Using Edge-Clouds to Reduce Load
on Traditional WiF1 Infrastructures
and Improve Quality of Experience

Pedro M. Pinto Silva, Jodo Rodrigues, Joaquim Silva,
Rolando Martins, Luis Lopes, Fernando Silva
Faculty of Science, University of Porto & CRACS/INESC-TEC
Rua do Campo Alegre, 1021, 4169-007 Porto, Portugal
e-mail: firstname.lastname @dcc.fc.up.pt

Abstract—Crowd-sourcing the resources of mobile devices is
a hot topic of research given the game-changing applications
it may enable. In this paper we study the feasibility of using
edge-clouds of mobile devices to reduce the load in traditional
WiFi infrastructures for video dissemination applications. For
this purpose, we designed and implemented a mobile application
for video dissemination in sport venues that retrieves replays
from a central server, through the access points in the WiFi in-
frastructure, into a smartphone. The fan’s smartphones organize
themselves into WiFi-Direct groups and exchange video replays
whenever possible, bypassing the central server and access points.
We performed a real-world experiment using the live TV feed
for the Champions League game Benfica-Besiktas with the help
of a group of volunteers using the application at the student’s
union lounge. The analysis of the logs strongly suggests that edge-
clouds can significantly reduce the load in the access points at
such large venues and improve quality of experience. Indeed, the
edge-clouds formed were able to serve up to 80% of connected
users and provide 56% of all downloads requested from within.

Keywords: Mobile edge-clouds; P2P; WiFi offloading.

I. INTRODUCTION

By the end of 2016 more than 2 billion consumers world-
wide will own a smartphone, accounting for 80% of mobile
data traffic [1]. From e-commerce, e-learning and gaming
to healthcare, mobile applications are growing in number,
complexity and diversity, and have significantly impacted our
social lives [16]. One of the causes is that applications are be-
coming more context-aware and offer a wider range of multi-
user functionalities, such as shared editing of documents and
online multi-player gaming. To achieve this, many applications
integrate internal resources and sensing with the cloud.

Traditional Mobile Cloud Computing (MCC) focuses on
moving processing and storage of data generated by mobile
devices to centralized cloud datacenters. This offloading of
computation and data benefits the users by decreasing battery
consumption in the devices and allows them to access highly
reliable infrastructure with seemingly unlimited computational
and storage resources. However, due to the distance (both
physical and logical) that separates a device at the edge
of the network from the cloud, a major technical challenge
prevails: how can MCC provide for applications with low-
latency and/or high-bandwidth requirements? Moreover, MCC

can not be directly put into use in cases where the infrastruc-
ture is unavailable or bandwidth limitations are part of the
setting, for example, in realistic disaster scenarios and in dense
environments such as sports or music events.

To address these issues, new paradigms such as mobile
edge-clouds strategically combine traditional cloud infras-
tructure with the resources provided by devices, enabling
proximity-aware applications (c.f., Section II). In this scenario,
smartphones are not viewed as just “thin clients”, but rather
as devices capable of performing relevant computational tasks
and act as “thin servers” [17]. An edge-cloud is composed
of available nearby devices that work together to form a
pool of computing resources with sustained operation under
poor connectivity and access to crowd-sourced information
which otherwise might be unavailable. Applications can use
the edge-cloud to perform data caching and mining; image and
video processing or streaming; enforce security and control
mechanisms (authentication, content flagging, etc); or simply
query data. More importantly, computational tasks are per-
formed locally, i.e. there is no offloading of computation or
data to a traditional cloud infrastructure. However, various
challenges still need to be addressed in order to build an
edge-cloud infrastructure capable of: supporting a variety of
heterogeneous devices; handling churn, i.e. coping with the
dynamic movement of devices entering and leaving the edge-
cloud; deciding when to leverage one wireless technology
and/or network topology over another (e.g., peer-to-peer Vvs.
client-server, WiFi through AP or WiFi-Direct) [9].

