Distributed simulation of AADL specifications
in a polychronous model of computation *

Yue Ma Jean-Pierre Talpin

Sandeep Kumar Shukla

Thierry Gautier

INRIA, Unité de Recherche Rennes-Bretagne-Atlantique, Campus de Beaulieu, 35042 Rennes Cedex, France
FERMAT LAB, Bradley Department of Electrical and Computer Engineering, Virginia Tech, Blacksburg, USA

Yue.Ma@irisa.fr

Abstract

In the avionics domain, the Architecture Analysis and
Design Language (AADL) is often used to describe the
hardware and software architectures of embedded applica-
tions at the system level. The implementation of such sys-
tems is often distributed across asynchronous communica-
tion infrastructures. Such a distributed system is usually
composed of locally synchronous processes communicating
in a globally asynchronous manner, a GALS system. Yet,
in a step-wise refinement based approach, one would pre-
fer to model, simulate and validate such a system in a syn-
chronous programming framework, and then automatically
generate its GALS implementation. In this paper, we present
a methodology to implement such an approach using the
polychronous (multi-clocked synchronous) model of com-
putation of the data-flow synchronous language SIGNAL.
We show how to model partially asynchronous application
and to generate distributed simulation code starting from
system-level AADL specifications.

1 Introduction

It is well admitted, embedded systems are an integral
part of safety critical systems in various domains, such as
avionics, automotive and telecommunications. For various
reasons (performance increase, location of sensors, inde-
pendency, flexibility, fault tolerance), many real-time ap-
plications require code distribution. In some cases the dis-
tribution is at the discretion of the designer attempting to
achieve improved computational speed. In other situations
it is naturally enforced by geographical separation between
subsystems. Another practical consideration is current pro-
cessor capabilities which may not be adequate to complete
massive centralized computations in a given time. This is
particularly important as more and more computations are

*This work is partially supported by the ANR project TopCased.

Jean-Pierre. Talpin @irisa.fr

Shukla@vt.edu Thierry.Gautier @irisa.fr

becoming necessary for controlling an ever increasing num-
ber of features and options. However, distributed systems
are hard to design, debug, test and formally verify, as these
systems have to conform to many stringent functional and
non-functional requirements from multiple contexts. Ensur-
ing all these requirements and features becomes very diffi-
cult if the whole system is hand-coded. Thus, a large part
of the application code should preferably be generated au-
tomatically from a verifiable and analyzable model to make
the engineering work faster and easier.

Architecture Analysis and Design Language (AADL [1])
is an SAE (Society of Automotive Engineers) standard
aimed at the high level design and evaluation of the architec-
ture of embedded systems. AADL can capture the design of
a complete application and its key components. Since they
allow for a more abstract view of the application than pro-
gramming languages, they help in identifying the structural
components, and eventually in expressing properties of the
whole architecture. At the AADL specification level, the
system is distributed into a set of execution platforms with-
out necessarily having a physical implementation of the sys-
tem at hands [2]. Large projects, for example the ASSERT
project [3] and the COTRE project [4], rely on AADL to
design embedded systems.

Synchronous languages can significantly ease the model-
ing, programming and validation of embedded systems [5].
However, when the target architecture is a distributed sys-
tem, implementing a synchronous specification as a syn-
chronous design may be inefficient in terms of both size and
performance. A more elaborate implementation style where
the basic synchronous paradigm is adapted to distributed ar-
chitectures by introducing elements of asynchrony is highly
desirable. That is why numerous works are devoted to
combing synchrony with asynchrony. For instance, the
paradigm of “Globally asynchronous locally synchronous
system” (GALS) has been proposed to describe general
asynchronous systems, while keeping as much as possible
the advantages of synchronous programming [6].

SIGNAL is a domain-specific, synchronous data-flow,

language dedicated to embedded and real-time system de-
sign [7]. While being declarative like Scade or Lustre [8],
and not imperative like Esterel [9], its multi-clocked model
of computation (MoC) stands out by providing the capabil-
ity to design systems where components own partially re-
lated activation clocks. This polychronous MoC is called
polychrony. Polychrony also provides the mathematical
foundation to define a notion of behavioral refinement. Be-
havioral refinement is the ability to model a system from the
early stages of its requirement specifications (properties) to
the late stages of its synthesis and deployment (functions)
by its iterative upgrade with correctness-preserving, auto-
mated or manual, program transformations.

