
Re�nement and veri�cation of concurrent systems speci�edin Object-Z and CSPGraeme Smith� and John Derricky� Technische Universit�at Berlin, FB Informatik, FG Softwaretechnik,Sekr. FR 5-6, Franklinstr. 28/29, D-10587 Berlin, Germany.y Computing Laboratory, University of Kent, Canterbury, CT2 7NF, UK.(Email: graeme@cs.tu-berlin.de and J.Derrick@ukc.ac.uk.)
AbstractThe formal development of large or complex systems can often be facilitated by the use ofmore then one formal speci�cation language. Such a combination of languages is particularlysuited to the speci�cation of concurrent or distributed systems, where both the modellingof processes and state is necessary. This paper presents an approach to re�nement andveri�cation of speci�cations written using a combination of Object-Z and CSP.A common semantic basis for the two languages enables a uni�ed method of re�nementto be used, based upon CSP re�nement. To enable state-based techniques to be used for theObject-Z components of a speci�cation we develop state-based re�nement relations which aresound and complete with respect to CSP re�nement.In addition, a veri�cation method for static and dynamic properties is presented. Themethod allows us to verify properties of the CSP system speci�cation in terms of its componentObject-Z classes by using the laws of the CSP operators together with the logic for Object-Z.Keywords: Object-Z; CSP; Re�nement; Veri�cation; Concurrency.1 IntroductionThe formal development of particularly large, or complex, systems can often be facilitated bythe use of more then one formal speci�cation language. While most speci�cation languages canbe used to specify entire systems, few, if any, are particularly suited to modelling all aspects ofsuch systems. This realisation has lead to the development of new speci�cation languages whichcombine features of one or more existing languages[1, 8] and, more recently, approaches for formallyintegrating existing languages[4, 24, 11, 22, 9].Such a combination of languages is particularly suited to the speci�cation of concurrent or dis-tributed systems, where both the modelling of processes and state is necessary. Process algebrassuch as CCS[16] and CSP[12] are suitable vehicles for modelling the interactions between processesor their temporal ordering. State-based languages such as Z[23] or VDM[14], however, o�er betterfacilities for the speci�cation of the complex data structures which may be needed to describethe processes themselves. Indeed, the Open Distributed Processing reference model[13] recognisesthat di�erent languages are likely to be used in the di�erent viewpoint speci�cations of a largedistributed system. 2

A method of formally specifying concurrent systems using Object-Z[7], an object-oriented exten-sion of Z, together with CSP is described in [22]. The rationale is that Object-Z provides a con-venient method of modelling the complex data structures needed to de�ne component processes,and CSP enables the concise speci�cation of process interaction. The advantage of Object-Z overmore traditional state-based languages such as Z is that its class structure provides a constructeasily identi�able with CSP processes. The basis of the integration is a semantics of Object-Zclasses identical to that of CSP processes. This enables classes speci�ed in Object-Z to be useddirectly within the CSP part of the speci�cation.However, in addition to speci�cation, a notation needs to be able to support incremental develop-ment of speci�cations through a well-de�ned method of re�nement. It is also desirable to be ableto verify both static and dynamic, i.e. behavioural, properties of these speci�cations. The workdescribed here presents a method of re�ning speci�cations written in the integrated Object-Z /CSP notation, and a method for verifying such properties of those speci�cations.The common semantic basis for the two languages enables a uni�ed method of re�nement to bedeveloped for the integrated notation: because we give Object-Z classes a CSP semantics, we canuse CSP re�nement as the re�nement relation for the integrated notation. However, as a meansfor verifying a re�nement it is more convenient to be able to use a state-based re�nement relationfor the Object-Z components, rather than having to calculate their semantics. In order to do so,we adapt the work of Josephs[15], who has developed re�nement relations for state-based systemswhich are sound and complete with respect to CSP re�nement.In order to be able to verify static and dynamic properties, we present a method of veri�cation forthe integrated notation. The method allows us to verify properties of the CSP system speci�cationin terms of its component Object-Z classes by using the laws of the CSP operators presented in[12] together with the logic for Object-Z in [19]. CSP and Object-Z properties are related viaauxiliary variables introduced into the Object-Z classes using inheritance.The paper is structured as follows. Section 2 presents the integration of Object-Z and CSP basedon the common semantics. Section 3 then discusses re�nement in the integrated notation, andde�nes the state-based re�nement relations that we will use for the Object-Z components of aspeci�cation. Section 4 explains how properties of speci�cations can be veri�ed, and we concludein Section 5. Throughout the paper we illustrate these techniques with the speci�cation andre�nement of a cinema booking system.2 Integrating Object-Z and CSPThis section presents the integration of Object-Z and CSP. The basis of this integration is asemantics of Object-Z classes identical to that of CSP processes. This allows classes speci�ed inObject-Z to be used directly within the CSP part of the speci�cation. The approach to speci�cationcomprises three phases.� The �rst phase involves specifying the components of the system using Object-Z. Since allinteraction of system components is speci�ed in the CSP part of the speci�cation, a restrictedsubset of Object-Z is used which does not include instantiation of objects of a class (see [7]for details). This restriction greatly simpli�es reasoning about the Object-Z part of thespeci�cation.� The components speci�ed in the �rst phase will generally not be in a form that allowsthem to be composed using CSP operators. The second phase involves modifying the classinterfaces so that they will synchronise and communicate as desired. This may be achievedusing Object-Z inheritance. 3

