
A Generic Approach to the Formal Specification of Requirements1

Christian Peper, Reinhard Gotzhein, Martin Kronenburg
University of Kaiserslautern

67653 Kaiserslautern, Germany
{peper,gotzhein,kronburg}@informatik.uni-kl.de

Abstract
A generic approach to the formal specification of system

requirements is presented. It is based on a pool ofrequire-
ment patterns, which are related todesign patterns well-
known in object-oriented software development. The appli-
cation of such patterns enhances thereusability andgene-
ricity as well as the intelligibility of the formal requirement
specification. The approach is instantiated by atailored
real-time temporal logic and by selectingbuilding-automa-
tion systems as application domain. With respect to this
domain, the pattern discovery and reuse tasks are explai-
ned and illustrated, and a set of typical requirement pat-
terns is presented. The approach has the potential of
reducing the effort to formally specify system requirements.

x1

1 Intr oduction

The specification of requirements is among the first
tasks of any system development. The requirements docu-
ment is part of the contract between the customer and the
system developer, and will be the basis for the acceptance
of the final implementation. To avoid later disagreements,
it is important that the requirements be stated completely
and precisely, while still being intelligible for both parties.
Generally, both sides are likewise interested in a strict limi-
tation of the bilateral duties.

In practice, requirements are often stated unprecisely -
due to the use of natural language - and incompletely - due
to the inherent difficulty to perceive all essential aspects of
the problem to be solved. This could lead to disagreements
during subsequent development stages including the
acceptance of the final product by the customer. Therefore,
the use of formal description techniques (FDTs) for the
specification of requirements (especially for safety critical
systems) is advocated since more than one decade, e.g.
[10]. Approaches based on theFour-Variable Model [12]

1. This work was supported by theDeutsche Forschungsgemeinschaft
(DFG) as part of theSonderforschungsbereich (SFB) 501 "Development
of Large Systems with Generic Methods".

like SCR [9] or CoRE [3] specify the system’s behaviour
mainly as a relationREQ betweencontrolled and moni-
tored environment variables. This relation is also an
implicit part of the logic based specifications below. In this
paper, we address a problem common to these and other
requirement specification methods:

For large and complex systems, the investment to obtain
a "good" requirement specification is substantial. To reduce
this effort, it may be possible to benefit from earlier system
developments by reusing parts of already developed prod-
ucts. While reuse has been well studied for systemsdesign
- for instance, by using object-oriented techniques - less
research is available on how to apply this principle toFDT-
based requirements engineering. Reuse has the potential of
reducing the effort to specify system requirements. Fur-
thermore, reuse in the requirements phase may have a posi-
tive impact on subsequent development stages by an
increased reuse of designs and implementations.

In general, a prerequisite for successful reuse is that
components and systems to be developed are in some sense
"similar". Such similarities may be expected, for instance,
if the focus is restricted to a certain application area. In this
paper, we address requirements occurring in building-auto-
mation systems, in particular, real-time requirements.

The reuse of predesigned solutions for recurring design
problems is an important topic in object-oriented software
development. In [4],design patterns have been advocated
as a promising concept, which is related to other approaches
such asframeworks, or toolkits. Different from our method,
these approaches are directed towards the design and imple-
mentation phases, and are not based on FDTs.

In Section 2, we present our generic approach to the for-
mal specification of requirements in an FDT- and domain-
independent way. This approach is instantiated in Section 3
by selecting a tailored temporal logic as FDT and building-
automation systems as application domain. With respect to
this domain, the pattern discovery and reuse tasks are
explained and illustrated, and a set of typical requirement
patterns together with pattern instantiations is presented.
Finally, conclusions and outlook are presented in Section 4.

2 A generic approach to the formal specifica-
tion of requirements

Genericity is an important general (software) engineer-
ing concept applying both to products (requirements,
design, implementation) and development processes.
Genericity of products is supported by concepts such as
compositionality, adaptation, parameterization, and reusa-
bility (these concepts are not orthogonal). Genericity of the
development process is additionally supported by the con-
cepts of synthesis and generation. In the following, we
focus on the generic development of requirement specifica-
tions.

2.1 A requirement specification development model

System development usually starts with anatural lan-
guage requirement specification consisting of an initial set
of requirements that is supplied by the customer ("Cus-
tomer NLRS" for short, see Figure 1). As already men-
tioned, natural language has no unique semantics. For
instance, what is the meaning of "In case of a hazardous
condition, the windows must be closed"? Does "must be
closed" describe a state or an action? If it is an action,
when must it be taken? Therefore, these requirements
should be formalized by the system developer, yielding a
formal requirement specification (FRS).

As a result of this formalization, existing ambiguities of
the natural language description are resolved in one partic-
ular way, which may differ from the original intentions of
the customer. Therefore, the customer needs to check
whether his intentions are correctly expressed in theFRS.
Since the customer may not have a background in FDTs,
we propose to translate theFRS back to natural language
resulting in a further document called"Developer NLRS"
(see Figure 1). Since this natural language description is
directly translated from a formal specification, we assume
that it is more precise than the originalCustomer NLRS.
The Developer NLRS may now serve as a basis for cus-
tomer and developer to reach agreement on the system
requirements.