Presently, and unlike MCC, few applications have been
proposed that use and demonstrate the value of edge-clouds.
A real world scenario that illustrates their value is the dis-
semination of video contents, e.g. soccer replays, to club
fans in a sports venue by offloading part of the WiFi traffic
to the edge-cloud. There is a growing market of apps that
provide users within (and outside) the stadium with almost
real-time statistics and multimedia contents like the number
of kilometers a player has run or video replays for goals or
interesting events [2,3]. If the fan chooses to watch a video
replay, the content is downloaded from the central servers
through stadium installed access points (WiFi or cellular), and

then played on the device. If, however, the venue is crowded,
the large number of requests can stress the infrastructure [8,
12].

One way to solve this problem is to use mobile edge-
clouds. In this way, the fan’s device and its neighbours in
the stadium can form a local cache for the server contents
- users of the service can be encouraged to share in several
ways, e.g., sweepstakes of team merchandise or lower rates
for the service. For example, before asking the server for a
video replay, the application might ask the other phones in
the edge-cloud whether they have a copy of the video. If a
copy of the replay is located, the fan can retrieve it directly
from a neighbouring phone.

Although this is not the scope of this paper, we are aware
that such a scenario raises privacy and security issues, but
there is research on this subject. For privacy, for example,
one can use use the native container/sandbox [7] infrastructure
provided by Android coupled with a careful management of
permission schemas [10]. For security, one can, for example,
envision a curation mechanism that would involve a team of
people visualizing the videos submitted and digitally signing
them before allowing them to be streamed by the application.

In this paper we address this problem and make two
fundamental contributions. First, we design and implement
a prototype application for Android devices that dynamically
switches between the WiFi infrastructure (to access a central
server) and an edge-cloud composed of WiFi-Direct groups (to
access cached copies) to disseminate video contents. To our
knowledge there are no similar applications nor have edge-
clouds been used in such a scenario. Second, we performed a
real-world experiment using the live TV feed for the Champi-
ons League game Benfica-Besiktas with the collaboration of
a group of volunteers that installed and used the application
at the student’s union lounge. The analysis of the logs from
the experiment strongly suggests that edge-clouds can indeed
significantly reduce the load in the access points at such large
venues and improve quality of experience.

The remainder of the paper has the following structure.
Section II describes state-of-the-art work on edge-clouds and
their uses. Section III describes our application scenario in
detail and the analysis of the logs from the experiment. Finally,
Section V puts forward our conclusions and thoughts for future
work.

II. RELATED WORK

Content Delivery Networks (CDN) emerged with the ob-
jective of improving the distribution of content to end-users
by providing high data availability, reduced latency and in-
creased network bandwidth. There is a substantial body of
research on CDNs, namely using hybrid server/P2P-based
architectures (e.g., [5, 18] and more recently [13]), focusing
mostly on traditional networks. Here, we are interested in
providing these infrastructures for mobile edge-clouds and in
verifying whether some of the performance gains reported in
the literature can be transposed to this context.

A mobile edge-cloud is a cluster of mobile devices that
collectively pool their storage and computation resources over
a local communication network, e.g., WiFi, Bluetooth, ad-
hoc. While each individual mobile device in the edge-cloud
might not be resource-rich, collectively the pool of these
mobile devices can present the opportunity for significant
computational resources that might collaboratively support
proximity-aware applications [17].

Mobile Message Passing Interface (MMPI) [4], Hyrax [14]
and Honeybee [15] were amongst the first approaches to
use mobile devices for computation. MMPI used a Bluetooth
Piconet to run MPI jobs over a set of mobile devices. This
was implemented in Java ME and did not tolerate churn.
Hyrax used a different strategy, by porting Hadoop to Android
devices they were able to schedule computations using only
mobile devices or heterogeneous networks of mobile devices
and servers over WiFi local networks. The performance was
not good, but the system was capable of handling some churn
using Hadoop fault tolerance algorithms. Honeybee [15], can
use both Bluetooth or WiFi-Direct to form the local network
and provides distributed computation using work sharing and
work stealing approaches. This framework works on small net-
works, and provides techniques to partially handle churn using
the master or group owner node to periodically ping other
nodes checking their availability, and rescheduling failed jobs
if necessary. A similar approach to Honeybee was proposed by
mCloud [6], but there was no implementation of this system.