This optional phase is not required for the simple examples presented in this paper. Anexample illustrating its use can be found in [22].� The �nal phase involves the speci�cation of the system using CSP operators. As detailed inthis section, a well-de�nedness condition is placed on the hiding operator restricting its use.To illustrate the approach we present a case study of a cinema booking system. This case studyis based on the speci�cation of the Apollo box o�ce in [25] but extended to support multiplecustomers.2.1 Specifying the components of a systemThe Marlowe box o�ce allows customers to book tickets in advance by telephone. When a customercalls, if there is an available ticket then one is allocated and put to one side for the caller. Whenthe customer arrives, they are presented with this ticket.The components of the booking system are the customers and the Marlowe box o�ce. In ourapproach, these will be speci�ed by Object-Z classes. A class in Object-Z is represented syntacti-cally by a named box possibly with generic parameters. In this box there may be local type andconstant de�nitions, at most one state schema and associated initial state schema, and zero ormore operation schemas. As an example, consider the speci�cation of a customer of the bookingsystem.Let Name denote the set of all customer names and Ticket the set of all tickets.Customermy name : NameBookname! : Namename! = my nameArrivename! : Namet? : Ticketname! = my nameThis class has a single constant my name denoting the name of the customer and two operations:Book and Arrive. The operations Book and Arrive correspond to the customer booking a ticketand arriving to collect a ticket respectively. They have input parameters (denoted by namesending in ?) and output parameters (denoted by names ending in !) for communication with thebox o�ce.A more substantial example of a class is provided by the speci�cation of the Marlowe box o�ce.
4

Marlowempool : PTickettkt : Name 7� TicketINITtkt = ?Book�(tkt ;mpool)name? : Namename? 62 dom tktmpool 6= ?9 t : mpool �mpool 0 = mpool n ftgtkt 0 = tkt [fname? 7! tgArrive�(tkt)name? : Namet ! : Ticketname? 2 dom tktt ! = tkt(name?)tkt 0 = fname?g �C tktThis class has a state schema with two state variables: mpool , denoting the pool of tickets, andtkt , a partial injective function from Name to Ticket recording which tickets have been allocatedto which customers. Initially, no tickets have been allocated.Each operation schema has a �-list of the state variables which it may change. State variablesnot listed remain unchanged. The operation Book is feasible whenever there are still ticketsavailable (mpool 6= ?) and allocates a ticket to a customer who has not already made a booking(name? 62 dom tkt). The operation Arrive issues the ticket but does not change the pool of tickets(mpool = mpool 0 is a consequence of mpool not appearing in the �-list of the operation Arrive).2.2 Specifying the systemTo specify the booking system we use CSP operators to capture the interaction between thecustomers and box o�ce. This is made possible by giving a semantics to Object-Z classes whichis identical to that of CSP processes.2.2.1 Semantics of CSP processesThere are several semantic models for CSP processes. The most widely accepted of these is thefailures-divergences semantics of [3, 12]. In this semantics, a process is modelled by the triple(A;F ;D) where A is its alphabet (i.e. the set of events that it can possibly engage in)1, F is itsfailures and D its divergences . The failures of a process are pairs (s ;X) where s is a trace of theprocess, i.e. a �nite sequence of events that the process may undergo, and X is a set of events the1The alphabet is made implicit in [3] by assuming all processes have the same alphabet.5

process may refuse to perform after undergoing s . That is, if the process after undergoing s is inan environment which only allows it to undergo events in X , it may deadlock. The divergences ofa process are the sequences of events after which the process may undergo an in�nite sequence ofinternal events, i.e. livelock. Divergences also result from unguarded recursion.We adopt, however, a variant of the simpler failures semantics of [2]. This semantics doesn'tinclude a component corresponding to the divergences of a process. The reason for adopting thissimpler semantics is because Object-Z is capable of modelling unbounded nondeterminism, i.e.where a choice is made from an in�nite set, which cannot be modelled in standard CSP. As shownin [17] and [22], this can lead to problems when calculating divergences.Given a class with alphabet A and failures F � A��PA, the properties of the semantics we adoptare as follows.(h i;?) 2 F (F1)(s a t ;?) 2 F) (s ;?) 2 F (F2)(s ;X) 2 F ^ Y � X) (s ;Y) 2 F (F3)(s ;X) 2 F ^ (8 x 2 Y � (s a hx i;?) 62 F)) (s ;X [Y) 2 F (F4)That is, we have dropped the restriction in [2] that the set of refused events is �nite as is alsodone in [3]2 and [15].For the failures semantics to be adequate, however, we must ensure that our speci�cations aredivergence free. This is true of processes corresponding to Object-Z classes since Object-Z has nonotion of internal operations nor recursive de�nitions of operations3. It can be ensured for otherprocesses in our approach by placing a well-de�nedness condition on the hiding operator of CSPas is done in [15]. That is, given a process P with failures F , P n C is well-de�ned only if8 s 2 domF � : (8n 2 N � 9 t 2 C � � #t > n ^ s a t 2 domF)This prevents in�nite sequences of events being hidden.An alternative solution to the problem of unbounded nondeterminism would be to add to thefailures-divergences semantics a component corresponding to the in�nite traces of a process as isdone in [18]. In this case, no restriction would be required on hiding. Whether the bene�ts ofadopting this more complicated semantics are worthwhile, however, needs to be investigated.2.2.2 Semantics of Object-Z classesA semantics of Object-Z classes is presented in [21] where, following the work of [6], a class ismodelled by its set of histories , i.e. the sequences of states it can pass through together with thecorresponding sequences of operations it can undergo.Given the set of all possible identi�ers Id and the set of all possible values Value, the states of aclass can be represented by a setS � (Id 7 7! Value)and the operations by a set2The additional property stating that a set is refusable if all its �nite subsets are refusable in [3] was shown tobe unnecessary in [17].3Although recursive de�nitions of operations have been suggested for Object-Z (e.g. [5]), we have adopted amore conservative view of Object-Z in this paper. 6