If agreement is reached, theDeveloper NLRS replaces
the previous Customer NLRS and serves as the basis for
the acceptance of the final implementation. As another
benefit, the new Customer NLRS already has a corre-
sponding formalization, namely theFRS, which can be
used as the starting point for subsequent development
steps.

If agreement is not reached, the customer supplies a
modifiedCustomer NLRS based on theDeveloper NLRS,
and another cycle of the requirement specification develop-
ment is started. Thus, the development of a requirement
specification is an iterative process:

Figure 1: A requirement specification
development model

2.2 Reuse of requirement patterns

As we have argued, the described approach to the devel-
opment of requirement specifications has a number of ben-
efits. However, the effort to produce theFRS and its
derived natural language description usually is substantial,
especially if large and complex systems are to be character-
ized. To reduce this effort, we propose ageneric approach
to the formalization of requirements. Our approach is
based on apool of requirement patterns. By requirement
pattern, we refer to a generic description of a class of
domain-specific requirements. Requirement patterns are
related todesign patterns, a well-known concept of object-
oriented software development [4].

To describe requirement patterns, we propose the format
shown in Table 1, calledrequirement pattern description
template. Instantiations of this template are termedrequire-
ment patterns, which, itself instantiated, form the constitu-
ents of a requirement specification. The actual contents of
the template will depend on the application area and the
FDT used to specify patterns and their semantic properties.
Requirement patterns for a particular application domain
and a particular FDT are defined in Section 3.

Table 1: Requirement pattern description template

Name

The name of the requirement pattern

Intention

An informal description of the kind of requirements
addressed by this pattern.

Customer

FRS

translation

NLRS

Developer
NLRS

formalization

modification /

system developer taskscustomer tasks

Legend: activity document

acceptance

Based on the pattern pool and theCustomer NLRS, the
formalization of requirements through pattern reuse con-
sists of the following steps (see Figure 2):

1. Requirement patterns areselected from the pattern
pool. This selection is supported by information pro-
vided by pattern descriptions such as intention, defi-
nition, and semantic properties.

2. The selected patterns areadapted by suitable instan-
tiations. The same kind of adaptation is applied to the
semantic properties. Already at this stage is it possi-
ble to formally reason about single requirements.

3. The adapted patterns arecomposed to yield the
requirement specification. During this composition,
it may turn out that there exist conflicts between indi-
vidual requirements. These conflicts may be resol-
ved, for instance, by exploiting existing precedence
relationships between requirements.

Figure 2: Formalization thr ough pattern
reuse (cf . Fig. 1)

The degree to which the formalization of requirements
can be achieved through pattern reuse depends both on the
Customer NLRS and the contents of the pattern pool. If
the structure of an informal requirement follows a selection
requirement pattern that is already contained in the pool,
then its formalization can be achieved directly by instanti-
ating the pattern. If the structure is different, then either
transformations and/or modifications of the informal
requirement (cf. Section 2.1) may lead to a structure that is
already supported by the pattern pool, or the formalization
must be done in the conventional way, i.e. without reuse
(see Figure 2). The pool of requirement patterns should
evolve over time. As a consequence, the portion of require-
ments that is developed from requirement patterns will
increase, reducing the overall effort of requirement specifi-
cation.

The existence of a pool of requirement patterns can be
exploited further to reduce the effort for the specification of
requirements. Based on previous experience, a set of pat-
tern instantiations may be selected, forming acatalogue of
formal requirements (FRS catalogue, see Figure 3). Trans-
lation of these requirements leads to aNLRS catalogue
that can be used by customers to state informal require-
ments during the entire requirements development process.
On the one hand, this provides some guidance to customers
on how and what requirements may be stated. On the other
hand, the formalization of these requirements through pat-
tern reuse, if not yet available, becomes straightforward,
since the corresponding pattern is already contained in the
pattern pool.

Figure 3: Ad ding a catalogue

2.3 Discovery of requirement patterns

So far, we tacitly assumed the existence of a pattern
pool containing a set of already known domain specific
patterns, where each entry follows the template defined in
Table 1. The main difficulty here is that it is by no means
obvious a priori what patterns will be useful later on, as

Example

An example from the application area illustrating the purpose
of the requirement pattern.

Definition

The pattern is described both formally, using a suitable FDT,
and in natural language. The formal description is the basis
for subsequent development steps finally leading to the
requirement specification (pattern selection, adaptation, and
composition). The description in natural language will serve
the translation of instantiated patterns of theFRS into infor-
mal requirements of theNLRS. Furthermore, the description
provides some information about possible instantiations.

Semantic properties

Properties that have been formally proven from the pattern.
By instantiating these properties in the same way as the
requirement pattern, proofs can be reused, too.

