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Matching and Unsupervised 2D-3D Lifting
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Abstract—Current human pose estimation systems focus on
retrieving an accurate 3D global estimate of a single person.
Therefore, this paper presents one of the first 3D multi-person
human pose estimation systems that is able to work in real-
time and is also able to handle basic forms of occlusion. First,
we adjust an off-the-shelf 2D detector and an unsupervised 2D-
3D lifting model for use with a 360° panoramic camera and
mmWave radar sensors. We then introduce several contributions,
including camera and radar calibrations, and the improved
matching of people within the image and radar space. The
system addresses both the depth and scale ambiguity problems
by employing a lightweight 2D-3D pose lifting algorithm that is
able to work in real-time while exhibiting accurate performance
in both indoor and outdoor environments which offers both
an affordable and scalable solution. Notably, our system’s time
complexity remains nearly constant irrespective of the number
of detected individuals, achieving a frame rate of approximately
7-8 fps on a laptop with a commercial-grade GPU.

Index Terms—Multiperson 3D Pose Estimation, Real Time
System, Omnidirectional Camera, Radar Sensing

I. INTRODUCTION

3D human pose estimation (HPE) from a single camera is an
important task, with various applications such as security, 3D
animation and physical therapy [[1]-[3].Nevertheless, obtaining
precise 3D global coordinates from a single viewpoint remains
challenging due to inherent perspective ambiguities. Previ-
ous strategies have often resorted to merging RGB cameras
with laser or infrared (IR) depth sensors [4], [5]. While
effective, these methods are marred by cost issues associated
with laser-based sensors and sub-optimal performance of IR-
based sensors in outdoor environments due to sunlight, thus
limiting their widespread adoption. To address this, radar-
based methods have emerged as a cost-effective solution for
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Fig. 1. Our experimental setup consists of a laptop with RTX 3060, the Ricoh
Theta V omindirectional camera and three TI AWR1843BOOST mmWava
radars.

both indoor and outdoor scenarios. To this end we present
one of a new approach that utilises mmWave radars and
omnidirectional cameras, allowing us to accurately reconstruct
multiple people within a 360° scene. To detect and lift the
pose to 3D its own local coordinate space we utilise two off-
the-shelf methods. The first is the 2D detector OpenPose [6]]
which we use to obtain the 2D keypoint locations of people
within the image space. The second is our preliminary 2D-
3D lifting network LInKs [7], an unsupervised 2D-3D lifting
approach that is also able to handle basic forms of occlusion.



This is especially important due to occlusion being highly
prominent in omnidirectional video, be that self-occlusion or
occlusion from an object. We further refine our methodology
based on prior work [8]], introducing an alternative approach
to match individuals in both the image and radar domains.
This enhancement not only elevates matching accuracy by
4.63% but also reduces the absolute error in placing poses
within the 3D coordinate system. Consequently, this paper
represents a significant evolution from our previous work
[8]], encompassing essential advancements, including radar
and camera calibration and an improved matching algorithm.
These updates translate into substantial improvements in preci-
sion, accuracy, and our ability to effectively handle occlusions.
The experimental setup of our approach is visually depicted

in Fig. [1]
II. METHODOLOGY

The core of our method resolved around transforming the
2D keypoints detected into the image space into 3D keypoints
that are within our global coordinate system. An overview of
each stage can be seen in Fig. 2]
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Fig. 2. Overview of our approach. We use the video from an omnidirectional
camera to obtain 2D body keypoints in the image space. Simultaneously we
use 3 radar sensors to localise each person in our global 3D coordinate system.
We then match these detected 2D poses to our radar’s depth estimate. Next,
these 2D poses are lifted into 3D and to finalise we transform their predicted
3D coordinates to be within our global coordinate system.

A. Camera and Radar Calibration

To accurately localise the people within our global coordi-
nate system we calibrated both the camera and radars. The
camera was calibrated using the method introduced in Zang
et al. [9]. To calibrate our radars, for each of our radars
(x, z) direction, an affine transformation was obtained using
the Levenberg—Marquardt (LM) algorithm. To perform this
multiple radar readings were collected by placing an individual
at different known radar coordinates space 50cm apart. These
readings were recorded for several seconds and the average
value was then compared to the correct location to obtain our
affine transformation.