O � Id � (Id 7 7! Value):The operations are instances of the class' operation schemas. They comprise the name of the opera-tion schema together with an assignment of values to its parameters. For example, (Book ; f(name?;n)g)where n 2 Name is a possible operation of the class Marlowe.A history is a non-empty sequence of states together with a sequence of operations. Either bothsequences are in�nite4 or the state sequence is one longer than the operation sequence. Thehistories of a class with states S and operations O can be represented by a setH � S! �O!such that the following properties hold.(s ; o) 2 H) s 6= h i (H 1)(s ; o) 2 H ^ s 62 S�) o 62 O� (H 2)(s ; o) 2 H ^ s 2 S�) #s = #o + 1 (H 3)(s1 a s2; o1 a o2) 2 H ^ #s1 = #o1 + 1) (s1; o1) 2 H (H 4)The �rst three properties capture the requirements on an individual history detailed above. The�nal property is a condition on the set of histories representing a class. This set must be pre�x-closed . This is necessary since any pre�x of a class' history also represents a possible evolution ofthe class.2.2.3 Modelling classes as processesIn order to relate classes and processes, we need to relate operations and events. This needs to bedone in such a way that appropriate input and output parameters of synchronising operations canbe identi�ed. We therefore de�ne a meta-function � which returns the basename of a parametername, i.e. �(x?) = �(x !) = x , and allow it be applied to the assignment of values to an operation'sparameters as follows.�(f(x1; v1); : : : ; (xn ; vn)g) = f(�(x1); v1); : : : ; (�(xn); vn)gwhere fx1; : : : ; xng � Id and fv1; : : : ; vng � ValueThe function relating operations and events is then de�ned as follows.event((n; p)) = n:�(p) where n 2 Id and p 2 (Id 7 7! Value)For example, the event corresponding to a customer with name n making a booking is Book :f(name;n)g.This event is identical to that corresponding to the box o�ce accepting a booking from a cus-tomer with name n. Hence, these two operations will be able to synchronise when their classesare combined using the CSP parallel composition operator jj. Similarly, the events correspondingto a customer with name n arriving and collecting a ticket s and the box o�ce allocating ticket sto that customer will be the event Arrive:f(name;n); (t ; s)g.We let a class C be modelled by a parameterised process Ci . The parameter i is an assignmentof values to a subset of the state of C satisfying a possible initial state of C . That is, i 2 fj j4In�nite histories enable liveness properties of classes to be modelled. Such properties have been ignored in thedescription of Object-Z in this paper. 7

9(s ; o) 2 H � j � s(1)g5. This allows us to refer to the class' constants when it is used as aprocess. For example, we can de�ne a process Customern corresponding to the customer withname n as follows.Customern = Customerf(my name;n)gFor notational convenience, we introduce the convention that C = C? allowing us to write, forexample, Marlowe rather than Marlowe? for the process corresponding to the class Marlowewithout any restriction on the initial state.Given a class C with states S , operations O and histories H , the alphabet of process Ci comprisesthe events corresponding to the operations in O .alphabet(Ci) = fevent(op) j op 2 OgTo de�ne the failures of a class we use the following function which maps a sequence of operationsto a sequence of events.events(h i) = h ievents(hopi a o) = hevent(op)i a events(o)The failures of Ci are derived from the histories in H as follows: (t ;X) is a failure of Ci if� there exists a �nite history of C whose initial state is satis�ed by i ,� the sequence of operations of the history corresponds to the sequence of events in t and� for each event in X , there does not exist a history which extends the original history by anoperation corresponding to that event.failures(Ci) = f(t ;X) j 9(s ; o) 2 H �s 2 S� ^i � s(1) ^t = events(o) ^8 e 2 X � @st 2 S ; op 2 O �e = event(op) ^ (s a hsti; o a hopi) 2 H gAs shown in [22], the failures of Ci de�ned in this way satisfy the properties F1 to F4 of thefailures semantics.2.2.4 The booking system speci�cationThe processes Customern and Marlowe can now be composed to specify the booking system.BookingSystem = (jjjn:Name Customern) jj MarloweThat is, the booking system consists of the box o�ce running concurrently with a collection ofcustomers { one for each name in Name. Since this part of the speci�cation is a CSP speci�cation,5An Object-Z class with unsatis�able initial constraints is not given a semantics in this approach. Such degen-erate classes are, however, unimplementable and of no practical interest to the speci�er.8

we can state properties we wish to prove about it in the same way as they are stated in CSP (see[12]). That is, in the form P sat S where P is a process and S is a predicate in terms of tr , thetraces, and ref , the refusal sets, of the failures of process P . For example, the property that thenumber of bookings made is greater than or equal to the number of tickets allocated to arrivingcustomers can be stated as follows6.BookingSystem sat #tr # Book > #tr # ArriveAn approach to proving such properties in terms of the component Object-Z classes is presentedin Section 4.3 Re�ning Object-Z and CSP speci�cationsThis section presents a method of re�nement for systems speci�ed using the integrated Object-Z /CSP notation. The use of a CSP semantics for Object-Z classes enables us to use CSP re�nementas the re�nement relation for the integrated notation. To verify such a re�nement there are twodi�erent approaches that can be employed:� The �rst is based on the approach used in CSP. The re�nement is veri�ed directly by calcu-lating and comparing the failures of the speci�cations or, in the case where the speci�cationshave identical structure, the failures of the components of the speci�cations.� The second involves using state-based methods to verify the re�nement of the componentObject-Z classes of a speci�cation. This is achieved by adapting the work of Josephs[15],which provides re�nement relations for state-based systems that are sound and completewith respect to CSP re�nement. This approach is only possible when the speci�cations haveidentical structure.In this section we illustrate both approaches by re�ning the cinema booking system of Section 2.3.1 Failures ApproachRe�nement in CSP is de�ned in terms of failures and divergences[3]. A process Q is a re�nementof a process P iffailures Q � failures P and divergences Q � divergences Por when using the simpler failures semantics iffailures Q � failures P :We write P v Q to denote the latter. Because we have modelled Object-Z classes semanticallyas processes, CSP re�nement can be used as the basis for re�ning speci�cations written in theintegrated Object-Z / CSP notation. As an example, consider an alternative booking system tothe BookingSystem speci�cation given in Section 2.Like the Marlowe box o�ce, the Kurbel box o�ce allows customers to book tickets in advance bytelephone. However, the procedure is di�erent from that used at the Marlowe. When a customercalls, if there is an available ticket then the customer's name is simply recorded. When a customerwhose name has been recorded arrives at the box o�ce, a ticket is allocated.6s # c denotes the sequence of values v of events of the form c:v in s, e.g. hc:1; a:4; c:3;d :1i # c = h1; 3i.9

