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Abstract 
In this paper, we present a new mutation operator called 
the Systematic Mutation (SM) operator for enhancing the 
performance of Basic Particle Swarm Optimization 
(BPSO) algorithm. The SM operator unlike most of its 
contemporary mutation operators do not use the random 
probability distribution for perturbing the swarm 
population, but uses a quasi random Sobol sequence to 
find new solution vectors in the search domain. The 
comparison of SM-PSO is made with BPSO and some 
other variants of PSO. The empirical results show that 
SM operator significantly improves the performance of 
PSO. 
 
 
1. Introduction 
 
     Particle Swarm Optimization (PSO) is relatively a 
newer addition to a class of population based search 
technique for solving numerical optimization problems. 
Metaphorically, PSO imitates the collective and 
cooperative behavior of species moving in groups. Some 
classic examples being a swarm of birds, school of fish, 
cooperative behavior of ants and bees etc. 

In original PSO, developed by Kennedy and Eberhart 
in 1995 [1], each particle adjusts its position in the search 
space from time to time according to the flying 
experience of its own and of its neighbors (or colleagues). 
The particles or members of the swarm fly through a 
multidimensional search space looking for a potential 
solution. Researchers have shown that although PSO finds 
solutions much faster than most of the contemporary 
search techniques like Evolutionary and Genetic 
Algorithms, it usually do not improve the quality of 
solutions as the number of iterations increase and thus 
becomes a victim of premature convergence resulting in a 
suboptimal solution. This draw back of PSO is due to the 
lack of diversity, which forces the swarm particles to 
converge to the global optimum found so far (after a 
certain number of iterations), which may not even be a 
local optimum. Thus without an effective diversity 
enhancing mechanism the optimization algorithm/ 

technique is not able to efficiently explore the search 
space. 

One of the methods for maintaining the diversity of 
the population is inclusion of the concept of mutation (a 
phenomenon borrowed from Evolutionary Algorithms). 
Most of the modern mutation operators defined in 
literature make use of random probability distribution (for 
example Gaussian mutation [2], Cauchy mutation [3] etc). 
In the present work, instead of using the random 
probability distribution, we have defined a SM operator 
which uses quasi random (Sobol) sequence mainly 
because quasi random sequences cover the search domain 
more evenly in comparison to the random probability 
distributions, thereby increasing the chances of finding a 
better solution. The SM operator defined in this paper is 
applied to two versions of BPSO called SM-PSO1 and 
SM-PSO2. In SM-PSO1, mutation is applied to the global 
best (gbest) particle, where as in SM-PSO2, the worst 
particle of the swarm is mutated.  

The remaining organization of the paper is as follows: 
section 2 gives a brief review of Quasi Random 
Sequences (QRS) and Sobol Sequence. Section 3 
describes the Basic Particle Swarm Optimization. In 
Section 4, we give the proposed algorithms, Section 5, 
gives the experimental settings and numerical results of 
some selected unconstrained benchmark problems. The 
paper finally concludes with Section 6. 
 
2. Quasi Random Sequences (QRS) 
 
    QRS or low discrepancy sequences are less random 
than pseudorandom number sequences, but are more 
useful for computational methods, which depend on the 
generation of random numbers. Some of these tasks 
involve approximation of integrals in higher dimensions, 
simulation and global optimization. Some well known 
QRS are: Vander Corput, Sobol, Faure and Halton. These 
sequences have been applied to initialize the swarm and 
the numerical results show a marked improvement over 
the traditional BPSO, which uses uniformly, distributed 
random numbers [4], [5].  
QRS are said to be better than pseudo random sequences, 
because of their ability to cover the search space more 



evenly in comparison to pseudo random sequences (see 
Figures 1 and 2). 
 
2.1. Discrepancy of a Sequence 
 
     Mathematically, discrepancy of a sequence is the 
measure of its uniformity. It is computed by comparing 
the actual number of sample points in a given volume of a 
multi-dimensional space with the number of sample 
points that should be there assuming a uniform 
distribution defined. 
For a given set of points x1, x2, …,xN ∈ IS and a subset G 
⊂ IS, define a counting function SN(G) as the number of 
points xi ∈ G. For each x = (x1, x2, ….xS) ∈ IS, let Gx be 
the rectangular S dimensional region, such that              Gx 
= [0,x1) x [0,x2) x…x[0,xS), with volume x1x2…xN. Then 
the discrepancy of points is given by D*N(x1, x2, x3….xN) 
= Sup SN(Gx) – Nx1x2…xS, x∈ IS. 
 