TopCased [10] is a large open-source project devoted to
the design of critical embedded systems. In the TopCased
process, several meta-models are proposed, including those
for describing architectures in AADL and those for mod-
eling synchronous components. The POLYCHRONY plat-
form [11], that implements the polychrony model, is part
of the TopCased software. It provides models and meth-
ods for a rapid, refinement-based, integration and a formal
conformance-checking of GALS hardware/software archi-
tectures.

In order to support the virtual prototyping, simula-
tion and formal validation of early, component-based, dis-
tributed embedded architectures, we define a model of the
AADL into the polychronous MoC of the SIGNAL pro-
gramming language [12], and generate distribution code for
simulation. The simulation model resulting from a SIGNAL
program and a target multiprocessor has a formal specifica-
tion allowing model verification.

Our main difficulty is to model asynchronous AADL de-
scriptions into a polychronous model. We address it in two
stages. First, we use an existing library of the SIGNAL en-
vironment, modeling real-time operating system services,
to translate the AADL architectural concepts into SIGNAL
programs. It proves to be a suitable and adequate library to
model embedded architectures in the specific case of Inte-
grated Modular Avionics (IMA [13]) considered in the Top-
Cased project. Second, we distribute the generated code
based on the AADL architecture specifications to different
Pprocessors.

The paper is organized as follows. Section 2 presents a
model of IMA architectures in SIGNAL. Section 3 explains
the general principles of interpreting AADL concepts using
the SIGNAL library of APEX services. In Section 4, we
present how the generated SIGNAL programs are then au-
tomatically distributed to create a distributed simulation of
the system. Section 5 discusses the related work and Sec-
tion 6 draws our conclusions. The appendix gives a brief
summary of the syntax and semantics of SIGNAL.

2 Modeling ARINC concepts in SIGNAL

The POLYCHRONY design environment includes a li-
brary in SIGNAL modeling the real-time executive services
defined in the ARINC-653 standard [14].

APEX services The APEX services modeled in SIG-
NAL include communication and synchronization services
used by PROCESSes (e.g. SEND_BUFFER, WAIT_EVENT,
READ_BLACKBOARD), PROCESS management services
(e.g. START, RESUME), PARTITION management ser-
vices (e.g. SET_PARTITION_MODE), and time manage-
ment services (e.g. PERIODIC_WAIT).

PARTITION-level OS The role of the PARTITION-level
OS is to ensure the correct concurrent execution of PRO-
CESSes within the PARTITION. A sample interface of the
PARTITION-Ievel OS is depicted in Figure 1.

Active_partition_ID Acti o
ctive_process_|
initialize Partition—level OS
Timedout
dt

Figure 1. Interface of PARTITION-level OS

In Figure 1, the input Active_partition_ID rep-
resents the identifier of the running PARTITION selected
by the module-level OS. When current, the PARTITION
is executed. Then, the PARTITION_LEVEL_OS selects
an active PROCESS within the PARTITION. The PRO-
CESS is identified by the value carried by the output signal
Active_process_ID, which is sent to each PROCESS.

ARINC PROCESSES The definition of an ARINC
PROCESS model takes into account its computation and
control parts. Two sub-components are clearly distin-
guished within the model: CONTROL and COMPUTE (Fig-
ure 2). Any PROCESS is seen as a reactive component,
which reacts whenever an execution order (denoted by
the input Active_process_1ID) is received. The in-
put timedout notifies PROCESSes of time-out expira-
tion. The CONTROL and COMPUTE sub-components co-
operate to achieve the correct execution of the PROCESS.
The CONTROL sub-component specifies the control
part of the PROCESS. Basically, it is a transition sys-
tem that indicates which statements should be executed
when the PROCESS model reacts. Whenever the input
Active_process_ID identifies the ARINC PROCESS,
this PROCESS “executes”. Depending on the current state
of the transition system representing the execution flow of
the PROCESS, a block [15] of actions in the COMPUTE
sub-component is selected to be executed. The COMPUTE
sub-component describes the actions computed by the PRO-
CESS. It is composed of blocks of actions. The statements

associated with a block are assumed to complete within a
bounded amount of time.