FemtoClouds introduce a concept of cloud computing very
similar to what is described as an edge-cloud [11]. Using
mobile devices, the authors create a network, that is capable
of receiving jobs, and scheduling them through the network.
For this, they propose to use a special device, called “control
device” that is responsible for managing the mobile devices,
as well as scheduling the jobs. The authors propose a client
software that interacts with the control device, by providing
relevant information for job allocation, as well as receiving or
generating work.

The aforementioned edge-cloud implementations use the
combined processing and storage resources of devices to
store data and perform traditional distributed computations.
Our focus is on streaming and caching of video contents
by the edge-cloud, complementing a central infrastructure by
removing load in the servers and access points and improving
user experience.

III. SOCCER REPLAYS: A CASE STUDY
FOR EDGE-CLOUDS

As previously mentioned, services for video replays in
current sports venues rely on the retrieval of multimedia
contents through a central server, accessible to users by one
of possibly many installed WiFi access points (AP). Yet, the
infrastructure is easily flooded in very crowded and user-active
spaces, as each AP cannot handle more than a few tens of
connections simultaneously. Therefore, equipping sport centres
and venues with the amount of wireless infrastructure required
to provide adequate WiFi coverage comes at a high cost.

On the other hand, fan’s smartphones can be leveraged to
empower the existing network. Using device to device com-
munication, further layers of connectivity can be orchestrated
in a way that the number of users under the same AP can be
significantly increased. We call edge-cloud to a set of devices
operating on a second layer of connectivity, established with
peer-to-peer networking through, in this case, WiFi-Direct.
We show how such an infra-structure can be used to extend
traditional WiFi infrastructure and alleviate load on access
points.

A. Edge-Cloud Architecture

In this paper, we consider a scenario (Figure 1) in which
the replays are generated remotely and placed in a centralized
server or cloud. Moreover, nearby devices use WiFi-Direct
exclusively as the enabling technology for device to device
communication. The edge-cloud is thus made up of several
WiFi-Direct groups, each one with a group owner (GO) that
acts as an AP for other member devices. As a device can not
connect to two WiFi APs at the same time, the GO is the only
device that is connected to the infrastructure AP and hence to
the application server. It is important to note, however, that
the devices maintain access to the Internet while in such a
configuration. This is made possible through a proxy or a VPN
installed in the respective GO.

N — :
— [-— GO
- o

111

Edge Cloud

Incoming tv feed & cutting Application Server

Fig. 1. The experimental scenario.

Data and Metadata: A replay is composed of video
content, and metadata - human-readable information about
the video such as title, duration and thumbnail. We consider
that a user can only decide whether or not a replay is worth
downloading by first inspecting its metadata. Thus, a crucial
component of the edge-cloud architecture is the dissemination
of metadata. The architecture must specify how a device
obtains video metadata, given a set of data links. Information
about the origin of videos, whether generated remotely or at
the edge, can also be used to determine which types of links
should be prioritized.

Similarly, the device must first obtain information about the
existence and availability of a nearby edge-cloud before it
decides whether it can be part of the edge-cloud and what
will be its role in it. To that extent, a discovery-advertisement
mechanism must be in place that enables devices to capture
the edge-cloud metadata necessary to make a decision.

WiFi-Direct Groups: Devices that create groups become
owners and are responsible for registering group’s metadata on
the application server upon creating and destroying the group.
Group metadata contains the required information for other
devices to discover the group’s WiFi network, connect to it and

communicate with the GO via a TCP socket. This information
consists of: the SSID of the network, its password, group
size, the owner’s IP, and the TCP port the owner is listening
on. Furthermore, a metadata version number is included so
that conflicting views of the same group are handled in a
straightforward fashion. This value can only be issued and
modified by the GO, which increments it whenever there is
an update to the metadata, for instance a member joining or
leaving the group.

Finally, the GO is responsible for keeping track of the
members of the group, their connection information, i.e. IP
and TCP listening port, and finally for indexing the content
held by each. Reciprocally, when devices join a group they
immediately send a hello message to the group owner with
their connection information and list of owned video replays.

Centralized Server: The server is responsible for keeping
the metadata of both videos and groups, along with the content
of the replays themselves. Devices periodically try to retrieve
video metadata. If the devices are GOs, or do not integrate any
group, they retrieve metadata from the server using a HTTP
request made to a known URL. Otherwise, they retrieve it
from the GO using a TCP socket.

