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Abstract like SCR [9] or CoRE [3] specify the systantiehaiour
mainly as a relatioREQ betweencontwolled and moni-
tored ervironment \ariables. This relation is also an
implicit part of the logic based specifications eltn this
paper we address a problem common to these and other
requirement specification methods:

For lage and complesystems, the irestment to obtain
a "good" requirement specification is substantialréduce
this efort, it may be possible to benefit from earlier system
developments by reusing parts of alreadyeleped prod-
ucts. While reuse has been well studied for systgsgn
- for instance, by using object-oriented techniques - less
research is\ailable on hw to apply this principle t&DT-
based equirrments engineeringreuse has the potential of
reducing the dért to specify system requirements. Fur-
thermore, reuse in the requirements phase mas &posi-

1 Introduction tive impact on subsequent véddopment stages by an
increased reuse of designs and implementations.

The specification of requirements is among the first In general, a prerequisite for successful reuse is that
tasks of ap system deelopment. The requirements docu- components and systems to beeleped are in some sense
ment is part of the contract between the customer and thesimilar". Such similarities may bexpected, for instance,
system deeloper and will be the basis for the acceptance if the focus is restricted to a certain application area. In this
of the final implementation.oTavoid later disagreements, paperwe address requirements occurringtiiding-auto-
it is important that the requirements be stated completelymation systems, in particularal-time requirements.

A generic appoad to the formal specification of system
requirrments is @sented. It is based on a poolrefjuire-
ment patternswhich are related todesign patternsvell-
known in object-oriented softwadeselopment. The appli-
cation of sub patterns enhances theusabilityand gene-
ricity as well as the intelligibility of the formaéquirement
specification. The appad is instantiated by dailored
real-time temporal logiand by selectinguilding-automa-
tion systemsas application domain. M respect to this
domain, the pattern disgery and euse tasks areplai-
ned and illustated, and a set of typicakquirement pat-
terns is pesented. The appach has the potential of
reducing the ébrt to formally specify systeraquirrments.

and preciselywhile still being intelligible for both parties. The reuse of predesigned solutions for recurring design
Generally both sides are léwise interested in a strict limi-  problems is an important topic in object-oriented saftwv
tation of the bilateral duties. development. In [4],design patterndare been adwcated

In practice, requirements are often stated unprecisely -as a promising concept, which is related to other approaches
due to the use of natural language - and incompletely - duguch adramevorks or toolkits Different from our method,
to the inherent difculty to perceve all essential aspects of these approaches are directeslaals the design and imple-
the problem to be sabd. This could lead to disagreements mentation phases, and are not based on FDTSs.
during subsequent delopment stages including the In Section 2, we present our generic approach to the for-
acceptance of the final product by the custorfieerefore, mal specification of requirements in an FI2hd domain-
the use of formal description techniques (FDTs) for the independent ay. This approach is instantiated in Section 3
specification of requirements (especially for safety critical by selecting a tailored temporal logic as FDT anitding-
systems) is adhcated since more than one decade, e.g.automation systems as application domaiithWéspect to
[10]. Approaches based on tReur-Variable Model[12] this domain, the pattern diseary and reuse tasks are

1. This vork was supported by thBeutsie Rorschungs@meinshaft explained and illustrated, and a set of typical requirement
(DFG) as part of th&ondeforschungsbegich (SFB) 501 "Deelopment patterns together with pattern instantiations is presented.
of Large Systems with Generic Methods". Finally, conclusions and outlook are presented in Section 4.




2 A generic appoach to the brmal specifica- Figure 1: A requirement specification
tion of requirements development model

Genericity is an important general (soditw) engineer-
ing concept applying both to products (requirements,
design, implementation) and \dgopment processes. / _\