B. Data Fetching, 2D Keypoint Localisation and Person
Matching

The first stage of our proposed system involved acquiring
data from each of the sensors, specifically an image frame
from the camera and localisation data from each of the radars.
As synchronisation is crucial to ensure consistency between
the camera and radars, we separate the data obtained from each
sensor into different threads. The camera data is obtained in
the main thread, whereas the radar data is obtained via separate
threads. The camera thread then signals the radar threads to
add their data to a shared queue, ensuring synchronisation. To
obtain the 2D keypoints, x, of people in our image we used
OpenPose [6], a popular 2D pose detector that is capable of
detecting multiple people in real-time. To associate the 2D
keypoints of people in the image space with their correspond-
ing radar data, we employed a binary search tree method with a
threshold value. The matching technique relied on the disparity
between the average image x coordinate of a person detected
by OpenPose, denoted as z = X where N is the number of
keypoints detected (15 in our study), and the radars coordinates
transformed into the image coordinate space through a learned
transform. This transform is described in the pseudo-inverse
section of Oh et al. [[10]. Lastly, in our simultaneous stage
of radar localisation, we used the people counting algorithm
introduced by Garcia [11] to acquire the (x,z) coordinates
of the people within our scene. These were then transformed
into the common coordinate system to calculate the distance
of each person from the camera.

C. Unsupervised 2D-3D Lifting and 3D placement

To lift the detected 2D pose to 3D we employed a recent
2D-3D lifting network known as LInKs [7]. We chose this due
to its accuracy when generalising to unseen poses, as well as
its ability to handle the most common forms of pose occlusion.
Similar to other unsupervised 2D-3D lifting networks, the
LInKs algorithm does not predict the absolute depth of each
keypoint, but instead the depth off-set (d) of each keypoint
relative to a root joint (typically the pelvis), when the pose is
assumed to be c units from the camera. The final 3D location
of a specific keypoint, x;, was then obtained via perspective
projection:

Xi = (*/Eiéh ylé’u 22)7

where 2% = max(1,d; + ¢).
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where d; was our models’ depth-offset prediction for keypoint
1. As LInKs was originally trained on Human3.6M [12f], which
uses different keypoints than those detected by OpenPose,
we retrained it on the OpenPose keypoints present in the
Human3.6M dataset. Once we had lifted our 2D pose to
3D, we now had to transform it from its local coordinate
system, where the root joint was at position (0,0,c), to our
global coordinate system. To do this we subtracted ¢ from
the pose and added the x and z coordinates from our radar
sensors. Additionally, to maintain ground-plane contact the y
coordinates of the pose were updated by subtracting the y
coordinate of the lowest ankle.



Fig. 3. Qualtative results of our approach. The above images show the input frame to our model with poses captured by OpenPose. The bottom images show
the corresponding reconstructed 3D poses in our global 3D coordinate system. All pictures are partially cropped around the top and bottom.

III. RESULTS

Here we present the quantitative of our improved people
matching algorithm, 2D-3D human pose lifting model and
the radar localisation error for the  and z coordinate. The
qualitative results of our approach can be seen in Fig. 3] In
our experiment we used a commercial RTX 3060, Ricoh Theta
V omnidirectional camera and three TI AWRI1843BOOST
mmWave radars. However, it is worth noting that it will work
with any GPU, mmWave radars or omnidirectional camera as
long as the latter outputs video frames in the equirectangular
format.

A. Results of matching people in the image and radar

In our preliminary work, we matched people by using the
angle between people detected in the radar and camera relative
to the camera’s  coordinate. In our approach, we implemented
an improved method that solely focuses on the = coordinate in
the camera space which illustrated a significant improvement.
To demonstrate this we calculated the matching error as a %
which represents the absolute difference between the radar and
camera values of an individual, divided by the camera values
as seen in Table. Our results for this can be seen in Table

TABLE I
SHOWING THE MATCHING ERROR OF OUR PRELIMINARY WORK AND OUR
IMPROVED APPROACH. THE VALUE IS A % OBTAINED BY COMPUTING THE
ABSOLUTE DIFFERENCE BETWEEN THE CORRESPONDING RADAR AND
CAMERA VALUES