Replay Requests: In the case of replays’ content being
requested within the edge-cloud, in-group transfers are pri-
oritized over available infrastructure APs. If the requesting
device is a GO, then it can search for a local replay owner
directly within the content-by-device map kept in memory.
Otherwise, the device will query the GO for content holders,
receiving a list of candidates with their connection info. If the
list’s size is greater than one, then the device will randomly
remove candidates one by one and attempt to download the
content over TCP, breaking on success. However, if no one in
the group owns the content at the time of request, the replay
will be downloaded from the server through the GO which
forwards the incoming data stream directly to the device that
requested it.

B. Edge-Cloud Orchestration

Orchestration is the decision process that devices go through
in order to determine their role in the edge-cloud. In our
scenario, devices obtain edge-cloud metadata through the
server. To that extent, devices need to be connected to the
Internet at the start of the application. If connectivity to the
server is available, the device requests from the server a list
of active groups operating under the AP (bssid) to whom it is
currently connected to. If the set of groups is not empty and
at least one group is available, i.e. not operating at maximum
capacity, then the device will try to join the group. Otherwise,
it will create a new group.

We have limited the number of devices in a group to 4
and the number of attempts to connect to a group to 1 for
the following reasons. First, we experimented with different
devices configured to work as GO and they were just able
to handle 5-7 connections at same time. This limitation is
imposed by Android and by the network hardware and drivers
in the devices. As a result, we assumed that 4 devices in a

group was a safe number in order to reduce the connection
attempt errors. Second, we also limited the group size to avoid
stressing the GO during the game, which would result in a
bottleneck and the dismantlement of the group. Third, the
number of attempts to connect to a group is just 1 because
a connection to a group, as well as to a WiFi AP, takes a
considerable amount of time (on average more than 6 seconds
in our tests) and we wanted to keep the user online as much
as possible.

Algorithm 1 illustrates the decision process that each device
has to perform to join a group. When the application starts,
the algorithm is always performed to decide which role the
device will play in the edge-cloud. Due the dynamic nature
of edge clouds, it is not, at all times, possible to figure out
the role of the device on the edge, thus in these cases it waits
an exponential back-off time, based on the number of retries,
after which the algorithm is restarted. When the device is on
the exponential waiting process, it tries to reconnect to the
last connected WiFi network in order to keep in touch with
the server, allowing it to see metadata updates and to get the
videos if necessary.

Algorithm 1 Application main orchestration loop
1: procedure GROUPFORMATION(bssid, tries)
2: if amGroupOwner A noMembers then

3: restart <— true

4: else

5: groups <— GET_GROUPS(bssid)

6: gp_avail < GET_GROUP_AVAILABLE(groups)
7: if #groups =0 V —gp_avail then

8: restart <— - BECOME_SOFT_AP()

9: else

10: restart <— = CONNECT_TO_GROUP(groups)
11: end if

12: end if

13: if restart then

14: timeout <— GET_WAIT_TIME(tries)

15: RESTART_FORMATION(timeout)

16: end if

17: end procedure

The algorithm has a few self healing capabilities for situa-
tions such as group disconnection and empty groups. When a
group disconnection happens the device will try to reconnect
to the last WiFi network and re-run the algorithm. In case
of a recently created group, or an emptied one, the GO will
check if it has new members after one minute. If not it will
destroy the group and run the algorithm again aiming to reduce
the number of groups. In this case, there is no need to wait an
exponential time because the device that was a GO has always
an active connection to the WiFi AP.

IV. EXPERIMENTS AND RESULTS

In order to validate the proposed implementation we de-
signed an experiment to employ real users. We invited a num-
ber of students to watch a soccer match openly broadcasted

over television and offered them pizza and soft beverages as
incentives. In exchange, they would use an Android application
developed by our team. The participants could either install the
application on their smartphones or use one of 15 provided
tablets (Nexus 9). The application would give them access
to a list of replays, generated during the game, that once
successfully downloaded could be viewed.