COMPUTE

CONTROL

Active_process_ID
S

dt

timedout _ | N

Outputs
=

Inputs

Figure 2. ARINC PROCESS model.

PARTITIONS After initialization, a PARTITION is ac-
tivated (i.e. when receiving Active_partition_ID). The
PARTITION-level OS selects an active PROCESS within
the PARTITION. Then, the CONTROL subpart of each
PROCESS checks whether or not the concerned PROCESS
can execute. In the case a PROCESS is designated by the
0S, the following actions will be performed: the PROCESS
executes a block from its COMPUTE subpart, and the dura-
tion corresponding to the executed block is returned to the
PARTITION-Ievel OS in order to update its timing counters.

3 From AADL models to SIGNAL processes

The purpose of a model in AADL is to describe the ex-
ecution characteristics of the system. Because such char-
acteristics depend on the hardware executing the software,
an AADL model includes the description of both software
and hardware [16]. An AADL model is made of a hierar-
chical assembly of software and hardware component types
and implementations. The top-level component is a system.
A system is made of several devices and processors; each
processor can run several processes; each process can exe-
cute several threads; and each thread can call several sub-
programs. The leaves in the parse tree of an AADL model
are either subprograms or component types.

We present general rules to translate AADL systems into
the SIGNAL programming language. We put our transla-
tion to work by studying the similarity between the AADL
and the APEX-ARINC services. In the following, we
present the translation rules from three categories: system,
software components and hardware components. For space
limitation, we only present some classical components, for
the detailed translation, the readers may refer to [17].

3.1 System

The system is the top-level component of the AADL
model, mixing hardware and software components. A sys-
tem may have one or several processors, and each proces-
sor can execute one or several processes, while an ARINC

PARTITION cannot be distributed over multiple processors.
The processor is allocated to each PARTITION for a fixed
time window within a time frame maintained by the core
module level OS. So here we translate the system to a top-
level SIGNAL process, and seperate it into several PARTI-
TIONS according to its owned processors.

Rules:
1. The top level system (may contain several sub-

systems) is mapped to the top level SIGNAL process
(which contains all the PARTITIONS translated from

the sub-systems).

2. Each sub-system is seperated into one or several PAR-
TITIONS according to the processors it owns, each
processor and its bound processes compose an ARINC
PARTITION.

3. For each PARTITION, the input (output) port of the
process which is connected to the system is mapped

into an input (output) of the PARTITION.
4. For system implementations, each sub-component is

mapped into a SIGNAL process, for example, an
AADL thread can be mapped as an ARINC PRO-
CESS, a subprogram can be a block.

5. The top level SIGNAL process will call each of the
PARTITIONS.

6. The connections and communications between sys-
tems will be added later (in the distribution step, which
will be explained in the next section).

For instance, the client system in the example (Figure 3
left) has only one processor and the corresponding SIG-
NAL model contains only one PARTITION (Figure 3 right),
which is composed of the processor and the bound pro-
cesses.

3.2 Software components

Process The AADL process component represents a pro-
tected address space, a space partitioning where protection
is provided from other components accessing anything in-
side the process. Here we consider that the AADL pro-
cesses executed on the same processor constitute a PAR-
TITION.

Thread A thread is a concurrent schedulable unit of se-
quential execution through source code. Multiple threads
represent concurrent paths of execution. A variety of execu-
tion properties can be assigned to threads, including timing,
dispatch protocols, memory size and processor binding. In
APEX ARINC, PROCESSES represent the executive unit
for an application. They share common resources and ex-
ecute concurrently within a PARTITION. A set of unique
attributes are defined for each PROCESS. These attributes
differentiate between unique characteristics of each PRO-
CESS as well as defined resource allocation requirements.
Fixed attributes, for example, Entry point, Base priority, Pe-
riod and so on, are statically defined and cannot be changed

-

Active_Partition_|

-

-
Cligrif
Fi

i

]
processor 1
1

‘.
\

|Acﬁ\re_Process_ID I request|
PARTITION CLIENT _
_LEVEL | timedout PROCESS _EEpONSS
—= End_processiig -
CLIENT "
PROCESS -
SHARED_
P resounce

Figure 3. Mapping an AADL system

once the PARTITION has been loaded. The thread compo-
nent can be translated as an ARINC PROCESS, the proper-
ties, such as Dispatch_Protocol, Period, can be translated as
the PROCESS attributes.