2.2. Discrepancy of a Sequence 
 
     The construction of the Sobol sequence [6] uses linear 
recurrence relations over the finite field, F2, where F2 = 
{0, 1}. Let the binary expansion of the non-negative 
integer n be given by 11
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Figure 1 Sample points of pseudo random sequence 

 
These direction numbers are generated by the following 
q-term recurrence relation: 

)2/(... )()()(
1

)(
22

)(
11

)( qj
qi

j
qi

j
qiq

j
i

j
i

j
i vvvavavav −−+−−− ⊕⊕⊕⊕⊕=

We have i > q, and the bit ia , comes from the 
coefficients of a degree-q primitive polynomial over F2. 

 

 
Figure 2 Sample points of quasi random sequence 

 
3. Basic Particle Swarm Optimization  
 
     For a D-dimensional search space the position of the ith 
particle is represented as Xi = (xi1, xi2, …, xiD). Each 
particle maintains a memory of its previous best position 
Pi = (pi1, pi2… piD). The best one among all the particles in 
the population is represented as Pg = (pg1, pg2… pgD). The 
velocity of each particle is represented as Vi = (vi1, vi2, … 
viD). In each iteration, the P vector of the particle with 
best fitness in the local neighborhood, designated g, and 
the P vector of the current particle are combined to adjust 
the velocity along each dimension and a new position of 
the particle is determined using that velocity. The two 
basic equations which govern the working of PSO are that 
of velocity vector and position vector given by: 
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 ididid vxx +=                                                                                           (2) 
The first part of equation (1) represents the inertia of 

the previous velocity, the second part is the cognition part 
and it tells us about the personal thinking of the particle, 
the third part represents the cooperation among particles 
and is therefore named as the social component. 
Acceleration constants c1, c2 and inertia weight w are the 
predefined by the user and r1, r2 are the uniformly 
generated random numbers in the range of [0,1]. 
 
4. Proposed Algorithm 
 
     The proposed algorithm is an extension to the Basic 
Particle Swarm Optimization, by including the component 
of mutation in it. The mutation operator defined in the 
present work uses quasi random Sobol sequence and is 
called a systematic mutation (SM) operator. We have 
proposed two versions using SM, called SM-PSO1 and 
SM-PSO2. The two versions differ from each other in the 
sense that in SM-PSO1, the best particle of the swarm is 
mutated, whereas in SM-PSO2, the worst particle of the 
swarm is mutated.  
The SM operator is defined as 



SM = R1 +  ( R2 / ln R1), 
Where R1 and R2 are random numbers in a Sobol 
sequence. 

The idea behind applying the mutation to the worst 
particle is to push the swarm from the back. The quasi 
random numbers used in the SM operator allows the 
worst particle to move forward systemically.  
 
4.1. Pseudo Code of SMPSO1 Algorithm 
 
The Pseudo code of SM-PSO1 is described as follows: 
 
Initialize the population 
Do 
      w linearly decreases from 0.9 to 0.4 
      For i=1 to population size M 
           For d=1 to dimension D 
               vid=w*vid+c1*r1*(Pid-xid)+c2*r2*(Pgd-xid) 
              xid=xid+vid 
          End for 
          If ( f(Xi) < f(Pi) )       Pi = Xi. 
             If ( f(Pi) < f(Pg) )    Pg = Pi 
             End if 
          End if 
          For d=1 to dimension D 
              R1 = sobolrand();  R2 = sobolrand(); 
              tempd = R1 +  ( R2 / ln R1)  
         End for 
         If ( f(temp) < f(Pg) )  Pg = temp 
         End if 
     End for 
Until stopping criteria is reached 
The function sobolrand() returns a random number 
distributed by sobol sequence. The computational steps of 
SMPSO2 are same as that of SMPSO1, except for the fact 

that the worst particle in the swarm is mutated instead of 
the best particle. 
 
5. Benchmark Problems and Results 
 
In the present study we have taken 3 benchmark problems 
(Table 1), which are considered to be starting point for 
checking the credibility of any optimization algorithm. 