Table 1: Requirement pattern description template

pattern reuse

selec- adapt- compo-
sitionation

Pattern
Pool

formalization

conventional
formalization

tion

FRSCust.
NLRS

FRS

pattern reuse

selection, adaptation,

Pattern
Pool

formalization

Cust.
NLRS

selected
instan-

selection NLRS
Cataloguemodification

FRS
Cata-

trans-

composition

loguetiations lation

this depends on the application domain as well as on the
requirements to be specified. Therefore, building up the
pattern pool will be an iterative process itself. Thispattern
discoverytask can be modeled as a sub-cycle in the specifi-
cation development model. Typically, each external specifi-
cation development cycle triggers one or more internal
pattern discovery/reuse cycles affecting both pattern pool
and FRS, since eachFRS modification can lead to new
patterns or the improvement of existing patterns.

Figure 4: Integration of the pattern disco very task

The discovery of new patterns is a difficult and time-
consuming process. In general, many requirements have
similarities in the way they restrict time bounds, delays and
dependences between system states or other domain spe-
cific properties. These similarities can be exploited in order
to extract the underlying patterns. Based on a proper FDT,
it is often not difficult to find lexically identical or at least
similar sub-specifications of requirements. But testing the
applicability of a generalized pattern and checking its
semantic properties are quite complex tasks, since the
meaning of requirements has also to be taken into account.
This is supported by the formal semantics of the FDT. In
Section 3.2, we report on the discovery of a particular real-
time requirement pattern in detail. The discovery of
another real-time requirement pattern is presented in [8].
From these examples, it becomes evident that pattern dis-
covery indeed is a substantial investment that will only pay
off through extensive pattern reuse.

When we put Figures 1 to 4 together, we obtain the
development model shown in Figure .

3 An instantiation for building-automation
systems

In this section, we instantiate the generic approach to
the formal specification of requirements by selecting a tai-
lored real-time temporal logic as FDT and building-auto-
mation systems as application domain. In Section 3.1, the
tailored real-time temporal logic is sketched. Section 3.2
then elaborates on pattern discovery. In Section 3.3, a
number of requirement patterns are defined. Their reuse is
illustrated in Section 3.4.

3.1 The system requirement FDT

For reasons that are addressed in [13], we have chosen a
tailored real-time temporal logic (tRTTL) as FDT. In this
section, we give a short overview of the logic. For further
details, in particular, its formal semantics, see the appendix
and [11].

The set
�

of correct tRTTL formulae is given by the fol-
lowing formation rules:

1. � ⊆ � �
where� is the set of propositional atomic for-

mulae

2. Let ϕ, ψ ∈
�
, andτ, τ1, τ2 ∈ R0

+. Then

• ¬ϕ, ϕ∧ψ, ϕ∨ψ, ϕ→ψ, ϕ↔ψ ∈
�

• ❏ϕ, ■ϕ, ◊ϕ, ◆ϕ, ϕWψ, [ϕ] ∈
�

• ❏≤τ ϕ, ■≤τ ϕ, ◊≤τ ϕ, ◆≤τ ϕ, ⊕ τ1
≥ τ2 ∈

�
• ϕ ➪≤τ ψ, ϕ ⇔≤τ ψ

3.
�

is minimal with 1. and 2.

The informal meaning of the operators is the following:

• ¬, ∧, ∨, →, ↔ are the usual propositional operators
(negation, conjunction, disjunction, implication, and
equivalence).

• ❏ϕ ("always"): is true, ifϕ is true now and always in the
future. The indexed version❏≤τ ϕ is true if ϕ is true
now and during the following τ time units.

• ■(≤τ) ϕ ("always in the past"): is true, ifϕ is true now
and has always been true in the past (τ time units)

• ◊(≤τ) ϕ ("eventually"): is true, ifϕ is true sometimes in
the future (τ time units)

FRS

pattern reuse

Pattern
Pool

formalization

Cust.
NLRS pattern discovery

FRS

pattern reuse

selec- adapt- compo-
sitionation

Pattern
Pool

formalization

conventional

Cust.
NLRS

selected
instan-

selection
NLRS
Cat.

modification

FRS
Cat.

pattern discovery

trans-

translationDevel.
NLRS

acceptance

 formalization

tiations

tion

lation

Figure 5: Complete requirement specifica-
tion de velopment model

• ◆(≤τ) ϕ ("sometimes in the past"): is true, ifϕ has been
true sometimes in the past (τ time units)

• ϕ W ψ ("waiting for"): is true, ifϕ is true at least untilψ
becomes true

• [ϕ] ("action operator"): is true ifϕ is true now and was
false in the preceding state

• ⊕ τ1
≥ τ2 ϕ ("accumulated invariance"): is true, ifϕ is

valid for at least timeτ2 during the next τ1 time units

• ϕ ➪≤τ ψ ("delayed implication"): Ifϕ holds perma-
nently forτ time units,ψ holds by then and will hold at
least as long asϕ.

• ϕ ⇔≤τ ψ ("delayed equivalence"): If ϕ holds perma-
nently forτ time units,ψ holds by then and will hold at
least as long asϕ; analogously for¬ϕ and¬ψ.