Subprogram The subprogram is a callable component
with or without parameters that operates on data or provides
functions to components that call it. Subprogram compo-
nents represent elementary pieces of code that processes in-
puts to produce outputs. The ARINC block represents el-
ementary pieces of code to be executed without interrup-
tion and within a bounded amount of time. The subprogram
component can be mapped into a block, the code should be
executed without interruption. The detailed implementation
of the function can be programmed in C/JAVA language.

3.3 Hardware components

Device Device components are used to interface the
AADL model with its environment. Devices are not trans-
lated as the other components, they are modeled outside the
PARTITION, the implementation can be provided in some
host language, such as C/JAVA.

Processor Processor component is an abstraction of hard-
ware and software responsible for executing and scheduling
threads. In ARINC services, PROCESSES run concurrently
and execute functions associated with the PARTITION in
which they are contained. The PARTITION_LEVEL_OS
selects an active PROCESS within the PARTITION when-
ever the PARTITION executes, that is to say, at any time,
there is only one PROCESS that is activated. The proces-
sor can be translated as the scheduler of the AADL threads
which are bounded to the processor, corresponding to the
PARTITION_LEVEL _OS in SIGNAL, which is the con-
trol for the concurrent execution of PROCESSES within the
PARTITION.

4 Distributed simulation model generation

A distributed system can be much larger and more pow-
erful given the combined capabilities of the distributed com-
ponents than combinations of stand-alone systems. The pur-
pose of our distribution is, given a centralised program and
some distribution specifications, to build the program on
different processors. These programs must be able to com-
municate harmoniously, such that their combined behavior
will be functionally equivalent to the behavior of the initial
centralised source program.

After the translation step, now we have two elements.
The first one is a SIGNAL program, which includes all the
computation components and depicts flows of data. The
other one is the architecture: in the AADL architecture
specification, it is clearly defined how the system should be
distributed, for example, which process should be executed
and scheduled by which processor, and how the processor
will periodically or sporadically schedule the process.

Our goal is to obtain automatic distributed code genera-
tion from:

1. the software architecture of the application,
2. arepresentation of the distributed target architecture,

3. a manual mapping of the software modules onto the
hardware components.

To automatically distribute a SIGNAL program, we first
map its specified components on the target architecture, add
a scheduler for each location, synthesize the clock syn-
chronizations between the partitioned components, then add
communications in place of these synchronizations, and fi-
nally generate code. We illustrate this methodology by an
example showing how the SIGNAL program is obtained
from the AADL specification and then distributed using
POLYCHRONY.

AADL Architecture
SIGNAL Program | Model Analysis

Map to Archite cture

Schedule
Global compile

| Local con’plle

| Local cun'plle

Executable Distribution Code |

Local currplle

Figure 4. Distributed code generation

4.1 Map to the target architecture

By analyzing the AADL architecture, the system is com-
posed of, say, two processors (see Figure 5), so we have
two PARTITIONS translated from the AADL model. Then
we need to distribute the PARTITIONS to different ma-
chines/processors. Because each PARTITION is translated
from the processes bound to the same processor, no two
PARTITIONS share the same processor, so we can assign

each PARTITION to a different processor.
AADL / process 2 /| process Hauesscrz '
: process 3 / i (== 4
Device 1 ""'----.......»--ﬂ‘""‘