Genericity of products is supported by concepts such as
compositionality adaptation, parameterization, and reusa- | modification / e

bility (these concepts are not orthogonal). Genericity of the| acceptance
development process is additionally supported by the con- A/
customer tasks system deeloper tasks

cepts of synthesis and generation. In the Vahg, we
focus on the generic delopment of requirement specifica-
tions.
2.1 Arequirement specification deelopment model
System deelopment usually starts with raatural lan-
guage requirement specificationonsisting of an initial set
of requirements that is supplied by the custom@ug”
tomer NLRS" for short, see Figure 1). As already men-
tioned, natural language has no unique semantios. F
instance, what is the meaning of "In case of a hazardou
condition, the windas must be closed"? Does "must be  As we hae agued, the described approach to theetle
closed" describe a state or an action? If it is an aCtiOﬂ,opment of requirement specifications has a number of ben-
when must it be tan? Therefore, these requirements efits. Havever, the efort to produce theFRS and its
should be formalized by the systenveleper yielding @  derived natural language description usually is substantial,
formal requirment specificatio(FRS). especially if lage and complesystems are to be character-
As a result of this formalizationxisting ambiguities of ized. 1 reduce this ébrt, we propose generic appoad']
the natural language description are resslin one partic-  to the formalization of requirements. Our approach is
ular way, which may difer from the original intentions of based on (:poo| of Equirement pa’[ternsBy requirement
the customer Therefore, the customer needs to check pattern we refer to a generic description of a class of
whether his intentions are correctiypeessed in th€RS. domain-specific requirements. Requirement patterns are
Since the customer may notveaa background in FDTSs, related todesign patternsa well-knavn concept of object-
we propose to translate tR&®S back to natural language oriented softare deelopment [4].
resulting in a further document callébeveloper NLRS" To describe requirement patterns, we propose the format
(see Figure 1). Since this natural language description ishavn in Table 1, calledrequirment pattern description
directly translated from a formal specification, we assumetemplate Instantiations of this template are termeguire-
that it is more precise than the origif@istomer NLRS. ment patternswhich, itself instantiated, form the constitu-
The Developer NLRS may nav sene as a basis for cus- ents of a requirement specification. The actual contents of
tomer and deeloper to reach agreement on the systemthe template will depend on the application area and the
requirements. FDT used to specify patterns and their semantic properties.
If agreement is reached, tbeveloper NLRS replaces  Requirement patterns for a particular application domain

the previous Customer NLRS and seres as the basis for  and a particular FDT are defined in Section 3.
the acceptance of the final implementation. As another

Developer
NLRS

32'2 Reuse of equirement pattems

benefit, the ne Customer NLRS already has a corre- Table 1: Requirement pattern description template
sponding formalization, namely tHeRS, which can be
used as the starting point for subsequenteld@ment Name
steps. . . The name of the requirement pattern

If agreement is not reached, the customer supplies & -
modifiedCustomer NLRS based on thBeveloper NLRS, Intention
and anotherycle of the requirement specificationvetop- An informal description of the kind of requirements
ment is started. Thus, thewd¢opment of a requirement || addressed by this pattern. T
specification is an iteratk process:



Table 1: Requirement pattern description template

Example

An example from the application area illustrating the purpose
of the requirement pattern.

Definition

The pattern is described both formallging a suitable FQT
and in natural language. The formal description is the K
for subsequent delopment steps finally leading to t
requirement specification (pattern selection, adaptation,
composition). The description in natural language will &g
the translation of instantiated patterns of RS into infor-
mal requirements of thdLRS. Furthermore, the descriptiq
provides some information about possible instantiations.

asis
e
and

1

=

Semantic properties

Properties that va been formally pneen from the pattern)|
By instantiating these properties in the sameyvas the
requirement pattern, proofs can be reused, too.

Based on the pattern pool and thastomer NLRS, the

formalization of requirements through pattern reuse con-

sists of the follaving steps (see Figure 2):

1. Requirement patterns aselectedfrom the pattern
pool. This selection is supported by information pro-
vided by pattern descriptions such as intention, defi-
nition, and semantic properties.

. The selected patterns aadaptedby suitable instan-

The dgree to which the formalization of requirements
can be achieed through pattern reuse depends both on the
Customer NLRS and the contents of the pattern pool. If
the structure of an informal requirement follba selection
requirement pattern that is already contained in the pool,
then its formalization can be achéal directly by instanti-
ating the pattern. If the structure isfdient, then either
transformations and/or modifications of the informal
requirement (cf. Section 2.1) may lead to a structure that is
already supported by the pattern pool, or the formalization
must be done in the ceentional vay, i.e. without reuse
(see Figure 2). The pool of requirement patterns should
evolve over time. As a consequence, the portion of require-
ments that is deloped from requirement patterns will
increase, reducing theverall efort of requirement specifi-
cation.