This set of real-time operators is the result of the
domain-specific tailoring of the logic’s expressiveness. The
refinement of predicates in terms of another description
technique is straightforward. For instance, the predicate
hazardousCondition could be refined either in natural lan-
guage ("heavy rain or storm") or in terms of an environ-
ment description (rain > 50 mm/h or wind > 80 km/h). This
may result in conflicts between requirements that become
visible only after the refinement. Detection and resolution
of conflicts is outside the scope of this paper.

Parameterization of tRTTL formulae is restricted to
predicates and time constants. For instance, the specifica-
tion of the requirement pattern "ϕ will lead to ψ within τ
time units" is parameterized with the formluaeϕ andψ and
reaction timeτ. Composition of requirement patterns can
be done by logical conjunction. Tests for syntactical simi-
larity should be feasible. The property-oriented logical
description style has turned out to be suitable for the trans-
lation into natural language.

3.2 Pattern discovery

In this section, we illustrate the process of pattern dis-
covery. Starting point is an initialCustomer NLRS con-
taining statements such as "In the case of hazardous
conditions, the windows have to be closed to secure the
group’s possessions", "Avoidance of damage to windows
in regard to weather conditions" and "Close windows in
case of possible wind or water damage because of open
windows or attempts to open windows".

A first formalization is based on predicateshazardous-
Condition and windowClosed , which are introduced to
establish a close relationship to the informal problem state-
ments:

• ❑ ((hazardousCondition ∧ ¬windowClosed) →
◊≤ 30s[windowClosed ∨ ¬hazardousCondition])

• ❑ ((hazardousCondition ∧ windowClosed) →
(windowClosed W ¬hazardousCondition))

Since this type of state dependences appeared more than
once in the first version of theFRS, the patterns underlying
these formulae, termedConditionalBoundedResponse and
ConditionalContinuity, were extracted and inserted in the
pattern pool (see Tables 2 and 3; all shaded tables were
included in the initial pattern pool). The original usage was
kept in the "Example" field. The fields "Intention" and
"Semantic properties" of the pattern description template
are omitted in some cases for brevity.

Next, it was observed that both patterns were often used
together with the same parameter values. This led to
another pattern termedConditionalBoundedResponseAnd-
Continuity, formed by their conjunction:

Table 2: Conditional Bounded Response

Name

ConditionalBoundedResponse (ϕ, ψ, t)

Example

❑ ((hazardousCondition ∧ ¬ windowClosed) →
◊≤ 30s[windowClosed ∨ ¬ hazardousCondition])

Whenever a hazardous condition is detected, but the window is
not closed, then the window will be closed within30 seconds,
or the hazardous condition ceases within this time interval.

Definition

❑ ((ϕ ∧ ¬ψ) → ◊≤t [ψ ∨ ¬ϕ])

Whenever ϕ is true, but ψ is false, thenψ becomes also true
within t time units, orϕ ceases within this time interval.

Table 3: Conditional Continuity

Name

ConditionalContinuity (ϕ, ψ)

Example

❑ ((hazardousCondition ∧ windowClosed) →
(windowClosed W ¬hazardousCondition))

Whenever a hazardous condition is detected and the window
is closed, then the window will remain closed at least as long
as the hazardous condition is true.

Definition

❑ ((ϕ ∧ ψ) → (ψ W ¬ϕ))

Whenever ϕ andψ are both true, thenψ remains true at least
as long asϕ is true.

This pattern has a considerable syntactical complexity,
which makes it difficult to read. Furthermore, it restricts
the system behaviour such that it may be impossible to
develop implementations in a distributed environment. For
instance, if a hazardous condition has just been detected
and the window is already closed, it must remain closed.
To achieve this, the current value of hazardous condition
must be known instantaneously in the corresponding parts
of the building-automation system, which is a strong limi-
tation.

Therefore, the second version of the previous pattern
has reduced system restrictions and a shortened syntax.
Nevertheless, the original natural language requirements
are not really touched, since their lack of precision leaves
enough room for such semantic modifications:

An inspection of the improved pattern’s properties pro-
duced two outcomes: (1) Supposeϕ becomes true and
stays so for a longer time period (>t). In the time interval t
following on this change ofϕ, ψ has also to turn to true and
it must not fall back beforeϕ - even in this opening time
interval. As before, it is not in conflict with the natural lan-
guage requirement to allow ψ to be in any state during the
opening time interval. But afterwards it must be coupled
to ϕ. (2) The new pattern could be expected to be (tempo-
rally) transitive, which is not the case for the above defini-
tion.