All the test problems are highly multimodal and 
scalable in nature. Each function is tested with a swarm 
size of 20, 40 and 80 for dimension 10, 20, 30. The 
maximum number of generations is set as 1000, 1500 and 
2000 corresponding to the dimensions 10, 20 and 30 
respectively. A total of 30 runs for each experimental 
setting are conducted and the average fitness of the best 
solutions throughout the run is recorded. 

 
Table 1 Numerical benchmark problems 

 
 
 

 
 
 
 
 
 
 

Table 2 Results of Rastringin function (Mean best) 
 

Pop Dim Gne SMPSO1 
(gbest) 

SMPSO2 
 (gworst) 

BPSO 
[8] 

QPSO  
[8] 

Mutation 
gbest [7] 

Mutation 
gbest [8] 

10 1000 0.881465 0.641812 5.5382 5.2543 5.2216 4.3976 
20 1500 5.014802 4.52709 23.1544 16.2673 16.1562 14.1678 20 
30 2000 13.152097 12.669938 47.4168 31.4576 26.2507 25.6415 
10 1000 1.241561 0.85634 3.5778 3.5685 3.3361 3.2046 
20 1500 5.91223 5.472557 16.4337 11.1351 10.9072 9.5793 40 
30 2000 13.005205 14.523385 37.2896 22.9594 19.6360 20.5479 
10 1000 1.182363 0.813593 2.5646 2.1245 2.0185 1.7166 
20 1500 5.501107 4.97266 13.3826 10.2759 7.7928 7.2041 80 
30 2000 10.210538 15.028891 28.6293 16.7768 14.9055 15.0393 

 
 



Table 3 Results of Griewank function (Mean best) 

Pop Dim Gne SMPSO1 
(gbest) 

SMPSO2 
 (gworst) 

BPSO 
[8] 

QPSO  
[ 8] 

Mutation 
gbest [7] 

Mutation 
gbest [8] 

10 1000 0.006896 0.007877 0.09217 0.08331 0.0627 0.0780 
20 1500 0.009177 0.008486 0.03002 0.02033 0.0209 0.0235 20 
30 2000 0.025227 0.014541 0.01811 0.01119 0.0110 0.0099 
10 1000 0.009677 0.009515 0.08496 0.06912 0.0539 0.0641 
20 1500 0.017195 0.012269 0.02719 0.01666 0.0238 0.0191 40 
30 2000 0.030103 0.011066 0.01267 0.01161 0.0119 0.0098 
10 1000 0.00886 0.006402 0.07484 0.03508 0.0419 0.0460 
20 1500 0.010828 0.01296 0.02854 0.01460 0.0136 0.0186 80 
30 2000 0.024265_ 0.004692  0.01258 0.01136 0.0120 0.0069 

 
Table 4 Results of Rosenbrock function (Mean best) 

Pop Dim Gne SMPSO1 
(gbest) 

SMPSO2 
 (gworst) 

BPSO 
[8] 

QPSO  
[ 8] 

Mutation 
gbest [7] 

Mutation 
gbest [8] 

10 1000 6.416553 6.410466 94.1276 59.4764 27.4620 21.2081 
20 1500 17.311169 17.287586 204.336 110.664 49.1176 61.9268 20 
30 2000 30.566478 28.259791 313.734 147.609 97.5952 86.1195 
10 1000 6.4147 6.401132 71.0239 10.4238 7.8741 8.1828 
20 1500 17.23444 17.250421 179.291 46.5957 28.4435 40.0749 40 
30 2000 28.114756 28.640997 289.593 59.0291 62.3854 65.2891 
10 1000 6.416151 6.345346 37.3747 8.63638 6.7098 7.3686 
20 1500 17.440593 17.190714 83.6931 35.8947 31.0929 30.1607 80 
30 2000 28.324733 30.153352 202.672 51.5479 43.7622 38.3036 

 

      
                    (a)                                                                            (b) 

Figure 3 Performance for Rastringin function of SMPSO1 
                                 (a) Dimension 10 (b) Dimension 20 
 

        
                         (a)                                                                            (b) 

Figure 4 Performance for Rastringin function of SMPSO2 
                                 (a) Dimension 10 (b) Dimension 20 

 



                   
                                            (a)                                                                            (b) 