A. Experimental Setup

The replays were generated by two of the authors located
on a separate room. As the game was being transmitted, it
could be captured via DVB-T (we used a RTL2838 DVB-
T dongle) and manipulated on a Linux workstation. Using
several scripts built on top of the ffmpeg software tools, we
were able to cut the original feed into smaller chunks that
could be concatenated to form short videos of soccer replays.
Finally, the videos would be uploaded to the application server
via HTTP.

In the student’s lounge, the application would periodically
request the list of replays either through the GO, if the device
was part of a group, or through the server if the device
was a GO or not part of any group. Moreover, there was
a WiFi access point at the lounge which provided access
to the Internet and therefore to the application server. Four
other access points were accessible from the lounge, part of
the University’s wireless coverage. Students were asked to
prioritize connectivity to the room’s access point.

The minimum supported Android version was API version
16, named Jellybean or Android 4.1. We increased the hetero-
geneity by varying the Android versions of the tablets provided
to the students (most were Lollipop, several Marshmallow and
one was Nougat).

The application registered user and device activity on a SQL
Lite database as a single array of characters structured in JSON
format. Furthermore, whenever connectivity to the server was
available, the application would try to transmit the contents of
the database to the server via HTTP. We found the following
events relevant for logging:

« a successful connection to the edge-cloud (i.e., to the GO

of a WiFi-Direct group) or to the WiFi infrastructure (i.e.,
a regular WiFi access point);

« a successful disconnection from the edge-cloud or from

the WiFi infrastruture;

« the creation of a WiFi-Direct group;

o the destruction of a WiFi-Direct group;

« the completion of the download of a video replay.

Each event was logged with a timestamp and user-id along
with relevant information for that particular event. This infor-
mation made it possible later on to trace back the activity of
each device within the edge-cloud, and therefore the origin of
download requests and providers.

As each device has its own clock, we cannot build the global
timeline of events directly using the registered timestamps.
Thus, we used the application server as the reference clock as
it was the common denominator to all devices. Therefore, a
calibration step was performed at the start of the application,

which estimated the difference § between the timestamps of
the devices and that of the remote server. A request for
synchronization was sent from the device to the server via
HTTP, for which the server responded with its timestamp.
Assuming routing and latency symmetry for request and
response packets, the device was able to estimate § as the
difference between the returned server timestamp and the mean
value between the timestamps at which it sent and received the
synchronization packet. To improve robustness of estimation,
10 synchronization operations were performed in sequence,
and the final value for § was considered as the median of all
successfully performed operations. This value was added to
each logged event so that it could be used later for relating
device activity.

B. Log Analysis

The experiment took place on the 13th of September 2016,
from 6:45 p.m to 8:50 p.m GMT time, during the Champions
League match between Benfica-Besiktag. The logs show that
43 different users interacted with the application, resulting
in 3926 distinct entries successfully recorded at the remote
server. Of the total number of logged messages, 1222 were
events of WiFi connection/disconnection, 1526 events of group
creation/destruction and 1178 attempts of download, with 860
successes and 318 failures.

General Considerations: To begin with, device timestamps
were corrected based on the median of registered Js per device.
Then, all events were sorted by timestamp and evaluated
sequentially. For a given event of type E, registered on device
D at timestamp t, we classify D’s state as FE between t
and ¢ + 1. We ignore events of download at this stage as
they do not alter device state. Therefore, we classify D as a
connected device if F;_; is a successful connection to a WiFi
network, either a traditional or a WiFi-Direct access point. In
case of the later, the device is also classified as a member of
a group. Alternatively, if D is already connected and FE;_;
corresponds to a create group event then that device is also a
GO. Similarly, a device is classified as disconnected after an
event of disconnection.

With this information we computed the size of the edge-
cloud at ¢ as the sum of all connected GOs and group
members. Its size was incremented on events of group creation
or connection and decremented on events of disconnection,
group destruction or application destruction. On the other
hand, the set of connected users were solely incremented and
decremented by events of WiFi connection and disconnection.

The ratio between sizes of the edge-cloud and the set
of connected users represents the scope of the edge-cloud,
whereas the fraction of group members over group owners
represents its depth. A scope ratio of 1 indicates that all nearby
connected devices are actively participating in the edge-cloud.
A depth ratio is optimal if it tends towards the maximum
number of elements allowed in each group, representing the
edge-cloud operating at its maximum capacity.