Due to these observations, the pattern definition is mod-
ified to allow a "fluttering" of ψ during the mentioned
opening time interval and to support the transitivity prop-
erty. The improved pattern expresses the time delayed
implication of two predicates and is therefore termed
DelayedImplication:

In a final step, it was found that the premise "ϕ → "
could be removed from the pattern without any semantic
changes. Additionally, the operator➪≤t , defined by

Table 4: Conditional Bounded Response
and Continuity I

Name

ConditionalBoundedResponseAndContinuity (ϕ, ψ, t)

Example

❑ (((hazardousCondition ∧ ¬windowClosed) →
◊≤30s[windowClosed ∨ ¬hazardousCondition]) ∧
((hazardousCondition ∧ windowClosed) →

(windowClosed W ¬hazardousCondition)))

Whenever a hazardous condition is detected, but the window
is not closed, the window will be closed within30 s, or the
hazardous condition ceases within this time interval; and
whenever a hazardous condition is detected and the window is
closed, then the window will remain closed at least as long as
the hazardous condition is true.

Definition

❑ (((ϕ ∧ ¬ψ) → ◊≤t [ψ ∨ ¬ϕ]) ∧ ((ϕ ∧ ψ) → (ψ W ¬ϕ)))

Whenever ϕ is true, but ψ is false, thenψ becomes also true
within t time units, orϕ ceases within this time interval; and
whenever ϕ andψ are both true, thenψ remains true at least
as long asϕ is true.

Table 5: Conditional Bounded Response
and Continuity II

Name

ConditionalBoundedResponseAndContinuity (ϕ, ψ, t)

Example

❑ (hazardousCondition → ◊≤30s(windowClosed ∧
windowClosed W ¬hazardousCondition ∨

¬hazardousCondition))

Whenever a hazardous condition is detected, then, within30
s, the window is closed and will stay closed at least as long as
the hazardous condition is true, or the hazardous condition
releases.

Definition

❑ (ϕ → ◊≤t (ψ ∧ ψ W ¬ϕ ∨ ¬ϕ))

Whenever ϕ is true, then, withint time units,ψ becomes also
true and stays true at least as long asϕ, or ϕ releases.

Table 6: Delayed Implication I

Name

DelayedImplication (ϕ, ψ, t)

Example

❑ (hazardousCondition →
◊≤30s(windowClosed W ¬hazardousCondition))

Whenever a hazardous condition holds continuously for at
least30 s, then eventually within this time span, the window
is closed and remains closed at least as long as the hazardous
condition continues.

Definition

❑ (ϕ → ◊≤t (ψ W ¬ϕ))

Whenever ϕ holds continuously for at leastt time units, then
eventually within this time span,ψ is true and remains true at
least as long asϕ.

ϕ ➪≤t ψ =Df ◊≤t (ψ W ¬ϕ)

was added to the logic and used to abbreviate the modi-
fied pattern. The resultingDelayedImplicationpattern can
be used to specify time-displaced dependences between
two states:

3.3 The requirement pattern pool for building-
automation systems

In this section, further patterns contained in the initial
pool for building-automation systems are listed - with the
exception of ConditionalBoundedResponse, Conditional-
Continuity andDelayedImplication, which have been pre-
sented before. These patterns are the result of several case
studies.

The invariance pattern is used for the specification of
properties that shall hold during the system’s runningtime:

The delayed equivalence is a bilateral delayed implica-
tion with the same time bound t, meaning thatψ is a time
displaced copy of ϕ. For conciseness, the operator
ϕ ⇔≤t ψ =Df (ϕ ➪≤t ψ) ∧ (¬ϕ ➪≤t ¬ψ) was added to the
logic:

Table 7: Delayed Implication II

Name

DelayedImplication (ϕ, ψ, t)

Intention

ψ is depending onϕ with time delayt.

Example

❑ (hazardousCondition ➪≤ 30 s windowClosed)

Whenever a hazardous condition holds continuously for at
least30 s, then eventually within this time span, the window
is closed and remains closed at least as long as the hazardous
condition continues.

Definition

❑ (ϕ ➪≤t ψ)

Whenever ϕ holds continuously for at leastt time units, then
eventually within this time span,ψ is true and remains true at
least as long asϕ.

Semantic properties

❑ (ϕ1 ➪≤t ϕ2) ∧ ❑ (ϕ2 ➪≤t’ ϕ3) → ❑ (ϕ1 ➪≤t+t’ ϕ3)
❑ (ϕ ➪≤t ψ1) ∧ ❑ (ϕ ➪≤t ψ2) ↔ ❑ (ϕ ➪≤t (ψ1 ∧ ψ2))

Table 8: Invariance

Name

Invariance (ϕ)

Intention

Allows to specify that a certain property must always hold.

Example

❑ tempActGtZero

Let tempActGtZero represent an indoor temperature greater
than0 oC. Then the indoor temperature is always greater than
zero. This formula requires a "no frost" condition (typically
to prevent freezing of water pipes, etc.).

Definition

❏ ϕ

ϕ is always true.

Table 9: Delayed Equivalence

Name

DelayedEquivalence (ϕ, ψ, t)

Intention

ψ is a time displaced copy of the truth value ofϕ.

Example

❑ (hazardousCondition ∧ windowOpen ⇔≤ 30s
warnedUser)

Supposed, the window is only manually operable.
Whenever the window is continuously open during a hazard-
ous condition for at least30s, then eventually within this time
span, the user is warned and remains warned at least as long
as the precondition is true. And conversely, whenever there is
a closed window or no hazardous condition for at least30 s,
then eventually within this time span, the user warning is
suppressed and remains suppressed at least as long as this
precondition holds.

