop closure in
2d lidar slam,” in 2016 IEEE international conference on robotics and
automation (ICRA). IEEE, 2016, pp. 1271–1278.

[5] K. Koide, J. Miura, and E. Menegatti, “A portable three-dimensional
lidar-based system for long-term and wide-area people behavior mea-
surement,” International Journal of Advanced Robotic Systems, vol. 16,
no. 2, p. 1729881419841532, 2019.

[6] M. Yokozuka, K. Koide, S. Oishi, and A. Banno, “Litamin: Lidar-based
tracking and mapping by stabilized icp for geometry approximation with
normal distributions,” in 2020 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS). IEEE, 2020, pp. 5143–5150.

[7] C. Park, P. Moghadam, S. Kim, A. Elfes, C. Fookes, and S. Sridharan,
“Elastic lidar fusion: Dense map-centric continuous-time slam,” in 2018
IEEE International Conference on Robotics and Automation (ICRA).
IEEE, 2018, pp. 1206–1213.

[8] J. Behley and C. Stachniss, “Efficient surfel-based slam using 3d laser
range data in urban environments.” in Robotics: Science and Systems,
vol. 2018, 2018, p. 59.

[9] J. Zhang and S. Singh, “Loam: Lidar odometry and mapping in real-
time.” in Robotics: Science and Systems, vol. 2, no. 9. Berkeley, CA,
2014, pp. 1–9.

[10] T. Shan and B. Englot, “Lego-loam: Lightweight and ground-optimized
lidar odometry and mapping on variable terrain,” in 2018 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS).
IEEE, 2018, pp. 4758–4765.

[11] C. Qin, H. Ye, C. E. Pranata, J. Han, S. Zhang, and M. Liu, “Lins: A
lidar-inertial state estimator for robust and efficient navigation,” in 2020
IEEE International Conference on Robotics and Automation (ICRA).
IEEE, 2020, pp. 8899–8906.

[12] T. Shan, B. Englot, D. Meyers, W. Wang, C. Ratti, and D. Rus, “Lio-sam:
Tightly-coupled lidar inertial odometry via smoothing and mapping,”
in 2020 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS). IEEE, 2020, pp. 5135–5142.

[13] C. Zheng, Y. Lyu, M. Li, and Z. Zhang, “Lodonet: A deep neural
network with 2d keypoint matching for 3d lidar odometry estimation,” in
Proceedings of the 28th ACM International Conference on Multimedia,
2020, pp. 2391–2399.

[14] Z. Li and N. Wang, “Dmlo: Deep matching lidar odometry,” in 2020
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS). IEEE, 2020, pp. 6010–6017.

[15] Q. Li, S. Chen, C. Wang, X. Li, C. Wen, M. Cheng, and J. Li, “Lo-
net: Deep real-time lidar odometry,” in Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, 2019, pp.
8473–8482.

[16] J. Nubert, S. Khattak, and M. Hutter, “Self-supervised learning of
lidar odometry for robotic applications,” in 2021 IEEE International
Conference on Robotics and Automation (ICRA). IEEE, 2021, pp.
9601–9607.

[17] W. Wang, M. R. U. Saputra, P. Zhao, P. Gusmao, B. Yang, C. Chen,
A. Markham, and N. Trigoni, “Deeppco: End-to-end point cloud odom-
etry through deep parallel neural network,” in 2019 IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems (IROS). IEEE,
2019, pp. 3248–3254.

[18] Y. Cho, G. Kim, and A. Kim, “Unsupervised geometry-aware deep lidar
odometry,” in 2020 IEEE International Conference on Robotics and
Automation (ICRA). IEEE, 2020, pp. 2145–2152.

[19] G. Wang, X. Wu, Z. Liu, and H. Wang, “Pwclo-net: Deep lidar odometry
in 3d point clouds using hierarchical embedding mask optimization,”
in Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 2021, pp. 15 910–15 919.

[20] J. Donahue, L. Anne Hendricks, S. Guadarrama, M. Rohrbach, S. Venu-
gopalan, K. Saenko, and T. Darrell, “Long-term recurrent convolutional
networks for visual recognition and description,” in Proceedings of the
IEEE conference on computer vision and pattern recognition, 2015, pp.
2625–2634.

[21] A. Geiger, P. Lenz, and R. Urtasun, “Are we ready for autonomous
driving? the kitti vision benchmark suite,” in 2012 IEEE conference on
computer vision and pattern recognition. IEEE, 2012, pp. 3354–3361.

	I Introduction
	II Methods
	II-A Data Pre-Processing
	II-B Architecture
	II-B1 Input Data
	II-B2 CNN Layers
	II-B3 LSTM Layer
	II-B4 Fully Connected Layer

	III Experiments
	IV Conclusion
	References