The contrast between the Marlowe and the Kurbel box o�ces is the point of allocation of tickets(at booking time vs at collection time). However, at this level of abstraction the customer cannottell that the Kurbel is behaving di�erently to the Marlowe. We will prove this property by showingthat the Kurbel booking system is a CSP re�nement of the Marlowe booking system.The components of the Kurbel booking system are the customers and the Kurbel box o�ce. Thespeci�cation of a customer is identical to that given in the Marlowe booking system. The Kurbelbox o�ce is represented by the following Object-Z class.Kurbelkpool : PTicketbkd : PNameINITbkd = ?Book�(bkd)name? : Namename? 62 bkd#bkd < #kpoolbkd 0 = bkd [fname?gArrive�(bkd ; kpool)name? : Namet ! : Ticketname? 2 bkdbkd 0 = bkd n fname?gt ! 2 kpoolkpool 0 = kpool n ft !gThe state variable kpool denotes the pool of tickets and bkd denotes the set of names of customerswho have booked a ticket. Initially, bkd is empty. The operation Book records a booking providedthat there are currently less bookings than tickets and, hence, still tickets available. The operationArrive allocates a ticket to a customer who has a booking.The complete system again consists of the box o�ce running concurrently with a collection ofcustomers.BookingSystemK = (jjjn:Name Customern) jj KurbelTo show that BookingSystemK is a re�nement of BookingSystem, we will compare their fail-ures. Since the structure of the booking system speci�cations are identical and the componentsCustomern are identical, we need only show that failures(Kurbel) � failures(Marlowe).Consider �rst the class Kurbel . The failures of Kurbel can be given in terms of the failures of theprocesses Kurbelf(kpool;p)g for each possible set of tickets p.failures(Kurbel) =[p2PTicket failures(Kurbelf(kpool;p)g)The traces of Kurbelf(kpool;p)g comprise the empty trace and any trace formed by extending a traceof Kurbelf(kpool;p)g by 10

� a Book event whenever the customer doing the booking has arrived and collected any ticketshe or she has previously booked and� an Arrive event whenever{ the ticket being collected was initially in kpool ,{ the ticket being collected has not been previously collected by any customer and{ the customer arriving has booked once more than he or she has arrived to collect aticket.traces(Kurbel) = fh ig[fs a hBook :f(name;n)gi j s 2 traces(Kurbel) ^ n 2 Name^#(s � fBook :f(name;n)gg) = #(s � fArrive:f(name;n); (t ; x)g j x 2 Ticketg)g[fs a hArrive:f(name;n); (t ; x)gi j s 2 traces(Kurbel) ^ n 2 Name^x 2 p ^#(s � fArrive:f(name;m); (t ; x)g j m 2 Nameg) = 0^#(s � fBook :f(name;n)gg) = #(s � fArrive:f(name;n); (t ; y)g j y 2 Ticketg) + 1gKurbelf(kpool;p)g can refuse a Book event whenever the customer making the booking has bookedmore times than he or she has arrived, or there are no tickets remaining in kpool . It can refuse anArrive event whenever the customer arriving has already arrived as many times as he or she hasbooked, the ticket of the Arrive event has already been allocated to a customer or the ticket ofthe Arrive event was not in kpool initially.Hence, the failures of Kurbelf(kpool;p)g arefailures(Kurbelf(kpool;p)g) = f(tr ;X) j tr 2 traces(Kurbelf(kpool;p)g) ^X � SgwhereS = fBook :f(name;n)g;Arrive:f(name;m); (t ; x)g j x 2 Ticket ^ n;m 2 Name^(#(tr � fBook :f(name;n)gg > #(tr � fArrive:f(name;n); (t ; y) j y 2 Ticketg)_ #(tr � fArrive:f(name; l); (t ; y) j l 2 Name ^ y 2 Ticketg = #p)(#(tr � fBook :f(name;m)gg) = #(tr � fArrive:f(name;m); (t ; x)gg)_ #(tr � fArrive:f(name; l); (t ; x)g j l 2 Nameg) 6= 0_ x 62 pg:The failures ofMarlowe can similarly be given in terms of the failures of the processesMarlowef(mpool;p)gfor each possible set of tickets p.failures(Marlowe) =[p2PTicket failures(Marlowef(mpool;p)g)It easy to see that the traces of Marlowef(mpool;p)g are identical to those of Kurbelf(kpool;p)g. Fur-thermore, Marlowef(mpool;p)g can refuse any events that Kurbelf(kpool;p)g can refuse after the sametrace. It can, in fact, refuse more events after a given trace because it can refuse an Arrive eventwhenever the ticket of the Arrive event is not that previously allocated to the customer. Hence,failures(Kurbelf(mpool;k)g) � failures(Marlowef(mpool;k)g) and, therefore, failures(Kurbel) � failures(Marlowe)as desired.
11