Definition

❑ (ϕ ⇔≤t ψ)

Whenever ϕ holds continuously for at leastt time units, then
eventually within this time span,ψ is true and remains true at
least as long asϕ. And conversely, whenever ϕ is continu-
ously false for at leastt time units, then eventually within this
time span,ψ is false and remains false at least as long asϕ.

If the validity of the argumentϕ is only required for a
certain time and not for the system’s complete running
time, this invariance may be limited:

Another kind of invariance does not request the system
to be in a certain state for a continuous time. Instead, it suf-
fices if the accumulated time in this state does not fall short
of a given limit:

3.4 Pattern reuse

With the initial requirement pattern pool being availa-
ble, requirements may now be formalized as described in
Section 2.2. This means that given a problem statement of
theCustomer NLRS, a suitable requirement pattern can be
selected from the pool, adapted by setting the pattern
parameters, and later composed with further requirements.

As an example, consider the problem statement "If the
room is not in use for at least 10 minutes, it must be
assured that the doors are locked". An inspection of the
pattern pool shows that this statement is close to the
DelayedImplication(ϕ, ψ, t) pattern, which is therefore
selected. In order to formalize the problem statement, two
predicatesroomUsed anddoorsLocked are introduced. By
suitable naming, we get a close correspondance to the natu-
ral language description. Of course, it still remains to be
defined how these predicates are related to the physical
environment. An example may be found in [8], where,
starting from the natural language description of theCus-
tomer NLRS, a non-trivial formally specified refinement of
the predicateroomUsed is derived. With the predicates
being determined, the requirement pattern can now be
adapted by setting the parametersϕ = ¬ roomUsed,
ψ = doorsLocked and t = 10min, yielding ❑ (¬ room-
Used ➪≤ 10min doorsLocked).

The translation of the formalized requirement into natu-
ral language according to the description of theDelayed-
Implication pattern (see Table 7) yields: "Whenever the
room is not used continuously for at least 10 minutes, then
eventually within this time span, the doors are locked and
remain locked at least as long as the room is not used".
Note that this is more precise than the original problem
statement. The statement derived from the formalization is
then included into theDeveloper NLRS (see Figure 1),
which may now serve as a basis for customer and devel-
oper to reach agreement on the system requirements.

As discussed in Section 2.2, the pool of requirement
patterns can be further exploited by building up a require-
ments catalogue. In a first step, theFRS Catalogue is
formed by selecting requirement patterns from the pool,
and by (partially) instantiating them. For instance,
DelayedImplication(¬roomUsed, doorsLocked, t) and
DelayedImplication (hazardousCondition, windows-
Closed, t) may be inserted into theFRS Catalogue. Trans-
lation of these formal requirements according to the pattern
description (as in the previous example) then leads to the

Table 10: Limited Invariance Pattern

Name

LimitedInvariance (ϕ, t)

Intention

Suppression of the "fluttering" ofϕ, i.e. the fast change ofϕ’s
validity. In a certain sense, this pattern is a kind of low pass
filter enabling only slow state changes.

Example

❑ ([windowOpen] → ❑≤5 min windowOpen)

Each time the window is open, it will stay open for at least5
minutes. If a lower bound for the close time is given in the
same manner, the frequency for window state changes is lim-
ited by1/(2⋅5 min) = 1.67×10-3 Hz.

Definition

❑ ([ϕ] → ❏≤t ϕ)

Each timeϕ becomes true, it will stay true for at least t time
units.

Semantic properties

❑([ϕ∧ψ] → ❏≤t ϕ∧ψ) → ❑(([ϕ] → ❏≤t ϕ) ∨ ([ψ] → ❏≤t ψ))
❑(([ϕ]→ ❏≤t ϕ) ∨ ([ψ]→ ❏≤t ψ)) → ❑([ϕ∨ψ]→ ❏≤t (ϕ∨ψ))

Table 11: Accumulated Invariance Pattern

Name

AccumulatedInvariance(ϕ, T, t)

Intention

The system must satisfy a propertyϕ at least for a certain
time, but the exact points of times are unimportant. Note, that
the timet could also be replaced by a ratiot/T to allow a per-
cental specification.

Example

❑ ⊕1h
≥ 12 min windowOpen

Within any hour the window is open for at least12 minutes.
I.e., the window is open20% of the total time to enable suffi-
cient ventilation.

Definition

❑ ⊕T
t ϕ

Within any time interval T, ϕ is true for at leastt time units.

NLRS Catalogue, which can provide some guidance to the
customer on what kind of requirements to state, and how to
do so. This has the advantage that (some) customer
requirements already have a form that is supported by the
logical operators, and that can immediately be related to
patterns of the pool, thus simplifying the formalization
process.