-—

e —— Part2 | ppocrsg 4
SIGNAL PROCESS 2 PROCESS 5
Communication

PROCESS N PROCESS m

Runon "1* Ru

5
04—t

Figure 5. Distribution

Each PARTITION is paced by its own clock. The SIG-
NAL pragma “RunOn” in the POLYCHRONY environ-
ment is used for partitioning information: when a parti-
tioning based on the use of the pragma “RunOn” is ap-
plied to an application, the global application is parti-
tioned according to the different values of the pragma so
as to obtain sub-models. The tree of clocks (the root of

the tree represents the most frequent clock) and the inter-
face of these sub-models may be completed in such a way
that they represent endochronous processes [18] (an en-
dochronous process is mostly insensitive to internal and ex-
ternal propagation delays). The program P will be rewrit-
ten as (|P1|...|Pn|) where n is the number of pro-
cessors. This step is only a syntactic restructuration of the
original program. The SIGNAL process Pi is annotated
with a pragma “RunOn i”. Here is a simple example for
distributing two PARTITIONS run on different processors:

process DIST = (? boolean request,H; ! event response;)
pragmas
target "MPI" RunOn {el} "1" RunOn {e2} "2"
end pragmas
(lel:: (| (x,response):= CLIENT (request,y,initl,activel)
| (initl,activel) := SCHEDULEL (H) |)
|le2:: (|ly:= SERVER(x,1init2,active?2)
| (init2,active2) := SCHEDULEZ2 (H) |) |)

where label el,e2; Message_type X,V;
event initl,init2; integer activel,active2; end;

We put the SCHEDULE implementation details off until
later refinement stages and focus on its distribution in this
step: the two PARTITIONS are assigned to two different
labels, each label will run on a different processor.

4.2 Scheduler

The purpose of scheduling is to be able to structure the
code into pieces of sequential code and a scheduler, aim-
ing at guaranteeing separate compilation and reuse. The
scheduler selects enabled tasks for execution according to
the scheduling policy. In APEX-ARINC model, the MOD-
ULE_LEVEL_OS is the scheduler for scheduling the PAR-
TITIONS within the same module (See Figure 6). Schedul-
ing partitions is strictly deterministic over time in the AR-
INC653 standard. Based upon the configuration of par-
titions within the core module, overall resource require-
ments/availability and specific partition requirements, a
time-based activation schedule is generated that identifies
the partition windows allocated to the individual partitions.
Each partition is then scheduled according to its respec-
tive partition window. The schedule is fixed for the par-
ticular configuration of partitions on the processor. Within
the PARTITION, there is a PARTITION_LEVEL_OS for
scheduling the PROCESSES which is already implemented
during the translation phase.

In our transformation rules, each processor runs only
one PARTITION, so the scheduler for the PARTITIONS
running on one processor is very simple. We can create
a simple scheduler reference to the MODULE_LEVEL_OS
in APEX which schedules only one PARTITION. Then the
SIGNAL process can be refined like the following example
(the processes INIT() and GET_ACTIVE_PARTITION()
are left for initializing and activating the partitions, they
would be non-trival for several partitions):

Partition

Ketiye

“A(CProcessn

Process
Trigger™

Trigger

Figure 6. Scheduling

process SCHEDULE = (? event H;
! event initialize;integer active_partition;)
(| (|initialize := INIT(H)|)
| (lactive_partition := GET_ACTIVE_PARTITION ()
|b_init := (not initialize)$l init true
|active_partition "= when (not b_init)|)|)
where boolean b_init; end;

After adding the scheduler to the program, now we
can make a global compiling to seperate the parts for
further development. This phase makes explicit all the
synchronizations of the application and detects synchro-
nization constraints (the compiler uses clock calculus
to statically analyze every program statement, identify
the structure of the clocks of variables, and schedule the
overall computation. If the collection of the statements
as a whole contains clock constraints violation, then
synchronization constraints exist). If it is not, the program
is made endochronous. The compiling stops if constraints
are detected. The distributed program is automatically
generated in the POLYCHRONY environment, as below:
PART |
process DIST_1=(?boolean request,H; Mess_type y;!event response; Mess_type X;)
pragmas RunOn “1” end pragmas (|...]);

PART 2
process DIST_2 = (? boolean H; Mess_type x; | Mess_type y;)
pragmas RunOn “2” end pragmas (|...]);

The program is separated into two parts, each one is la-
beled as XX_i (XX represents the name of the original SIG-
NAL program, “DIST” in the example), and the internal in-
puts/outputs from the other part are automatically added. In
our example, the two parts DIST_1 and DIST_2 are gener-
ated after the global compiling, message x and y are added
by the compiler automatically, message X is transfered from
DIST_1 to DIST_2, and DIST_1 will receive message y from
DIST 2.