The «istence of a pool of requirement patterns can be
exploited further to reduce thefeft for the specification of
requirements. Based on pieus eperience, a set of pat-
tern instantiations may be selected, formirgatalogue of
formal requirementsRS catalogue, see Figure 3).r&ns-
lation of these requirements leads tiNIERS catalogue
that can be used by customers to state informal require-
ments during the entire requirementselepment process.

On the one hand, this prides some guidance to customers
on hav and what requirements may be stated. On the other
hand, the formalization of these requirements through pat-
tern reuse, if not yetvailable, becomes straightfoand,
since the corresponding pattern is already contained in the

tiations. The same kind of adaptation is applied to the pattern pool.

semantic properties. Already at this stage is it possi-

ble to formally reason about single requirements.

. The adapted patterns ammposedto yield the
requirement specification. During this composition,
it may turn out that therexist conflicts between indi-
vidual requirements. These conflicts may be resol-
ved, for instance, byxploiting existing precedence
relationships between requirements.

Figure 2: Formalization thr ough pattern
reuse (cf. Fig. 1)
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2.3 Discwery of requirement pattems

L — |

selection
modificatior]

So far, we tacitly assumed thexistence of a pattern
pool containing a set of already kmo domain specific
patterns, where each entry falle the template defined in
Table 1. The main ditulty here is that it is by no means
obvious a priori what patterns will be useful later on, as




this depends on the application domain as well as on the Figure 5: Complete requirement specifica-
requirements to be specified. Thereforeilding up the tion de velopment model

pattern pool will be an iterat process itself. Thigattern —
discoverytask can be modeled as a syble in the specifi- formalization

cation deelopment model. yipically, each gternal specifi- pattern reuse

cation deelopment gcle triggers one or more internal .
pattern disceery/reuse ycles afecting both pattern pool
and FRS, since eachlFRS modification can lead to ne selec adapt compo_
patterns or the impr@ment of gisting patterns. @
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Figure 4: Integration of the pattern disco ~ very task tiations
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The discoery of nev patterns is a ditult and time- 3.1 The systemequirement FDT
consuming process. In general, maequirements he
similarities in the \ay the restrict time bounds, delays and
dependences between system states or other domain s
cific properties. These similarities can xleited in order
to extract the underlying patterns. Based on a proper, FDT
it is often not dificult to find lexically identical or at least
similar sub-specifications of requirements. But testing the
applicability of a generalized pattern and checking its
semantic properties are quite compleasks, since the 1. 20 Fwhere?is the set of propositional atomic for-
meaning of requirements has also to bemakto account. mulae
This is supported by the formal semantics of the FDT +
Section 3.2, we report on the diseoy of a particular real- 2. Let¢, p 0 % andt, 11,120 Ry ™. Then
time requirement pattern in detail. The disey of o =, 00W, dOY, O, b O F
another real-time requirement pattern is presented in [8]. .

From these xamples, it becomesviglent that pattern dis- o, =0, 00, Do, oW, [0] U 7

For reasons that are addressed in [13], we lchosen a
@llored real-time temporal logic IRL) as FDT In this
sectlon we gie a short eerview of the logic. ©r further
details, in particularts formal semantics, see the appendix
and [11].

The set¥ of correct tRITL formulae is gien by the fol-
lowing formation rules:

covery indeed is a substantial@stment that will only pay o Ogd,m0,0,0, 0,9, 0 le 0OF
off through &tensie pattern reuse. OO0 Wb oo

When we put Figures 1 to 4 togethere obtain the =t =t
development model shen in Figure . 3. Fis minimal with 1. and 2.

. - - . The informal meaning of the operators is the foily:
3 An instantiation for building-automation g P o

systems =, [0 0 -, ~ are the usual propositional operators
(negation, conjunction, disjunction, implication, and
In this section, we instantiate the generic approach to €quvalence).

the formal specification of requirements by selecting a tai- + ¢ (“always"): is true, ify is true nev and alvays in the
lored real-time temporal logic as FDT anilding-auto- future. The indeed \ersion O, ¢ is true if ¢ is true
mation systems as application domain. In Section 3.1, the N

tailored real-time temporal logic is etiched. Section 3.2
then elaborates on pattern digeny. In Section 3.3, a  *¥(< ¢ ("always in the past”): is true, ¢ is true nov
number of requirement patterns are defined. Their reuse is and has aays been true in the pasttime units)

illustrated in Section 3.4.

now and during the follwing T time units.