3.2 State-based ApproachCalculating and comparing the failures of classes as illustrated above is feasible, but can be complexfor non-trivial speci�cations. The purpose of this section is to show how we can use state-basedre�nement techniques for the Object-Z component of a speci�cation. This will enable re�nementsto be veri�ed at the speci�cation level, rather than working explicitly in terms of failures, tracesand refusals at the semantic level.Work on state-based re�nement for concurrent systems goes back to He[10] and Josephs[15], whohave developed re�nement relations for state-based transition systems which are complete andsound with respect to CSP re�nement. Woodcock and Morgan[27] have produced similar resultsin the context of action systems and weakest precondition formulae. In this section we adaptthe work of Josephs to the Object-Z setting. This work is directly applicable to this contextbecause it uses the failures semantics (as opposed to the failures-divergences model) and placesthe same restrictions on hiding that we have adopted. We produce two re�nement relations, calledupward and downward simulation, which together are sound and complete with respect to CSPre�nement. Using these rules we can re�ne the Object-Z components of an integrated Object-Z /CSP speci�cation such that the entire speci�cation is also re�ned.Josephs considers a state-based system P to be de�ned by a tuple (A;S ;�!;R) where A is itsalphabet, S its states, �! its transition relation and R its initial states (R � S ;R 6= ?). As usualwe will denote a transition under event e from state �1 to �2 by �1 e�! �2. In addition, the setof next possible events that a system P can undergo when in state � is denoted nextP(�), i.e.nextP(�) = fe 2 A j 9�0 2 S � � e! �0gRe�nement in state-based systems is based on the concept of simulations. For example, simulationforms the basis of the re�nement rules in Z as they are usually presented[25]. Josephs usestwo versions called downward and upward simulation (sometimes called forward and backwardsimulations respectively) de�ned as follows.De�nition 1 Downward simulationP2 is a downward simulation of P1 if there is a relation D � S1 � S2 such that1. 8�1 2 S1; �2 2 S2 � �1D�2 =) nextP1(�1) = nextP2(�2)2. 8�1 2 S1; �2; �02 2 S2; e 2 A � �1D�2 ^ �2 e�!2 �02 =) 9�01 2 S1 � �1 e�!1 �01 ^ �01D�023. 8�2 2 R2 � 9�1 2 R1 � �1D�2De�nition 2 Upward simulationP2 is an upward simulation of P1 if there is a relation U � S1 � S2 such that1. 8�2 2 S2 � 9�1 2 S1 � �1U�2 ^ nextP1(�1) � nextP2(�2)2. 8�01 2 S1; �2; �02 2 S2; e 2 A � �01U�02 ^ �2 e�!2 �02 =) 9�1 2 S1 � �1 e�!1 �01 ^ �1U�23. 8�1 2 S1; �2 2 R2 � �1U�2 =) �1 2 R1.Josephs then proves that these two relations are sound and complete with respect to CSP re�ne-ment. 12

To use these results, we �rst adapt the de�nitions to the Object-Z setting. The translationis straightforward, and the relations D and U between the state spaces are re-cast as retrieverelations (denoted Abs) between the abstract state (Astate) and the concrete state (Cstate).To translate the rules involving nextP(�) we introduce a new precondition operator Pre. This isnecessary because when we model Object-Z classes as processes we relate operations to events byremoving the decorations ? and !. Therefore the simulation rules presented above will treat outputsin the same way as inputs. This is in contrast to standard Z re�nement where the constraints oninputs can be weakened and those on outputs strengthened[25]. Doing this in our notation wouldmean that we could reduce the events that occur under a re�nement, and hence restrict possiblesynchronisation with other processes. Compositionality would then be lost.So in order to re
ect the above simulation rules accurately and maintain compositionality in theObject-Z setting, we de�ne Pre to hide the post-state of an operation, but not its outputs, i.e.Pre Op b= 9State 0 � Op. The event corresponding to an Object-Z operation Op is in nextP(�)i� Pre Op is true in the state representing �. This is because the interpretation of operations inObject-Z di�ers from that in Z in that an operation cannot occur when its precondition is notenabled7. We can now give the de�nition of downward and upward simulation in Object-Z.De�nition 3 Downward simulationAn Object-Z class C is a downward simulation of the class A if there is a retrieve relation Abssuch that every abstract operation AOp is recast into a concrete operation COp and the followinghold.DS.1 8Astate; Cstate � Abs =) (Pre AOp () Pre COp)DS.2 8Astate; Cstate; Cstate 0 � Abs ^ COp =) 9Astate 0 � Abs 0 ^AOpDS.3 8Cinit � 9Ainit � AbsDe�nition 4 Upward simulationAn Object-Z class C is an upward simulation of the class A if there is a retrieve relation Abs suchthat every abstract operation AOp is recast into a concrete operation COp and the following hold.US.1 8Cstate � 9Astate � Abs ^ Pre AOp =) Pre COpUS.2 8Astate 0; Cstate; Cstate 0 � COp ^ Abs 0 =) 9Astate � Abs ^ AOpUS.3 8Astate; Cinit � Abs =) AinitUsing these rules we can show that the Kurbel class is an upward simulation, and hence a re�ne-ment, of the Marlowe class without having to calculate the failures. To do so we �rst record therelationship between the two classes as a retrieve relation given byRetKurbel :STATEMarlowe:STATEbkd = dom tktkpool = mpool [ran tktmpool \ ran tkt = ?7In Z when operations occur outside their preconditions, the post-state is unde�ned.13

Kurbel :STATE denotes the state schema in the class Kurbel , etc.Firstly, to prove the initialisation correct (US.3) we must prove the following:8Marlowe:STATE ; Kurbel :INIT � Ret =) Marlowe:INITTo do so we must show the following holds (which it clearly does).8mpool : PTicket ; tkt : Name 7� Ticket ; kpool : PTicket ; bkd : PName j bkd = ? �bkd = dom tkt ^ kpool = mpool [ran tkt ^mpool \ ran tkt = ? =) tkt = ?Next, we must show that US.1 holds for the operations Book and Arrive. For the Book operation,this requires us to show that8Kurbel :STATE � 9Marlowe:STATE � Ret ^ Pre Marlowe:Book =) Pre Kurbel :BookThis amounts to showing that8 kpool : PTicket ; bkd : PName � 9mpool : PTicket ; tkt : Name 7� Ticket �(bkd = dom tkt ^ kpool = mpool [ran tkt ^mpool \ ran tkt = ?)^(name? 62 dom tkt ^mpool 6= ?) =)(name? 62 bkd ^#bkd < #kpool):Given the declarations and the constraints in Ret , we proceed as follows.name? 62 dom tkt ^mpool 6= ?=) name? 62 dom tkt ^#mpool > 0=) name? 62 dom tkt ^#ran tkt < #(mpool [ran tkt)=) name? 62 dom tkt ^#dom tkt < #(mpool [ran tkt) [since #dom tkt = #ran tkt]=) name? 62 bkd ^#bkd < #kpool [By Ret]A similar proof can be given for the operation Arrive.Finally, we must show that US.2 holds for the operations Book and Arrive. For the Arriveoperation, this requires us to show that8Marlowe:STATE 0;Kurbel :STATE;Kurbel :STATE0 �Kurbel :Arrive ^ Ret 0 =) 9Marlowe:STATE � Ret ^Marlowe:Arrive:That is, given the declarations we need to show that(name? 2 bkd ^ bkd 0 = bkd n fname?g ^ t ! 2 kpool ^ kpool 0 = kpool n ft !g^bkd 0 = dom tkt 0 ^ kpool 0 = mpool 0 [ran tkt 0 ^? = mpool 0 \ ran tkt 0) =)9mpool : PTicket ; tkt : Name 7� Ticket �(bkd = dom tkt ^ kpool = mpool [ran tkt ^mpool \ ran tkt = ?^name? 2 dom tkt ^mpool = mpool 0 ^ tkt 0 = fname?g �C tkt ^ t ! = tkt(name?)):This can be seen to be true if we take mpool = mpool 0 and tkt = tkt 0 [fname? 7! t !g. We onlyneed to prove the �rst three conjuncts of the consequent, the rest follow trivially from our choiceof mpool , etc. For example, with these choices we can then make the following deductions.dom tkt = dom(tkt 0 [fname? 7! t !g) = dom tkt 0 [fname?g= bkd 0 [fname?g = (bkd n fname?g) [fname?g= bkd 14