Compared with the original program, the seperated parts
perform a rewritten. All the computation properties are pre-
served, and a scheduler is added for each of the processor.

4.3 Adding communications

A distributed program consists of a set of processes in-
teracting with the enviroment and communicating among
themselves. Reasons for the communication are to send
data or signal to another process, to synchronize with other
processes, or to request an action from another process.

A common distributed processing environment is consti-
tuted by several parts that are interconnected forming a net-
work and they communicate and coordinate their actions by
passing messages. Usually a real-time distributed executive
provides services such as time and resource management,
allocation and scheduling of processes and inter-processes
communication and synchronization. Among these ser-
vices, one of the most important is the communication sup-
port. We emphasize this issue because of the peculiar role
of inter-processor communications in distributed memory
multi-processors.

In distributed computing, a common assumption is that
when a task sends a message to some other task it should not
need to know where this task is situated, making the mes-
sage communication transparent. Some commercial oper-
ating systems (e.g. VAX/ELN) provide a distributed ker-
nel, which directly supports this transparency in the mes-
sage communication. If this property is not available then
a Distributed Task Manager (DTM) is usually developed to
provide this transparency. The DTM is a layer of software
that stands above each operating system on each node.

Part 1 Comm_ Part 2
Channel

puELES PREZE

processor 1 processor 2

Figure 7. Communication

Therefore some form of communication and synchro-
nization mechanism which guarantees that the semantics of
synchronous communication will be preserved (Figure 7)
needs to be added. There are two basic solutions for
communications: shared variables and message passing.
Shared variables do not allow synchronization between par-
allel processes, unless some complex mechanism is built
on top of them. Moreover, they make formal verifica-
tion harder. Message passing in distributed systems can
be synchronous or asynchronous. In our implementation,
we use MPI (Message Passing Interface) [19]. MPI is a
language-independent communication protocol used to pro-
gram parallel computers. It is a message passing application
programmer interface, together with protocol and seman-
tic specifications for how its features must behave in any
implementation. MPI technology tends to provide an ef-
ficient and portable standard for message passing commu-
nication programs used in distributed memory and parallel
computing. There are currently several MPI implementa-

tions such as MPI/Pro, IBM MPI, and LAM. These imple-
mentations provide different communication modes such as
asynchronous communication, virtual topologies and effi-
cient message buffer management.

The problem of timed synchronous communication be-
tween two processes, P and Q, can be stated as follows. To
send a message to process Q, process P executes:

’ MPI_send (msg, count, mess_type, dest, tag, MPI_COMM) ‘

Meanwhile, process Q executes a receive command:

’ MPL_recv (msg, count, mess_type, source, tag, MPI_COMM, MPI_STATUS) ‘

MPI preserves the ordering and the integrity of the mes-
sages (for example, by ACK schemes and sequence num-
bers). This will ensure that values are not mixed up or out
of sequence, provided that the send actions are executed on
one location in the same order as the corresponding recv
actions in the other location. Based upon the distribution
specification, a unique tag is assigned to each common vari-
able of the program. Figure 8 shows the communications in
our case.

H
DIST. x(tag 0) x(tag0) | DIST,
request - - H
| EXTRACT MPI_send EXTRACT ‘+—
¢ 1 < MPI_recv 2
response yitag 1) y(tag 1)

Figure 8. MPI Communication

To execute the distributed parts, we need to create config-
uration files to identify machines to be used for execution.
Then the parts can be compiled locally and executed sep-
arately. For our example, comparing the execution results
with the ones getting from sequential simulation, we get the
same outputs for the same inputs.

As a conclusion, from a complete representation of an
application, including its virtual distribution on a target ar-
chitecture, it is possible to make a global compilation, par-
titioning, insertion of communication features, and to sim-
ulate the application on the considered architecture.

5 Related work

A number of related approaches have been proposed.
Dissaux [20] presents an approach for AADL model trans-
formations. This approach concentrates on the analysis of
components from legacy code aimed specifically towards
use with the HOOD Stood tool [20]. Bertolino and Mi-
randola [21] propose an approach for the specification and
analysis of performance related properties of AADL com-
ponents using the RT-UML profile.