However, this approach is only possible if for each device
the number of increments equals the decrements. In other

words, a device can not have different numbers of connection
and disconnection events. A connection can only occur if the
device is in a disconnected state, and vice-versa. Therefore,
such properties should be verified before proceeding with
computations, else the obtained results will not depict the
accurate unfolding of events.

During pre-processing we found that several events were
unsuccessfully registered either at the time of occurrence or
later. Consequently, we applied a semi-automatic approach
which aimed at discovering the missing events and inserting
them if no conflicts were caused as a result. Otherwise, these
would be signalled for human-eye review.

Run-time Evolution of the Edge-Cloud: Figure 2 depicts
the activity of the edge-cloud over the period of the exper-
iment. Activity is mainly represented in Figure 2a by the
number of active groups (“Edge Groups™) and devices within
the edge-cloud (“Edge Users”). As expected, these values
increase gradually after the beginning of the game and stabilize
near the middle of the 1st half of the game. Furthermore, there
is a decrease in activity around the half time, when pizzas
were distributed and users were allowed to leave the room.
Similar behavior is observed during the second half until the
game ends and users leave the room, disbanding the edge-
cloud as a consequence. We also present the total number
of users connected through WiFi APs (“Connected Users”),
which comprises all APs servicing the lounge, including the
edge-cloud itself. Some users that connected to the server
using 4G are also represented (“4G Users”).

During the first half we had a short malfunction of the AP
which resulted in a substantial amount of failed downloads.
The loss of the connections of the GO to the AP triggered
the destruction of the groups and the edge-cloud had to
reconstruct itself using the self-healing algorithm as described
in Section III-B.

In Figure 2b we can observe the measure of scope (‘“Scope”)
for the duration of the game. We expected that nearly all users
would participate in the edge-cloud, however the observed
fraction is rarely over 0.8. The reason lies in the exponential
back-off time used when devices can not join a WiFi-Direct
group or create one. During this period the devices are just
connected to the AP. Furthermore, the average depth score
(“Depth”) for the edge-cloud was 1.2, corresponding to 30%
of the maximum group capacity. Therefore, as most active
groups contained few members and were operating at a subop-
timal level, alternatives and optimizations can be explored for
improving the orchestration of the edge-cloud. Additionally,
Figure 2b depicts the fractions of devices that are GO (“Group
Owners”) and members of groups (“Members of Group”).

TABLE I
DESCRIPTION OF DOWNLOAD COUNTS (FIRST TWO COLUMNS) AND
SPEEDS IN MB/S (LAST THREE COLUMNS) BY CATEGORY.

Category | Successful | Failed || Median | IQR 1Q
EE 369 6 2.40 2.46 | 1.30
ES 287 138 0.79 0.85 | 0.42
RS 155 131 0.81 0.83 | 0.54

ums awen

j‘—\lﬂ\u_r\w/“ N
I \M it e

| \\\
A

[
/

’ G
) A

18:30 18:40 18:50 19:00 19:10 19:20 19:30

Edge Groups - Edge Users

B S\ - \
W\ W \J |
\

Half time

puz wen

19:40 19:50 20:00 2010 2020 2030 20:40 20:50

4G Users Connected Users

(a) Number of 4G, wifi-connected and edge-cloud users.

LB awen

Scope -+ Group Owners

Half time.

pu3 swen

Members of Group

(b) Scope of the edge-cloud along with the average percentage of owners and members in active groups.

1B awen

|
I

w ‘ | \
i I ‘“‘ “ H\

\ 0
0 W‘J‘/ww”u““‘w\m (VS AV A el

1830 18:40 19:00 19:10 19:20 930

b bl

Half time

pu3 swen

'\ I‘ ” ﬁ “‘ \
| | \ N\
MJ‘V#MM Hw‘[M 4“‘.\»4 L 'lmlH\nr\

19:40 9:50 00 20110 2020 20:30 20140 2050

Edge Downloads -+ Server Downloads - AP = Server Downloads - 4G

(c) The number of successful downloads over time.

Fig. 2. Network and download activity over the course of the experiment.