mpool [ran tkt = mpool 0 [ran tkt 0 [ft !g = kpool 0 [ft !g = kpoolFinally, to show that mpool \ ran tkt = ? we note that (since ran tkt = ran tkt 0 [ft !g)mpool \ ran tkt = (mpool \ ran tkt 0) [mpool \ ft !g = ? [(mpool \ ft !g)Now from t ! 2 kpool ^ t ! 62 kpool 0 we deduce that t ! 62 mpool 0 = mpool . Therefore mpool \ran tkt =?.This concludes the proof that Kurbel is an upward simulation of Marlowe, and therefore a CSPre�nement. As with the failures approach, from this we can conclude that BookingSystemK isindeed a re�nement of BookingSystem.4 Verifying Object-Z and CSP speci�cationsThis section presents a method of veri�cation for the integrated notation. The method allows usto verify properties of the CSP system speci�cation in terms of its component Object-Z classes.It comprises three phases.� The �rst phase involves reasoning about the CSP part of the speci�cation. System proper-ties are stated and transformed to properties of the component Object-Z classes using thenotation and laws for CSP operators of [12].� The properties of the Object-Z classes derived in the �rst phase will often include termsnot readily reasoned about in Object-Z. The second phase involves extending the Object-Z classes with auxiliary variables to model these terms. This is achieved using Object-Zinheritance which allows the addition of variables and predicates to the state schema, initialstate schema and operations of a class. Reasoning can then be carried out using the logicfor Object-Z presented in [19].� The �nal phase involves showing that the classes extended with the auxiliary variables arere�ned by the original Object-Z classes and hence the original classes also satisfy the desiredproperties.To illustrate the approach, we will verify the property of BookingSystem stated at the end ofSection 2.4.1 Reasoning about the CSP processesProperties about CSP processes can be stated in term of their failures. Given a process P withfailures F , the property 8(tr ; ref) 2 F � S (tr ; ref) can be expressed using the notation of [12] asP sat S (tr ; ref). For example, the following property of the process BookingSystem states thatthe number of bookings made is greater than or equal to the number of tickets allocated to arrivingcustomers.BookingSystem sat #tr # Book > #tr # ArriveTo prove such a property in CSP, we would use the laws for the various CSP operators given in[12]. Therefore, we re-express the property in terms of CSP operators by replacing BookingSystemwith its de�nition in terms of component processes.15

(jjjn:Name Customern) jj Marlowe sat #tr # Book > #tr # ArriveIn this form, we can apply the following law for the parallel composition operator8.If P sat S (tr)and Q sat T (tr)then (P jj Q) sat (S (tr � �P) ^ T (tr � �Q)).Let S (tr � �(jjjn:Name Customern)) = true and, since the alphabet of Marlowe is identical to thatof BookingSystem, let T (tr � �Marlowe) = #tr # Book > #tr # Arrive. Using the law for theparallel composition operator, the above property is true whenever the following is true.Marlowe sat #tr # Book > #tr # ArriveThis property is now in terms of a process corresponding to an Object-Z class and we can nolonger use the laws for CSP operators. To complete the proof, we require a method for showingthe above property is true for the Object-Z class Marlowe.4.2 Reasoning about the Object-Z classesBuilding on the work in [26], a logic for reasoning about Object-Z classes is presented in [19].Properties of classes are expressed as sequents of the formA :: d j 	 ` �where A is a class name, d is a list of declarations and 	 and � are lists of predicates. The sequentis valid, i.e. the stated property is true, whenever given the declarations d and predicates 	 atleast one of the predicates in � is true in class A. For example, the following is a valid sequent(INIT denotes the declarations and predicates of the INIT schema of Marlowe).Marlowe :: INIT ` tkt = ?The predicates in 	 and � are only de�ned in terms of variables and constants which are accessiblein the class or declared in d . Hence, it is not possible to state properties about sequences of eventssuch as those we would like to prove about the CSP process corresponding to a class. Therefore,we need to introduce auxiliary variables to capture such properties. For example, an auxiliaryvariable bks : N could be added to the classMarlowe to model the CSP term #tr # Book . Initiallybks would be zero, it would be incremented each time Book occurs and remain unchanged eachtime Arrive occurs. Similarly, an auxiliary variable arrs : N could be added to model the CSPterm #tr # Arrive.The addition of such variables to a class is possible using Object-Z inheritance (see [7]). Whena class inherits another, schemas from the inherited class are implicitly conjoined with common-named schemas in the inheriting class. For example, consider the following class auxMarlowewhich inherits Marlowe.8As mentioned in [12], this law is valid provided S and T do not mention refusal sets.
16