Some research projects also use AADL as a model-
ing language for distributed systems. PolyORB-HI [22]
is a middleware for High-Integrity systems, modeling dis-
tributed high-integrity systems using AADL, allowing a

large part of the distributed application code to be gener-
ated automatically, and making Ada code generation from
AADL model. AADL2Fiacre [23] deals with the transfor-
mation of AADL models into Fiacre models to perform for-
mal verification and simulation.

Some related approaches are proposed to modeling non-
synchronous systems using synchronous languages and de-
veloping system level design methodology. For instance,
AADL2SYNC [24] tool is an AADL to synchronous pro-
grams translator, which is extended in the framework of
the European project ASSERT, resulting in the system-level
tool box translating AADL to LUSTRE.

6 Conclusion

We have presented in this paper a polychronous model
to work for the AADL architecture from the early stages
of its functional specification to the late stages of its dis-
tributed simulation. Our approach has two main character-
istics: 1) it is based on model transformation, from AADL
dependability models to SIGNAL that can be processed by
existing technologies and services, and 2) it reduces the de-
pendency of the model partitions, since all the partitions
are distributed. Our model has been designed to gener-
ate synchronous models written in SIGNAL language, tar-
get simulations being distributed. The main advantage of
this approach is that it provides a quite systematic way of
modeling a distributed system, since directly designing a
distributed system is always more difficult and error-prone.
The other advantage of this approach is the ability to debug
and formally verify the centralised program before its dis-
tribution, which is always easier and faster than debugging
a distributed program.

For future works, we intend to design a simulation model
for a loosedly time-triggered architecture (LTTA) [25]. A
big improvement of our current approach would be the sup-
port for automatic distribution of the PARTITIONS. Sec-
ondly, distributed real-time executives are expected to pro-
vide important fault-tolerance facilities.

References

[1] PH. Feiler, D.P. Gluch, J.J. Hudak. The Architecture Analysis
& Design Language (AADL): An Introduction, Technical Note
CMU/SEI-2006-TN-011, February 2006

[2] P.H. Feiler, D.P. Gluch, J.J. Hudak. Embedded system architecture
analysis using SAE AADL, Technical note cmu/sei-20040tn-005,
Carnegie Mellon University, 2004

[3] http://www.assert-online.org

[4] http://www.LAAS.ft/COTRE

[5] A. Benveniste, P. Caspi, S. Edwards, N. Halbwachs, P. Le Guernic,
and R. de Simone, The synchronous languages 12 years later, Proc
of the IEEE, 91(1), January 2003

[6] D. Potop-Butucaru, B. Caillaud, and A. Benveniste, Concurrency in
synchronous systems, ACSD’04, June 2004

[7]1 P.Le Guernic, T. Gautier, M. Le Borgne, C. Le Maire, Programming
real-time applications with Signal, Proceedings of the IEEE, v.79,
September 1991

[8] N.Halbwachs et al. The synchronous data flow programming lan-
guage LUSTRE, Proceedings IEEE, 79-9, 1991

[9] B.De Simone, The ESTEREL language, Proceedings IEEE, 79-9,
1991

[10] TopCased project, http://www.topcased.org

[11] http://www.irisa.fr/espresso/Polychrony

[12] P. Le Guernic, J.-P. Talpin, and J.-C. Le Lann, Polychrony for sys-
tem design, Journal for Circuits, Systems and Computers, Special
Issue on Application Specific Hardware Design, World Scientific,
April 2003

[13] Airlines Electronic Engineering Committee. Design Guidance for
Integrated Modular Avionics. ARINC Report 651-1, November
1997

[14] Airlines Electronic Engineering Committee. Avionics Application
Software Standard Interface. Arinc Specifcation 653, January
1997

[15] A. Gamatié, and T. Gautier, Synchronous modeling of avionics
applications using the Signal language. In Proc of the 9th IEEE
RTAS’2003, May 2003, IEEE Press

[16] J.Hudak, P. Feiler, The SAE Architecture Analysis & Design Lan-
guage (AADL) Standard: A Language Summary, AADL Stan-
dard Document, 2006

[17] Y. Ma, J-P Talpin, T. Gautier, Vitual prototyping AADL architec-
tures to a synchronous model, MEMOCODE’08, June 2008