* O<r) ¢ ("eventually”): is true, if¢ is true sometimes in
the future € time units)



* U< ¢ ("sometimes in the past”): is true dithas been
true sometimes in the pastt{me units)

* & W ("waiting for"): is true, ifp is true at least untip
becomes true

* [¢] ("action operator"): is true i is true nav and vas
false in the preceding state

-0 ”2 2 ¢ ("accumulated wariance"): is true, ifp is
valid for at least tima&2 during the ngt T1 time units

*d O Y ("delayed implication™): If¢ holds perma-

nently fort time units, holds by then and will hold at
least as long ad.

¢ O ((hazardousCondition CwindowClosed) —
(windowClosed W - hazardousCondition))

Since this type of state dependences appeared more than
once in the firstersion of thé=RS, the patterns underlying
these formulae, terme@onditionalBoundedResponsed
ConditionalContinuity were @tracted and inserted in the
pattern pool (seeables 2 and 3; all shaded tables were
included in the initial pattern pool). The original usagesw
kept in the "Example" field. The fields "Intention" and
"Semantic properties" of the pattern description template
are omitted in some cases for\itge.

Table 2: Conditional Bounded Response

*p = U ("delayed equialence”): If ¢ holds perma-
nently fort time units, holds by then and will hold at
least as long ats; analogously for¢ and- .

This set of real-time operators is the result of the
domain-specific tailoring of the logxpressieness. The
refinement of predicates in terms of another description
technique is straightforavd. For instance, the predicate
hazardousCondition could be refined either in natural lan-
guage ("heay rain or storm") or in terms of an \@ron-
ment descriptionr@in > 50 mm/h or wind > 80 km)hThis
may result in conflicts between requirements that become
visible only after the refinement. Detection and resolution
of conflicts is outside the scope of this paper

Parameterization of fRTL formulae is restricted to
predicates and time constant®r nstance, the specifica-

Name

ConditionalBoundedResponsg (), t)

Example

O ((hazardousCondition 0~ windowClosed) —
O< 30s[windowClosed 0 - hazardousCondition])

Wheneer a hazardous condition is detected,the windav is
not closed, then the windowill be closed withirB0 seconds
or the hazardous condition ceases within this time iakerv

Definition

U (0 O-w) - 0 [wO-9])

Whenever ¢ is true, lut Y is false, theny becomes also tru
within t time units, op ceases within this time inteal/ ﬂ

tion of the requirement patterg Wwill lead to Y within 1
time units" is parameterized with the formluaandy and

Table 3: Conditional Continuity

reaction timet. Composition of requirement patterns can
be done by logical conjunctionedts for syntactical simi-

Name

larity should be feasible. The property-oriented logical
description style has turned out to be suitable for the trans

ConditionalContinuity ¢, W)

lation into natural language.

Example

3.2 Rattern discovery

In this section, we illustrate the process of pattern dis-
covery. Starting point is an initiaCustomer NLRS con-
taining statements such as "In the case of hazardou

O ((hazardousCondition OwindowClosed) —
(windowClosed W - hazardousCondition))

Whenever a hazardous condition is detected and the windo
is closed, then the windowill remain closed at least as lo
as the hazardous condition is true.

conditions, the windes hare to be closed to secure the

groups possessions”, \@idance of damage to winds

Definition

in regard to weather conditions" and "Close windoin
case of possible wind orater damage because of open
windows or attempts to open wingde".