4 Conclusion and outlook

We have presented a generic, pattern-based approach to
the formal specification of system requirements. Starting
from a pool of requirement patterns, patterns are selected,
adapted and composed to obtain a formal requirement
specification. The approach has been instantiated by using
a tailored real-time temporal logic as formal description
technique, and choosing building-automation as applica-
tion domain. A set of patterns and pattern instantiations,
most of them stating real-time properties, is presented, and
the process of pattern discovery is illustrated. During our
work, we have made the following observations:

• In a case study [13], all requirements have been formali-
zed by pattern instantiations. Here, theInvariance pat-
tern and theDelayedImplication pattern have been used
most frequently. However, theConditionalBoundedRe-
sponse and ConditionalContinuity patterns were not
used at all. The reason is that the requirements where
these patterns are applicable have been expressed using
theDelayedImplication pattern.

• Pattern instantiation may be understood as an incremen-
tal process. For instance, all requirement patterns pre-
sented in this paper are instantiations of theInvariance
pattern. Also, partial instantiations are possible, resul-
ting in less generic requirement patterns.

• By translating formalized requirements into natural lan-
guage, a better basis for discussions with the customer
was achieved, as this translation could be performed in a
uniform way.

• The discovery of "good" requirement patterns is a very
time consuming task.

• The pattern-based approach is scalable in the sense that
more patterns can be added to the pool when needed.

• The pattern-based development of requirement specifi-
cations can lead to a substantial degree of reuse. With a
set of "good" patterns being available, the formalization
of matching requirements is straightforward, reducing
the overall effort and leading to improved readability.

An important aspect, which is not addressed in this
paper, is the detection and resolution of conflicts between
requirements. Such conflicts may lead to inconsistencies
when requirements are composed, impeding the develop-

ment of a correct implementation. We are currently investi-
gating criteria in order to detect conflicts, and methods in
order to resolve them.

We expect that the pattern-based formalization of
requirements may lead to an increased reuse of design
decisions and solutions in subsequent development stages,
as far as these decisions can be related to the application of
particular requirement patterns [5,6]. Also, it may lead to a
better traceability of the consequences when modifying
requirements of an already developed system. [7] contains
a step in this direction.

Acknowledgements. We thank the members of project
D1 and Team 2 of the SFB 501, who were involved in the
requirement collection and improvement.

Appendix: The Semantics of tRTTL

To define the semantics of formulae of tRTTL, a model
for real-time systems that is based on the one proposed in
[1] is used:

Definition: (State, timed state sequence, model)
Let � be the set of all atomic formulae.

1. A state is a functionσ: � → {0, 1} � The set of all
states is denoted asΣ.

2. A timed state sequenceρ is a functionρ: R0
+ → Σ

such there exists an interval sequence� = I0, I1,...
with

a) ∀i ∈ N: I i = [a i, bi) with
ai ∈ R0

+, bi ∈ R+ ∪ {∞}, ai < bi

b) ∀i ∈ N: if bi ≠ ∞ thenbi = ai+1

c) ∀i ∈ N: ∀ t, t’ ∈ I i: ρ(t) = ρ(t’)

d) ∀t ∈ R0
+: ∃i ∈ N: t ∈ I i

e) If ρ is not constant from any point in time, i.e.:
∀t1 ∈R0

+: ∃t1’ ∈R0
+, t1’>t 1: ρ(t1) ≠ ρ(t1’), then:

∀i ∈N: ∀t2 ∈I i: ∀t2’ ∈I i+1: ρ(t2) ≠ ρ(t2’)

f) If ρ is constant from a point in time, i.e.:∃ t1, t1 ∈
R0

+: ∀t1’ ∈R0
+, t1’ ≥ t1 : ρ(t1) = ρ(t1’), then:

∃ n∈N: � = I0,I1,...,In and∀i ∈{0,...,n-1}:
∀t2 ∈ I i: ∀t2’ ∈ I i+1: ρ(t2) ≠ ρ(t2’)

Such an interval sequence� is called compatible
with ρ.

3. A model� is a set of timed state sequences.

Condition a) excludessingular intervals, i.e. intervals of
type[c,c], and other kinds of intervals, e.g.(ai,bi); b) guar-
antees that two neighboring intervals I i and I i+1 areadja-
cent; c) guarantees that the state is invariant during each
single interval I i ; Condition d) (together with c)) excludes
Zeno-sequences of states, i.e. an infinite number of differ-
ent states during a finite period of time is not allowed. Con-
ditions e) and f) guarantee that each interval I i of the
sequence� is amaximum interval in the sense that it ends if
and only if the state changes. Due to these two conditions,
there is for each timed state sequence at most one interval
sequence� fulfilling a) to f). Note that propositional formu-
lae have the same truth value during an interval I i of � .
Definition: (Semantics of tRTTL)

Let � be a model,ρ ∈ � be a timed state sequence, and
� = I0, I1, ... be an interval sequence compatible withρ and
I i=[a i, bi). Further, let ϕ, ψ ∈ � , and letτ, T, t, t’, t’ range
over R0

+. Then the satisfaction relation |= is defined as fol-
lows:

1. (ρ, t) |= ϕ if f ρ(t)(ϕ) = 1 if ϕ ∈ �
2. ¬, ∧, ∨, →, ↔ are interpreted as usual.