[18] J-P. Talpin, J. Ouy, L. Besnard, P. Le Guernic. Compositional de-
sign of isochronous systems, Report RR-6227. INRIA, 2007. URL
http://hal.inria.fr/inria-00156499

[19] J. Dongarra, D. Walker, E. Lusk, MPI: A Message-Passing Inter-
face Standard, MPI Standard

[20] P. Dissaux, AADL model transformations, Proc DASTA 2005 Con-
ference in Edinburgh, UK, 2005

[21] A. Bertolino, R. Mirandola, Modeling and Analysis of Non-
functional Properties in Component-Based Systems, Electronic
Notes in Theoretical Computer Science 82(6), 2003

[22] http://aadl.enst.fr/polyorb-hi/

[23] B. Berthomieu, J-P. Bodeveix, P. Farail, M. Filali, H. Garavel, P.
Gaufillet, F. Lang, F. Vernadat, Fiacre: an Intermediate Language
for Model Verification in the Topcased Environment, ERTS’08,
France, 2008

[24] AADL2SYNC project, available from
verimag.imag.fr/"synchron/index.php?page=aadl2sync

[25] A. Benveniste, P. Caspi, P. Le Guernic, H. Marchand, J-P. Talpin,
and S. Tripakis, A protocol for loosely time-triggered architecture,
EMSOFT, 2002

http://www-

A The SIGNAL Language

SIGNAL is a data-flow synchronous language. A SIG-
NAL program, also called process (to distinguish from the
AADL “process” and ARINC “PROCESS”), is a system of
equations over signals that specifies relations between val-
ues and clocks of the signals. SIGNAL is associated with a
design environment, called POLYCHRONY, which offers a
graphical user interface, a compiler and a model-checker.

Syntax In Signal, a process (written P or (J) consists of
the synchronous composition (noted P | Q) of equations on
signals (written x = y f z). A signal x represents an infinite
flow of values. It is sampled according to the discrete pace
of its clock, noted Z. An equation = y f z defines the

output signal x by the relation of its input signals y and z
through the operator f. A process defines the simultaneous
solution of the equations it is composed of.

PQ :=z=yfz|P|Q|P/x

There are several kinds of equations. A functional equation
x = y f z defines an (arithmetic or boolean) relation f be-
tween its operands y, z and result x. A delay x = yprev
initially defines x by the value v and then by that y had last
time it was evaluated. A sampling © = y when z defines z
by y when z is true. A merge x = y default z defines z by
y when y is present and by z otherwise. The process P/x
restricts the lexical scope of the signal z to the process P.

Example We consider the definition of a counter. It ac-
cepts an input reset signal and delivers the integer output
signal val. The local variable counter is initialized to 0 and
stores the previous value of the signal val (equation counter
:= val$ init 0). When an input reset occurs, the signal val
is reset to O (expression (0 when reset)). Otherwise, the
signal val takes an increment of the variable counter (ex-
pression (counter+1)). The activity of Count is governed
by the clock of its output val which has higher frequency
than its input reset.

(] counter = val Count events

reset val

| counter := valginit 0 > Reset tt t it
| val 1= 0 when reset va 10123401230012
default (counter+1)) counter 01012340123001

Figure 9. A counter and its trace

Semantics The semantics of SIGNAL is based on the
polychronous MoC. SIGNAL handles unbounded series of
typed values (z)¢en, called signals, denoted as x and im-
plicitly indexed by discrete time. At any instant, a signal
may be present, at which point it holds a value; or absent
and denoted by _L in the semantic notation. The set of in-
stants where a signal x is present represents its clock, noted
2. SIGNAL relies on six primitive constructs that define
elementary processes:

e Relations. y:= £ (x1,...,xn) =def /. (yy =1l
f(xlta ceey xnt))

e Delay. v:= x$1 init c =% VYt > 0,2, #1&
Yy #L N1y #FLl=yp =10 1,90 = c.

o Undersampling. y:= x when b =% y, = x, if
by = true, else y =1.
o Deterministic merging.
=y if xy #1, else z; = y;.
e Composition. P1|P2 is the conjunction of the equa-
tions in P1 and P2.

e Hiding. P where x restricts the scope of x to the
process P.

z:= x default y =%

z

-