A first formalization is based on predicateszardous-

U@ 0w - wwW=9)

Whenever ¢ andy are both true, thep remains true at lea
as long a# is true. T

Condition and windowClosed , which are introduced to
establish a close relationship to the informal problem state-
ments:

* 00 ((hazardousCondition (0= windowClosed) —
O« 30s[windowClosed [0 - hazardousCondition])

Next, it was obsered that both patterns were often used

together with the same parametemlues. This led to
another pattern terme@onditionalBoundedResponseAnd-
Continuity formed by their conjunction:



Table 4. Conditional Bounded Response
and Continuity |

Name

ConditionalBoundedResponseAndContinujiyy, t)

Example

O (((hazardousCondition - windowClosed) -
O<30s[WindowClosed - hazardousCondition]) O

Wheneer a hazardous condition is detected, then, wiBi
s, the windav is closed and will stay closed at least as long as
the hazardous condition is true, or the hazardous condjtion
releases.

Definition
0@ - 0 (WOYW-¢ O-¢))

Wheneer ¢ is true, then, withirt time units,p becomes als
true and stays true at least as long asr ¢ releases.

((hazardousCondition OwindowClosed) —

(windowClosed W - hazardousCondition)))

Wheneer a hazardous condition is detecteat, the windev

is not closed, the winawo will be closed within30 s or the
hazardous condition ceases within this time irgknand
wheneer a hazardous condition is detected and the wirnsl(
closed, then the wingowill remain closed at least as long
the hazardous condition is true.

Definition
U (0 O-w) - 04 [wO=6]) O OW) > (WW-9)))

Wheneer ¢ is true, lut g is false, thenp becomes also tru
within t time units, orp ceases within this time intealy and
wheneer ¢ andy are both true, theg remains true at Ieaﬂ

as long a# is true.

This pattern has a considerable syntactical coxitple
which males it dificult to read. Furthermore, it restricts
the system bel@ur such that it may be impossible to
develop implementations in a disttited enironment. or
instance, if a hazardous condition has just been detecte
and the windw is already closed, it must remain closed.

An inspection of the impred patterrs properties pro-
duced tvo outcomes: (1) Supposg becomes true and
stays so for a longer time period)>In the time interal t
following on this change df, Y has also to turn to true and
it must not &ll back before - even in this opening time
intenval. As before, it is not in conflict with the natural lan-
guage requirement to alloy to be in ag state during the
opening time interal. But aftervards it must be coupled
to ¢. (2) The ne pattern could bexpected to be (tempo-
rally) transitve, which is not the case for the abalefini-
tion.

Due to these obseations, the pattern definition is mod-
ified to allov a "fluttering” of ¢ during the mentioned
opening time inter@ and to support the transity prop-
erty. The improed pattern xpresses the time delayed
implication of two predicates and is therefore termed
Delayedimplication:

d Table 6: Delayed Implication |

To achiee this, the currentalue of hazardous condition
must be knen instantaneously in the corresponding parts
of the huilding-automation system, which is a strong limi-
tation.

Therefore, the secondession of the pndous pattern

has reduced system restrictions and a shortened syntax.

Nevertheless, the original natural language requirements
are not really touched, since their lack of precisiondsa
enough room for such semantic modifications:

Table 5: Conditional Bounded Response
and Continuity 1l

Name

DelayedIimplicationd, , t)

Example

0 (hazardousCondition —
O<30s(WindowClosed W -~ hazardousCondition))

Wheneer a hazardous condition holds continuously fof| at
least30 s then @entually within this time span, the wingdog
is closed and remains closed at least as long as the hazgrdous

condition continues.

Definition

Name

ConditionalBoundedResponseAndContinuty, t)

Example

U@ - 0 (WW=9))

Whenever ¢ holds continuously for at leastime units, then
eventually within this time spanj is true and remains true g

—

least as long ab.

0 (hazardousCondition — 0.3p5(WindowClosed O
windowClosed W - hazardousCondition [
- hazardousCondition))

In a final step, it ws found that the premisé " "
could be remeed from the pattern without grsemantic
changes. Additionallythe operatofl, , defined by



dUq W =pt O (WW-9)

was added to the logic and used to abate the modi-
fied pattern. The resultinDelayedimplicatiorpattern can

be used to specify time-displaced dependences betwee|

two states:

Table 7: Delayed Implication Il

Name

DelayedIimplicationd, W, t)

Intention

Y is depending o with time delayt.

Intention

Allows to specify that a certain property mustals hold.