Figure 5 Performance for Rosenbrock function of SMPSO1 
(a) Dimension 10 (b) Dimension 20 

 

                   
                                              (a)                                                                                   (b) 

Figure 6 Performance for Rosenbrock function of SMPSO2 

(a) Dimension 10 (b) Dimension 20 
 
The mean best fitness value for the functions f1 – f3 are 
given in Tables 2 – 4, respectively, in which Pop 
represents the swarm population, Dim represents the 
dimension and Gne represents the maximum number of 
permissible generations. Figures 3 and 4 show the mean 
best fitness curves for the Rastringin function 
corresponding to the algorithms SM-PSO1 and SM-PSO2 
respectively. Figures 5 and 6 show the mean best fitness 
curves for the Rosenbrock function corresponding to the 
algorithms SM-PSO1 and SM-PSO2 respectively. 
Comparison of the proposed algorithms is done with one 
of the latest variant of BPSO, called Quantum PSO 
(QPSO). According to the researchers, QPSO performs 
better than the BPSO for well-known benchmark 
problems (for more details on QPSO please see [7], [8]).  
The numerical results show that in all the test cases the 
proposed algorithms perform much better than the other 
algorithms. If we compare the performance of SMPSO1 
and SMPSO2 with each other then from the numerical 
results we can see that SMPSO2 in which the worst 
particle of the swarm is mutated gave better results than 
SMPSO1 in 20 test cases out of the total 27 cases tried.   
 
 

6. Conclusion 
 
In this paper, we proposed a new mutation operator called 
SM mutation operator for improving the performance of a 
BPSO. Two versions of algorithms called SMPSO1 and 
SMPSO 2 are defined. The empirical studies show that 
the proposed versions are better than the BPSO and 
QPSO quite significantly. However, we would like to add 
that we have tested the algorithms on a narrow platform 
of benchmark problems. Thus making any concrete 
judgment about the proposed algorithms is not justified. 
In future, we will test the proposed algorithms on a wider 
platform consisting of more complex, multidimensional 
problems having larger number of variables. In addition, 
it will be interesting to do some theoretical research on 
the better performance of PSO when the worst particle is 
mutated.  
 
References 
 
[1] J. Kennedy and R. C. Eberhart, “Particle Swarm 

Optimization”, IEEE Int. Conf. on Neural Networks 



(Perth, Australia), IEEE Service Center, Piscataway, 
NJ, 1995, pp. 1942-1948. 

 
[2] H. Higashi and H. Iba, “Particle Swarm Optimization 

with Gaussian Mutation”, In Proc. of the IEEE 
swarm Intelligence Symposium, 2003, pp. 72 – 79. 

 
[3] A. Stacey, M. Jancic and I. Grundy, “Particle Swarm 

Optimization with Mutation”, in Proc. of the IEEE 
Congress on Evolutionary Computation, 2003, pp. 
1425 – 1430. 

 
[4] Mille Pant, Radha Thangaraj and Ajith Abraham, 

“Improved Particle Swarm Optimization with Low-
Discrepancy Sequences”, to appear in Proc. of IEEE 
Congress on Evolutionary Computation, 2008. 

 
[5] Nguyen X. H., Nguyen Q. Uy., R. I. Mckay and P. 

M. Tuan, “Initializing PSO with Randomized Low-

Discrepancy Sequences: The Comparative Results”, 
In Proc. of IEEE Congress on Evolutionary 
Algorithms, 2007, pp. 1985 – 1992. 

 
[6] H. M. Chi, P. Beerli, D. W. Evans, and M. Mascagni, 

“On the Scrambled Sobol Sequence”, In Proc. of 
Workshop on Parellel Monte Carlo Algorithms for 
Diverse Applications in a Distributed Setting, LNCS 
3516, Springer Verlog, 1999, pp. 775 – 782. 

 
[7] Liu J, Xu W, Sun J. Quantum-Behaved Particle 

Swarm Optimization with Mutation Operator. In 
Proc. of the 17th IEEE Int. Conf. on Tools with 
Artificial Intelligence, Hong Kong (China), 2005. 

 
[8] Liu J, Sun J, Xu W, Quantum-Behaved Particle 

Swarm Optimization with Adaptive Mutation 
Operator. ICNC 2006, Part I, Springer-Verlag: 959 – 
967, 2006. 

 