In complement, Figure 2c provides the count of downloads
successfully delivered via edge-cloud and server: AP, and 4G.
Vertical lines indicate when new replays were generated and
made available on the server. It is interesting to notice that
when a replay is generated it is usually followed by a spike
in downloads performed through the server and, only then
is followed by a spike in downloads performed through the
edge. This observation is expected because the content is only
available at the server when it is generated. As groups do not
communicate with each other, new downloads will be obtained
at least once from the server per group.

Download Speed and Bandwidth: Regarding the analysis
of download activity, we are particularly interested in esti-
mating the amount of traffic that was reduced from the access
point. This was possible by fixing how many replays the edge-
cloud was able to deliver with and without the use of the access
point. To that extent, we divided downloads by categories
based on where they were requested and provided from: Edge-
Edge (EE) if the download was requested from within the
edge-cloud and provided by the edge-cloud; Edge-Server (ES)
if instead it was provided by the server via the access point;
Remote-Server (RS) if the download was requested outside of

the edge-cloud and provided by the server via the access point.

Table I shows distribution of downloads and their speeds
by category. About 56.3% of the downloads requested from
within the edge-cloud were processed internally without the
need for an AP. Taking into account the 3rd category of
downloads, this value decreases to 45.5%. Nevertheless, it is
a significant shift in load from the AP to the users’ mobile
devices. Especially when we consider that as soon as a video
was published it had always to be retrieved from the server at
least once for each active group. Furthermore, no aggressive
caching techniques or optimization strategies were used to
improve the performance of the edge-cloud.

Download speeds are particularly useful when surveying
quality of experience. Higher speeds indicate that content is
transferred faster, so the user spends less time waiting for its
completion hence increasing quality of experience. Looking
at the median, the Inter-Quartile Range (IQR) and the First
Quartile (1Q) values for each category of downloads it is
clear that it has benefits for edge computing. Not only do
EE downloads contain a median 3 times greater than ES
or RS, but also a 3rd quartile at nearly 4MB/s and several
benign outliers (Figure 3). In part, this result was expected,

Edge-Edge

Edge-Server

Remote-Server

Remote-Server - 4G

Speed - MB/s
Fig. 3. Descriptive summary of download speeds by category.

as content travels over a single hop within groups, even when
it is transferred over two members given that we use TDLS
(Tunneled Direct Link Setup) in conjunction with WiFi-Direct.
Moreover, devices that support 802.11ac (SGHz ISM Band)
are capable of higher throughput.

However, there is room for improvement. One possibility
is to differentiate data and metadata traffic, using Bluetooth
for metadata dissemination and WiFi-Direct for actual video
streaming [9]. Although Bluetooth connections have low data
rates and range of operation when compared to WiFi, this is
more than enough for metadata. Moreover, since devices can
maintain several simultaneous connections, Bluetooth could be
used to disseminate metadata messages a few KBs in size over
large networks in crowded scenarios.

V. CONCLUSION

The landscape for mobile networking is currently shifting
towards device to device communication with growing invest-
ment being made on edge-clouds and new technologies such
as 5G and LTE-Direct.

To our knowledge there are no previous studies that tried
to engage real users and acquire data based on edge-cloud
implementations. On one hand, there have been few solutions
that have been coined under the edge-cloud computing termi-
nology. On the other hand, the existing operating systems for
mobile devices limit the peer to peer networking capabilities
of their phones to the extent that it is very difficult to perform
wireless ad-hoc networking on large numbers of connected
devices.

Still, we were able to develop a new methodology for
structuring and orchestrating an edge-cloud. The current sce-
nario makes extensible use of a remote application server, in
particular to keep the required edge metadata. Nevertheless,
this experiment has showed that edge-clouds can be used to
alleviate load in an infrastructure and provide users with faster
downloads. The edge-cloud was able to serve up to 80% of
connected users and provide 56 % of all downloads requested
from within. An average of 9.7 groups were active during
the game operating at an average capacity of 30%. Moreover,
the speed of downloads at the edge was 3 times greater than

the ones made through the AP, indicating that the edge-cloud
enhances quality of experience.

This work is the first step towards the development of a
comprehensible edge-cloud solution which runs on top of off-
the-shelf smartphones and that can be used to extend, or substi-
tute under particular conditions, traditional WiFi infrastructure.