Example

O tempActGtZero

Let tempActGtZey represent an indoor temperature gregter
than0 °C. Then the indoor temperature isvays greater than
zero. This formula requires a "no frost" condition (typica
to prevent freezing of \ater pipes, etc.).

y

Definition

O¢

¢ is alays true.

Example

O (hazardousCondition O 3 ¢ WindowClosed)

Wheneer a hazardous condition holds continuously for| at
least30 s then gentually within this time span, the winga
is closed and remains closed at least as long as the hazgrdou
condition continues.

Definition

The delayed equalence is a bilateral delayed implica-
tion with the same time bound t, meaning tipas a time
displaced cop of ¢. For conciseness, the operator

&b =« =pr ( Oq W) O(~¢ O =) was added to the
logic:

Table 9: Delayed Equivalence

U6 O0qw

Wheneer ¢ holds continuously for at leastime units, then
eventually within this time span) is true and remains true F
least as long ab.

—

Semantic properties

0 (0104 ¢2) OO (92 Ogr ¢3) U (61 Octsr 93)
0@ 0w OO (0 D4 W) O ¢ Og W1 0Wy)

—

-

3.3 The requirement pattem pool for building-
automation systems

In this section, further patterns contained in the initial
pool for huilding-automation systems are listed - with the
exception of ConditionalBoundedRespons€onditional-
Continuity and DelayedIimplication which hae been pre-
sented before. These patterns are the resulvefaecase
studies.

The invariance pattern is used for the specification of
properties that shall hold during the systeminningtime:

Table 8: Invariance

Name

Invariance ()

Name

DelayedEquivalencep( , t)

Intention

Y is a time displaced cgmf the truth alue of¢.

Example

O (hazardousCondition OwindowOpen
warnedUser)

< <30s

Supposed, the wingois only manually operable.
Whenever the winda is continuously open during a haza
ous condition for at lea80s then eentually within this time
span, the user isamed and remainsamned at least as lon
as the precondition is true. And e@nsely wheneer there ig
a closed winde or no hazardous condition for at le@6ts
then eentually within this time span, the useaming is
suppressed and remains suppressed at least as long
precondition holds.

as this

Definition

U6 -aw

Whenever ¢ holds continuously for at leastime units, then
eventually within this time spanj is true and remains true f
least as long a$. And cowversely wheneer ¢ is continu-
ously false for at leadttime units, thenwentually within this
time spany is false and remainsise at least as long @s

—




If the validity of the agumentd is only required for a
certain time and not for the systamtomplete running =
time, this ivariance may be limited: O0'%¢

Within ary time intenal T, ¢ is true for at leadttime units.

Definition

Table 10: Limited Invariance Pattern

Name
LimitedIrvariance ¢, t) 3.4 Fattern reuse
Intention With the initial requirement pattern pool beingaga-
ble, requirements may wobe formalized as described in
Suppression of the "fluttering” ¢f, i.e. the &st change af’s Section 2.2. This means thavegn a problem statement of
validity. In a certain sense, this pattern is a kind of fimss the Customer NLRS, a suitable requirement pattern can be
ey el el §lo7 SERR SRS selected from the pool, adapted by setting the pattern
Example parameters, and later composed with further requirements.
As an eample, consider the problem statement "If the
O ([windowOpen] - Ugg minWindowOpen ) room is not in use for at least 10 minutes, it must be
Each time the windw is open, it will stay open for at le5 assured that the doors are ledk An inspection of the
minutes. If a laver bound for the close time isvgh in the pattern pool shes that this statement is close to the
same mannethe frequeng for windaw state changes is lin Delayedimplication(¢, g, t) pattern, which is therefore
ited by1/(2B min) = 1.67 16 Hz selected. In order to formalize the problem statememt, tw

predicatesoomUsed anddoorsLocked are introduced. By
suitable naming, we get a close correspondance to the natu-
O (4] - O 6) ral language description. Of course, it still remains to be
defined hw these predicates are related to thgspial

Each timep becomes true, it will stay true for at least t titme  enjironment. An &ample may be found in [8], where,

Definition

units. starting from the natural language description ofCis-
Semantic properties tomer NLRS, a non-tial .formallly specified refinement of
the predicateroomUsed is derved. Wth the predicates
O([¢0y] - Og 60d) - O(([9] - O 9) O(W] - Og W) being determined, the requirement pattern caw he
O(([¢] - D<t ¢) O(W] - Ogr ) — O([OMW] - Dgt (90W)) adapted by setting the parameteps= - roomUsed,