auxMarloweMarlowebks ; arrs : N#tkt = bks � arrsINITbks = arrs = 0Book�(bks)bks 0 = bks + 1Arrive�(arrs)arrs 0 = arrs + 1The class auxMarlowe includes all the de�nitions of class Marlowe and extends them as follows.The state schema has the additional state variables bks and arrs and the additional predicate#tkt = bks � arrs . This predicate isn't strictly necessary but aids the proof of the re�nementrelation between Marlowe and auxMarlowe as shown in Section 4.3. The initial state schemaincludes the additional constraint that bks and arrs are equal to zero and the operations Bookand Arrive increment the variables bks and arrs respectively.To prove the property that the number of bookings is greater than or equal to the number of ticketsallocated to arriving customers for the class auxMarlowe, i.e. auxMarlowe sat #tr # Book > #tr #Arrive, we need to show that the following sequents are valid.auxMarlowe :: INIT ` bks = 0 ^ arrs = 0auxMarlowe :: Book ` bks 0 = bks + 1 ^ arrs 0 = arrsauxMarlowe :: Arrive ` bks 0 = bks ^ arrs 0 = arrs + 1auxMarlowe :: ` bks > arrsThe �rst three sequents ensure that bks and arrs model the number of occurrences of the operationsBook and Arrive respectively. They can easily be proved using the logic for Object-Z (see [20] forexamples of proofs in the logic). The �nal sequent states the desired property. It can be provedby structural induction, i.e. by proving the following sequents.auxMarlowe :: INIT ` bks > arrsauxMarlowe :: Book ` bks > arrs) bks 0 > arrs 0auxMarlowe :: Arrive ` bks > arrs) bks 0 > arrs 0These sequents can also be easily proved using the logic for Object-Z.The above can be generalised as follows. A property P of a process corresponding to a class C interms of the number of occurrences of particular events Op1; : : : ;Opn ,C sat P(#tr # Op1; : : : ;#tr # Opn)is true when the following sequents are valid. (The set of operations of the class are Op1; : : : ;Opmwhere m > n.) 17

C :: INIT ` a1 = 0 ^ : : : ^ an = 0C :: Op1 ` a 01 = a1 + 1 ^ a 02 = a2 ^ : : : ^ a 0n = an...C :: Opn ` a 01 = a1 ^ : : : a 0n�1 = an�1 ^ a 0n = an + 1C :: Opn+1 ` a 01 = a1 ^ : : : ^ a 0n = an...C :: Opm ` a 01 = a1 ^ : : : ^ a 0n = anC :: ` P(a1; : : : ; an)Similarly, we can develop rules for proving other types of properties. For example, a CSP predicatein terms of Op 2 ref can be replaced by an Object-Z predicate in terms of : preOp where preOpdenotes the precondition of Op. Such rules need to be proved sound. This can be done withrespect to the failures semantics of classes presented in Section 2.4.3 Proving the re�nement relationsTo show that the property proved for auxMarlowe also holds for Marlowe, we need to prove there�nement relation auxMarlowe vMarlowe. This can be done using the notion of downward sim-ulation de�ned in Section 3. To do so we �rst note that the retrieve relation between auxMarloweand Marlowe is simply the identity (which we denote Id). Therefore to prove the re�nement wehave to show thatDS.1 8 auxMarlowe:STATE ; Marlowe:STATE � (Pre auxMarlowe:Book () Pre Marlowe:Book)DS.2 8 auxMarlowe:STATE ; Marlowe:STATE ; Marlowe:STATE 0 �Marlowe:Book =) 9 auxMarlowe:STATE 0 � auxMarlowe:BookDS.3 8Marlowe:INIT � 9 auxMarlowe:INIT � Idtogether with similar conditions for the operation Arrive. Because we have simply added newstate variables under the re�nement, these conditions are easily discharged.DS.1: This amounts to showing that(name? 62 dom tkt ^mpool 6= ? ^#tkt = bks � arrs ^9 tkt 0 : Name 7� Ticket ; mpool 0 : PTicket ; bks 0; arrs 0 : N �(9 t : mpool � tkt 0 = tkt [fname? 7! tg ^mpool 0 = mpool n ftg)^#tkt 0 = bks 0 � arrs 0 ^ bks 0 = bks + 1 ^ arrs 0 = arrs)()(name? 62 dom tkt ^mpool 6= ?^9 tkt 0 : Name 7� Ticket ; mpool 0 : PTicket �9 t : mpool � tkt 0 = tkt [fname? 7! tg ^mpool 0 = mpool n ftg)which is easily shown to be true (for example, #tkt 0 = #tkt + 1 = bks � arrs + 1 = bks 0 � arrs =bks 0 � arrs 0).DS.2: This amounts to showing the following, which again can easily shown to be true.(name? 62 dom tkt ^mpool 6= ? ^ 9 t : mpool � tkt 0 = tkt [fname? 7! tg ^mpool 0 = mpool n ftg)=)(9 bks 0; arrs 0 : N �name? 62 dom tkt ^mpool 6= ? ^ 9 t : Ticket � tkt 0 = tkt [fname? 7! tg ^mpool 0 = mpool n ftg^#tkt = bks � arrs ^#tkt 0 = bks 0 � arrs 0 ^ bks 0 = bks + 1 ^ arrs 0 = arrs)18