3. (ρ, t) |= [ϕ] if f (t=0 and(ρ,0) |= ϕ) or (t>0 and
(ρ, t) |=ϕ and ∃t’,0 ≤ t’< t: ∀t’’,t’ ≤ t’’< t: (ρ,t’’) |=¬ϕ)

4. (ρ, t) |= ❏ϕ if f ∀ t’, t’ ≥ t: (ρ, t’) |= ϕ

5. (ρ, t) |= ❏≤τ ϕ if f ∀ t’, t ≤ t’≤ t+τ: (ρ, t’) |= ϕ

6. (ρ, t) |= ■ ϕ if f ∀ t’, 0 ≤ t’≤ t: (ρ, t’) |= ϕ

7. (ρ, t) |= ■≤τ ϕ if f ∀ t’, tlow ≤ t’≤ t:
(ρ, t’) |= ϕ andtlow = max {0,t-τ}

8. (ρ, t) |= ϕ W ψ if f (ρ, t) |= ❏ϕ or
(∃t’, t’ ≥ t: (ρ, t’) |=ψ and∀t’’, t ≤ t’’<t’: (ρ, t’’) |=ϕ)

9. (ρ, t) |= ⊕T
≥τ ϕ if f Σj ∈J (min(bj,t+T)-max(aj,t)) ≥τ

with J={j ∈N | t∈I’=[a’,b’), a’ ≤ aj≤ t+T, (ρ, aj) |=ϕ}

10.◊ϕ =Df ¬ ❏ ¬ϕ

11.◊≤τ ϕ =Df ¬ ❏≤τ ¬ϕ

12.◆ϕ =Df ¬ ■ ¬ϕ

13.◆≤τ ϕ =Df ¬ ■≤τ ¬ϕ

14.ϕ ➪≤τ ψ =Df ◊≤τ (ψ W ¬ϕ)

15.ϕ ⇔≤τ ψ =Df (ϕ ➪≤τ ψ) ∧ (¬ϕ ➪≤τ ¬ψ)

16. |=i ϕ if f ∀ � : ∀ ρ ∈ � : (ρ, a0) |= ϕ
(initial validity)

References
[1] R. Alur, T.A. Henzinger:Logics and Models of Real Time: A

Survey. In: J.W. de Bakker, C. Huizing, W.P. de Roever, G.
Rozenberg (Eds.), Real-Time: Theory and Practice, LNCS
600, 1991

[2] P.-J. Courtois, D.L. Parnas:Documentation for Safety Criti-
cal Software. 15th International Conference on Software
Engineering, Baltimore, pp. 315-323, 1993

[3] S.R. Faulk, J. Bracket P. Ward, J. Kirby:The CoRE Method
for Real-time Requirements. IEEE Software 9(5), Sept. 1992

[4] E. Gamma, R. Helm, R. Johnson, J. Vlissides:Design Pat-
terns - Elements of Reusable Object-Oriented Software.
Addison-Wesley, 1995

[5] B. Geppert, R. Gotzhein, F. Rößler:Configuring Communi-
cation Protocols Using SDL Patterns. 8th SDL Forum, Paris,
France, Sept. 1997

[6] B. Geppert, F. Rößler:Generic Engineering of Communica-
tion Protocols - Current Experience and Future Issues. 1st
IEEE International Conference on Formal Engineering
Methods, ICFEM'97, Hiroshima, Japan, Nov. 1997

[7] R. Gotzhein, B. Geppert, C. Peper, F. Rößler:Generic Lay-
out of Communication Subsystems - A Case Study. SFB 501
Report 14/96, Univ. of Kaiserslautern, Germany, 1996

[8] R. Gotzhein, M. Kronenburg, C. Peper:Specifying and Rea-
soning about Generic Real-Time Requirements.SFB 501
Report 15/96, Univ. of Kaiserslautern, Germany, 1996

[9] C. Heitmeyer, A. Bull, C. Gasarch, B. Labaw: SCR*: A Tool-
set for Specifying and Analyzing Requirements. 10th Annual
Conference on Computer Assurance, Gaithersburg MD,
June 1995

[10] K. Heninger:Specifying Software Requirements for Complex
Systems: New Techniques and Their Application. IEEE
Trans. on Software Engineering SE-6(1), pp. 2-13, 1980

[11] M. Kronenburg, R. Gotzhein, C. Peper:A Tailored Real-
Time Temporal Logic for Building Automation Systems.SFB
501 Report 16/96, Univ. of Kaiserslautern, Germany, 1996

[12] D.L. Parnas, J. Madey: Functional Documentation for Com-
puter Systems Engineering. Science of Computer Program-
ming (Elsevier) 25(1), pp. 41-61, Oct. 1995

[13] C. Peper, R. Gotzhein, M. Kronenburg: Formal Specification
of Real-Time Requirements for Building Automation Sys-
tems. SFB 501 Report 01/97, Univ. of Kaiserslautern, Ger-
many, 1997