Y =doorsLocked and t=10min, yielding O (- room-
Another kind of imvariance does not request the system Used [ 1qmin doorsLocked).

to be in a certain state for a continuous time. Instead, it suf- The translation of the formalized requirement into natu-

fices if the accumulated time in this state doesalbshiort ral language according to the description of Eredayed-

of a given limit: Implication pattern (see able 7) yields: "Whener the

room is not used continuously for at least 10 minutes, then

Table 11: Accumulated Invariance Pattem eventually within this time span, the doors are kxtland

Name remain locled at least as long as the room is not used".

- Note that this is more precise than the original problem
Accumulatedivariance(9, T, t) statement. The statement ded from the formalization is
Intention then included into théeveloper NLRS (see Figure 1),

which may nav sene as a basis for customer andale
oper to reach agreement on the system requirements.

As discussed in Section 2.2, the pool of requirement
patterns can be furthek@oited by hiilding up a require-
ments catalogue. In a first step, thRS Catalogue is

The system must satisfy a propedtyat least for a certair]
time, hut the eact points of times are unimportant. Note, that
the timet could also be replaced by a rati® to allov a per-
cental specification.

Example formed by selecting requirement patterns from the pool,
0 0™, ~-windowOpen and by (pertielly) instantiating them. oF instance,
- ) ) ) DelayedImplication(-roomUsed, doorsLocked, t) and
Within ary hour the windw is open for at leasit?2 minutes. Delayedimplication (hazardousCondition, ~ windows-

l.e., the windov is open20% of the total time to enable $uf

) L Closed, t) may be inserted into tleRS Catalogue. Trans-
cient \entilation.

lation of these formal requirements according to the pattern
description (as in the prmus xample) then leads to the




NLRS Catalogue, which can preide some guidance to the ment of a correct implementation€véire currently westi-
customer on what kind of requirements to state, amdtho  gating criteria in order to detect conflicts, and methods in
do so. This has the aawtage that (some) customer order to resolg them.

requirements already v a form that is supported by the We epect that the pattern-based formalization of
logical operators, and that can immediately be related torequirements may lead to an increased reuse of design
patterns of the pool, thus simplifying the formalization decisions and solutions in subsequenetipment stages,

process. as fr as these decisions can be related to the application of
] particular requirement patterns [5,6]. Also, it may lead to a
4 Conclusion and outlook better traceability of the consequences when modifying

) requirements of an alreadywioped system. [7] contains
We hare presented a generic, pattern-based approach tg step in this direction.

the formal specification of system requirements. Starting

from a pool of requirement patterns, patterns are selected,

adapted and composed to obtain a formal requirement Acknowledgements.We thank the members of project
specification. The approach has been instantiated by using1 and Bam 2 of the SFB 501, who werevaived in the

a tailored real-time temporal logic as formal description 'equirement collection and imprement.

technique, and choosinguilding-automation as applica-

tion domain. A set of patterns and pattern instantiations,

most of them stating real-time properties, is presented, and

the process of pattern dis@y is illustrated. During our

work, we hae made the follwing obserations: Appendix: The Semantics of tRTL
* In a case study [13], all requirements&deen formali-
zed by pattern instantiations. Here, theariance pat-
tern and thdelayedimplicatiorpattern hee been used
most frequentlyHowever, the ConditionalBoundedRe-
sponseand ConditionalContinuity patterns were not Definition: (State, timed state sequence, model)
used at all. The reason is that the requirements where Let @ b'e the s,et of all atomic formull’;te
these patterns are applicablesdndeen epressed using '
the DelayedIimplicatiorpattern. 1. A stateis a functiono: © - {0, 1}. The set of all
states is denoted as

To define the semantics of formulae oTTR, a model
for real-time systems that is based on the one proposed in
[1] is used:

« Pattern instantiation may be understood as an incremen-
tal process. & instance, all requirement patterns pre- 2. A timed state sequengeis a functionp: Ry" - <
sented in this paper are instantiations oflthariance such there xists an interal sequencd = lg, Iy,...
pattern. Also, partial instantiations are possible, resul- with
ting in less generic requirement patterns. . )

a)bi O N: | = [a;, by) with

* By translating forma_lized re_quirerr_\ents into natural lan- a ORy", b OR* O {c}, 3 < b,
guage, a better basis for discussions with the customer
was achieed, as this translation could be performed in a b) Ui O N: if by # oo thenb; = &y,
uniform way. ¢) DiON: Ot t Ol p(t) = p(t)

» The discwery of "good" requirement patterns is ery d) OtORy: OON: t O

time consuming task.
e) If p is not constant from grpoint in time, i.e.:

Ot ORy™: Oy’ ORg, >t 42 p(ty) # p(ty), then:
0i ON: Oty 013 Oty' Olipq: p(ty) # p(ty)

 The pattern-based approach is scalable in the sense that
more patterns can be added to the pool when needed.

» The pattern-based delopment of requirement specifi-
cations can lead to a substantiayjee of reuse. Wh a
set of "good" patterns beingailable, the formalization ORON: 1= I lg,...d, andCi CHO,....n-1}:
of matching requirements is straightf@md, reducing Ot O 1 Ot ,O’Dl’l'_"’,” () # it ) '
the verall efort and leading to impsed readability 2 i Hiz Hieg: P # P
An important aspect, which is not addressed in this Such an interal sequence! is called compatible

paper is the detection and resolution of conflicts between with p.

requirements. Such conflicts may lead to inconsistencies 3 A modelafis a set of timed state sequences.
when requirements are composed, impeding thveldp-

f) If pis constant from a point in time, i.€lty, t; O
R0+: Dtl’ DRO+, tly > tl . p(tl) = p(tl,)’ then:



Condition a) &cludessingularintenals, i.e. interals of
type[c,c], and other kinds of inteals, e.g(g;,b;); b) guar-
antees that tw neighboring interis I; andl;,; areadja-
cent c) guarantees that the state igamant during each
single interal |; ; Condition d) (together with c))eludes
Zeno-sequencead states, i.e. an infinite number offdif 2]
ent states during a finite period of time is notwéd. Con-
ditions e) and f) guarantee that each irdéry of the
sequencd is amaximumintenal in the sense that it ends if
and only if the state changes. Due to thesedanditions,
there is for each timed state sequence at most oneahterv 4]
sequencé fulfilling a) to f). Note that propositional formu-
lae hae the same truthalue during an inteal I; of I.

(1]

(3]

5
Definition: (Semantics of tRTTL) o
Let 2 be a modelp O M be a timed state sequence, and
I=1y, Iy, ... be an inteml sequence compatible withand
li=[a;, b). Furtherlet$, ¢ O % and lett, T, t, t', t' range
overRy*. Then the satisttion relation |= is defined as fol-
lows:

1L e)=¢ iff p()(9) =1ifp O P
2. -,00 -, - areinterpreted as usual.

3. (pY|=[4] iff (t=0 and(p,0) |=¢) or (t>0 and
(pt)|mpand¥,0<t<t Ot t<t'<t (pt’) |=0)

(6]

(7]

(8]

4. (p,)|=00 ffOr, vt (pt) =0 [0
5. (p)|=04,0¢ iff0r, tst<t+t(pt)|=d
6. (pO)|l=m¢ iffOC,0st<t(pt)|=0
7. pO)|=med iffOL, toysStSE
(p, ') |= ¢ andtyy, = max {0f-t}
8. (pOI=0Wy iff (p t)|=0¢ or

(@, t =t (pt) |=ganddt’, t<t"<t: (p, t") |=0)

9. (pt) |0 ¢ iff Zj oy (min(y,t+T)-max(a; b)) =t
with J=( ON | tOP'=[a",b), @’ <a< t+T, (0, 8) |=p}

10.0¢ =pf~ 00

11.04; & =pf 7 Ut 70

12.0¢ =pf- m b

13.0, ¢ =pf " Wm0

14.¢ 0,y =pf <t (W W= 0)

15.¢0 = Y =pf (¢ Ut Y) U (=9 U ~)
16.]5 ¢ iff O 0p 09 (p, &) [= 0

(initial validity)
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