Radar 1 | Radar 2 | Radar 3 |
Preliminary Work 23.89% + 6.57%  33.57% + 50.55 66.89% + 263.89
Ours 2.52% + 2.51 9.44% + 13.27 1.94% + 1.52

B. 2D-3D Lifting and Occlusion Handling Results

As previously mentioned we used the LInKs lifting network
for 2D-3D pose lifting. We trained LInKs unsupervised on
Human3.6M with identical training and model parameters
to its original publication, with the only modification being

TABLE 11
SHOWING THE 2D-3D LIFTING RESULTS OF USING THE LINKS MODEL
TRAINED ON THE OPENPOSE KEYPOINTS OF HUMAN3.6M

Method Occlusion PA-MPJPE  N-MPJPE
LInKs None 33.8 61.6
Ours (Recreation)  None 37.2 61.7
Ours (Recreation)  Left Arm 52.1 78.1
Ours (Recreation)  Left Leg 46.0 73.2
Ours (Recreation)  Right Arm 49.8 75.7
Ours (Recreation)  Right Leg 44.5 71.6
Ours (Recreation)  Left Arm & Leg 62.0 86.0
Ours (Recreation)  Right Arm & Leg 60.2 83.7
Ours (Recreation)  Both Legs 69.3 99.8
Ours (Recreation)  Torso 88.4 122.0

adapting it to use the keypoints detected via OpenPose. We
report the mean per joint position error which is the euclidean
distance in millimetres between the ground truth keypoints and
those within our reconstructed pose. For this we report both
the error once our pose has been scaled to the ground truth (N-
MPIJPE) and once our pose was rigidly aligned to the ground
truth. We also show the results in various occlusion scenarios.
These can be seen in Table[[ll As shown we achieved similar
results in N-MPJPE under scenarios of no occlusion with a
slightly higher PA-MPJPE. We attribute this to the OpenPose
keypoints not using the spine and head-top keypoint which are
relatively easy to estimate the depth-offset of from the pelvis,
being that they are typically directly above in the majority of
standing scenarios. This is why we see a similar N-MPJPE
as our scaled poses have a very similar accuracy however a
slightly higher PA-MPJPE as two relatively easy keypoints are
not included in the alignment.

C. Radar Localisation Results

To demonstrate the improvement in radar localisation due to
our affine transformation we present the average absolute error
in centimetres in the x and z direction for people within our
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Fig. 4. Showing the localisation error in metres at various points around our setup. The errors were evaluated in each radar’s & (left) and 2 (right) directions.
The figures represent these errors in the (X, Z) 2D global coordinate system. The red dot marks the system location.

TABLE III
TABLE SHOWING THE MEAN ABSOLUTE ERROR IN CENTIMETRES IN THE X
AND Z DIRECTION FOR EACH OF OUR RADARS IN OUR PRELIMINARY
WORK AND OUR NEW APPROACH WITH AFFINE TRANSFORMATION.

Radar  Direction  Preliminary Ours
1 x 20.65 16.45
z 11.41 11.45

5 x 26.19 24.86
z 15.39 10.77

3 x 16.88 15.94
z 13.83 13.46

scene. These results are presented in Table [ITI] additionally
Fig. [llI-B] visualises the localisation errors of objects from
the radars in metres at various points around the system. As
shown in our results our affine transformation has led to a
reduction in the error along the x and z direction for nearly
all radars while performing similarly for the z direction for
radar 1. Despite this, we note that there are still some errors
present, especially when the subject is positioned at a 60°
angle from the centre of the radar despite the radars 120°
coverage. In addition, we noticed void spaces exist in these
areas where none of our radars were able to detect our subjects.
One possible remediation for this would be the inclusion of
additional radars directed at these areas of high error.

IV. CONCLUSION

In conclusion, our real-time 3D multi-person detection sys-
tem significantly improves our preliminary work [8], offering
simplicity, robustness, and scalability. Challenges remain in
system speed, range, and occlusion handling. Future research
will focus on improving occlusion handling, optimizing algo-
rithm speed, and expanding the system’s range. The inclusion
of additional radar units and higher-resolution cameras can
eliminate limitations related to detection gaps and bent knees.
Our contributions enhance technology accessibility and robust-

ness for computer vision applications, making it an affordable
industry solution.
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