In the future we envision combining multiple wireless
technologies to empower the architecture of the edge-cloud,
in particular for managing groups more efficiently. Caching
techniques and improved orchestration methods can also be
devised to optimize the performance of the edge-cloud.

ACKNOWLEDGMENTS

This work has been sponsored by projects HYRAX (CMUP-
ERI/FIA/0048/2013), funded by FCT, and SMILES (NORTE-
01-0145-FEDER-000020), funded by NORTE 2020, under
PORTUGAL 2020, and through the ERDF fund. Our thanks
to the “Associa¢do de Estudantes da FCUP” and the student
volunteers.

REFERENCES

[1] Global Mobile Statistics 2016, Q2 Report. http://mobiforge.com/.

[2] YinzCam. http://www.yinzcam.com/.

[3] HuaweiVoice: Agile Stadiums Bring Digital Content To Sports Fans.
http://www.forbes.com/, Mar 2015.

[4] D. Doolan, S. Tabirca and L. Yang. MMPI a Message Passing Interface
for the Mobile Environment. In Proceedings MoMM’08, pages 317-321,
New York, NY, USA, 2008. ACM.

[5] D. Xu, H-K. Chai, C. Rosenberg and S. Kulkarni. Analysis of a Hybrid
Architecture for Cost-Effective Streaming Media Distribution. SPIE,
Multimedia Computing and Networking, 5019:87-101, 2003.

[6] E. Miluzzo, R. Céceres and Y-F. Chen. Vision: MClouds - Computing
on Clouds of Mobile Devices. In Proceedings of the MCS’12, pages
9-14. ACM, 2012.

[71 Google. Android Security White Paper, 2015.

[8] J. Erman and K. K. Ramakrishnan. Understanding the Super-sized
Traffic of the Super Bowl. In IMC’13, pages 353-360. ACM, 2013.

[9] J. Rodrigues, J. Silva, R. Martins, L. Lopes, U. Drolia, P. Narasimhan,

F. Silva. Benchmarking Wireless Protocols for Feasibility in Supporting

Crowdsourced Mobile Computing. In Proceedings of DAIS’16, pages

96-108. Springer, 2016.

J. Tan, U. Drolia, R. Martins, R. Gandhi and P. Narasimhan. CHIPS:

Content-Based Heuristics for Improving Photo Privacy for Smartphones.

In Proceedings of WiSec’14, pages 213-218. ACM, 2014.

K. Habak, M. Ammar, K. A. Harras and E. Zegura. Femto Clouds:

Leveraging Mobile Devices to Provide Cloud Service at the Edge. In

Proceedings of CLOUD’2015, pages 9-16, June 2015.

P. Kapustka and C. Stoffel. State of the Stadium Technology Survey.

Technical report, 2014.

M. Ghareeb, S. Rouibia, B. Parrein, M. Raad and C. Thareau. P2PWeb:

A Client/Server and P2P Hybrid Architecture for Content Delivery Over

Internet. In Proceedings of ICCIT’13, pages 162—166, June 2013.

E. E. Marinelli. Hyrax: Cloud computing on mobile devices using

mapreduce. Master’s thesis, Carnegie Mellon University, 2009.

N. Fernando, S. Loke and W. Rahayu. Honeybee: A Programming

Framework for Mobile Crowd Computing. In MobiQuitous’12, pages

224-236. Springer, 2012.

The Internet Society. Internet Society Global Report 2015 - Mobile

Evolution and Development of the Internet. http://www.internetsociety.

org/globalinternetreport/assets/download/IS_web.pdf, 2015.

U. Drolia, R. Martins, J. Tan, A. Chheda, M. Sanghavi, R. Gandhi and

P. Narasimhan. The Case for Mobile Edge-Clouds. In Proceedings of

ATC’13, pages 209-215, Dec 2013.

V. Padmanabhan, H. Wang, P. Chou, K. Sripanidkulchai. Distributing

Streaming Media Content Using Cooperative Networking. In Proceed-

ings of NOSSDAV’02, pages 177-186. ACM, 2002.

(10]

(11]

(12]

[13]

[14]

[15]

[16]

(17]

[18]