DS.3: To prove this, it is su�cient to show the following, which is easily done.8 tkt : Name 7� Ticket j tkt = ? � 9 bks ; arrs : N j #tkt = bks � arrs ^ bks = arrs = 0The conditions for Arrive can be proved in a similar fashion. Hence, auxMarlowe v Marlowe.Since we have shown that auxMarlowe sat #tr # Book > #tr # Arrive we can deduce thatMarlowe sat #tr # Book > #tr # Arrive, and hence conclude the proof that the booking systemsatis�es the desired property. Furthermore, since Marlowe v Kurbel , we can also conclude thatthe Kurbel booking system satis�es the property.5 ConclusionIn this paper we have presented methods for re�ning and verifying speci�cations written using acombination of Object-Z and CSP. Because we have not modi�ed either of the languages used in thecombined notation, we have been able to use existing methods in our approach to re�nement andveri�cation in the combined notation. For example, by giving Object-Z classes a CSP semantics,we can use CSP re�nement as the re�nement relation for the integrated notation. A re�nement canbe veri�ed by either calculating the failures semantics directly, or by applying standard state-basedre�nement relations to the Object-Z components.To verify behavioural properties of the CSP system speci�cation we use the Object-Z logic to provesubsidiary properties of the Object-Z component classes, these properties are then combined byapplication of CSP laws to deduce the desired behavioural properties of the overall system.Some further areas of work remain. In particular, in addition to the state-based methods of re�ne-ment presented above, further methods of re�nement need to be developed for speci�cations whosesystem structure changes under the re�nement. For example, how can one verify the re�nementof the Object-Z Kurbel class in the example presented above into two or more communicatingObject-Z classes without having to resort to calculation of their semantics? Section 4.2 developedan approach for reasoning about the Object-Z classes in a combined speci�cation, and presentedrules for verifying certain properties. Further veri�cation rules for a range of other types of prop-erties need to be developed, and these need to be proved sound with respect to the Object-Z logicand the failures semantics developed in this paper.References[1] T. Bolognesi and E. Brinksma. Introduction to the ISO speci�cation language LOTOS.Computer Networks and ISDN Systems, 14(1):25{59, 1988.[2] S.D. Brookes, C.A.R. Hoare, and A.W. Roscoe. A theory of communicating sequential pro-cesses. Journal of the ACM, 31(3):560{599, 1984.[3] S.D. Brookes and A.W. Roscoe. An improved failures model for communicating processes. InPittsburgh Symposium on Concurrency, volume 197 of Lecture Notes in Computer Science,pages 281{305. Springer-Verlag, 1985.[4] J. Derrick, E.A.Boiten, H. Bowman, and M. Steen. Supporting ODP - translating LOTOS toZ. In First IFIP International workshop on Formal Methods for Open Object-based DistributedSystems. Chapman & Hall, 1996.[5] J. Dong, R. Duke, and G. Rose. An object-oriented approach to the semantics of programminglanguages. In G. Gupta, editor, 17th Annual Computer Science Conference (ACSC'17), pages767{775, 1994. 19

[6] D. Duke and R. Duke. Towards a semantics for Object-Z. In D. Bjorner, C.A.R. Hoare,and H. Langmaack, editors, VDM'90:VDM and Z!, volume 428 of Lecture Notes in ComputerScience, pages 242{262. Springer-Verlag, 1990.[7] R. Duke, G. Rose, and G. Smith. Object-Z: A speci�cation language advocated for thedescription of standards. Computer Standards and Interfaces, 17:511{533, 1995.[8] M. Nielsen et al. The RAISE language, methods and tools. Formal Aspects of Computing,1:85{114, 1989.[9] C. Fischer. Combining CSP and Z. Submitted to Formal Methods Europe (FME '97), 1997.[10] J. He. Process re�nement. In J. McDermid, editor, The Theory and Practice of Re�nement.Butterworths, 1989.[11] M. Heisel and C. S�uhl. Formal speci�cation of safety-critical software with Z and real-timeCSP. In E. Schoitsch, editor, Proceedings 15th International Conference on Computer Safety,Reliability and Security, pages 31{45. Springer, 1996.[12] C.A.R. Hoare. Communicating Sequential Processes. International Series in Computer Sci-ence. Prentice-Hall, 1985.[13] ITU Recommendation X.901-904. Open Distributed Processing - Reference Model - Parts 1-4,July 1995.[14] C.B. Jones. Systematic Software Development using VDM. International Series in ComputerScience. Prentice-Hall, 1986.[15] M.B. Josephs. A state-based approach to communicating processes. Distributed Computing,3:9{18, 1988.[16] R. Milner. Communication and Concurrency. International Series in Computer Science.Prentice-Hall, 1989.[17] A.W. Roscoe. An alternative order for the failures model. Journal of Logic and Computation,3(2), 1993.[18] A.W. Roscoe. Unbounded nondeterminism in CSP. Journal of Logic and Computation, 3(2),1993.[19] G. Smith. ExtendingW for Object-Z. In J. Bowen and M. Hinchey, editors, 9th InternationalConference of Z Users, volume 967 of Lecture Notes in Computer Science, pages 276{295.Springer-Verlag, 1995.[20] G. Smith. Formal veri�cation of Object-Z speci�cations. Technical Report 95-55, SoftwareVeri�cation Research Centre, Department of Computer Science, University of Queensland,Australia, 1995.[21] G. Smith. A fully abstract semantics of classes for Object-Z. Formal Aspects of Computing,7(3):289{313, 1995.[22] G. Smith. A semantic integration of Object-Z and CSP for the speci�cation of concurrentsystems. To appear in Formal Methods Europe (FME '97), 1997.[23] J.M. Spivey. The Z Notation: A Reference Manual (2nd Ed.). International Series in Com-puter Science. Prentice-Hall, 1992.[24] M. Weber. Combining Statecharts and Z for the design of safety-critical systems. In M.-C.Gaudel and J.C.P. Woodcock, editors, FME '96 { Industrial Bene�ts and Advances in FormalMethods, volume 1051 of Lecture Notes in Computer Science, pages 307{326. Springer-Verlag,1996. 20

[25] J. Woodcock and J. Davies. Using Z: Speci�cation, Re�nement, and Proof. InternationalSeries in Computer Science. Prentice-Hall, 1996.[26] J.C.P. Woodcock and S.M. Brien. W : A logic for Z. In J.E. Nicholls, editor, Z UserWorkshop, Workshops in Computing, pages 77{98. Springer-Verlag, 1992.[27] J.C.P. Woodcock and C.C. Morgan. Re�nement of state-based concurrent systems. InD. Bjorner, C.A.R. Hoare, and H. Langmaack, editors, VDM'90:VDM and Z!, volume 428 ofLecture Notes in Computer Science. Springer-Verlag, 1990.

21

