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Abstract— Handwritten text recognition is challenging be-
cause of the virtually infinite ways a human can write the
same message. Our fully convolutional handwriting model takes
in a handwriting sample of unknown length and outputs an
arbitrary stream of symbols. Our dual stream architecture uses
both local and global context and mitigates the need for heavy
preprocessing steps such as symbol alignment correction as well
as complex post processing steps such as connectionist temporal
classification, dictionary matching or language models. Using
over 100 unique symbols, our model is agnostic to Latin-based
languages, and is shown to be quite competitive with state of
the art dictionary based methods on the popular IAM and
RIMES datasets. When a dictionary is known, we further allow
a probabilistic character error rate to correct errant word
blocks. Finally, we introduce an attention based mechanism
which can automatically target variants of handwriting, such
as slant, stroke width, or noise.

Keywords- Fully Convolutional Neural Networks, Handwrit-
ing Recognition, Deep Learning

I. INTRODUCTION

Convolution Neural Networks (CNN) have enabled many
recent successes in pattern recognition systems. For exam-
ple, deep CNNs have become ubiquitous in classification,
segmentation and object detection. This success has also
been demonstrated in Optical Character Recognition (OCR)
systems, where CNNs can predict a sequence of characters
from machine generated text with near-perfect accuracy.

Despite a shift towards digitized information exchange,
there is still a need for handwritten inputs in many docu-
ments such as invoices, taxes, memos, and questionnaires.
Intelligent Character Recognition (ICR) is the task of deci-
phering digitized handwritten text. ICR is quite a bit more
challenging than OCR because no two handwritten symbols
are identical. ICR handwriting systems can be online or
offline. The former records stroke sequences say on a tablet,
while the latter has no temporal information. This paper is
concerned with offline ICR.

Like OCR, ICR systems first extract lines of text and
optionally can segment lines into word blocks separated by
white space. ICR systems can feed these word blocks of
symbols, often in context with surrounding lines of text, into
lexicon-based classifiers. Constraining the output to a lexicon
of words can result in very accurate systems, but these
same systems unfortunately cannot generalize to commonly
occurring sequences such as addresses, phone numbers,
and surnames. Removal of dictionary lookup allows the
recognition of unbounded dictionaries, but at the expense
of decreased accuracy.

Jaderberg et al. [16] proposed a framework which does
word level recognition using CNNs on OCR tasks. Poznanski
and Wolf [23] used deep CNNs to extract n-grams which
feed Canonical Correlation Analysis (CCA) for final word
recognition from a fixed vocabulary.

A variant of Recurrent Neural Networks (RNNs), named
Long Short Term Memory (LSTM) [14] has shown incred-
ible progress in capturing long term dependencies and have
been used in sequence prediction. Some works [21], [5], [22],
[9] split an image into segments, then feed the sequence of
segments into a RNN to predict a corresponding sequence
of output characters. Connectionist Temporal Classification
(CTC) [13] further eliminates the need for precise alignment.
Xie et al. [31] used CNNs to feed a multi-layer LSTM net-
work for handwritten Chinese character recognition. Similar
techniques have also been used for text recognition in natural
imagery [25], [26].

A combination of convolutional networks and recurrent
neural networks have been used by [28], [30] which use
convolution layers for feature extraction and recurrent layers
as sequence predictors. [30] performed ICR at the paragraph
level to include language context.

Fully Convolutional neural Network (FCN) methods [19],
[7] take in arbitrary size images and output pixel level
classification. Extracted portions of handwritten text have
arbitrary length and can benefit from FCN methods. By using
a CNN to estimate the number of symbols in a word block,
word blocks can be resized to a canonical representation
tuned to a FCN architecture. Knowing the average symbol
width, a FCN model can perform accurate symbol prediction
without CTC post processing.

This paper proposes a method to obtain character based
classification without relying on predefined dictionaries or
contextual information. We believe our method is the first
that can reliably predict both arbitrary symbols as well as
words from a dictionary using a single architecture without
any pre- or post-processing. The novel contributions of this
paper are: 1) Introduction of a dual stream fully convolutional
CNN architecture for accurate symbol prediction; 2) Usage
of a probabilistic character error rate that calculates a word
probability from a sequence of character probabilities; and
3) Creation of a difficult, but realistic block based dataset
derived from the recently released NIST single character
dataset [1].
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The Symbol CNN is a fully convolutional model comprised of two networks. The bottom part of the network takes an input image of size

32 x 128N, where N is the number of symbols in the word block. The top part of the network processes an image of size 32 X 128 and adds context

during symbol prediction.

II. RELATED WORK

Recent works in scene text recognition [32], [2] use
convolutional neural networks and pre-processing techniques
like adjusting orientations to predict characters from a scene
text. Batuhan et al. [4] proposed an end-to-end framework
of recognizing characters from a document by using LSTMs
for character segmentation and CNNs for character classifi-
cation.

One of the advantages of using CNNss is that inputs can be
unprocessed data such as raw pixels of an image, rather than
extracting specific features [29] or pen stroke grid values.
Connectionist Temporal Classification (CTC) removes the
need to forcefully align the input stream with character
prediction locations [13]. One of the major advantages of the
CTC algorithm is that you do not need properly segmented
labeled data. Although the CTC algorithm takes care of the
alignment of input with the output labels, it can be finicky
to train and increases compute complexity during inference.

Huang and Srihari [15] described an approach to separate
a line of handwritten text to words. They proposed a gap
metrics based approach to perform word segmentation task.
Rather than segmenting words, Gader et al. [12] proposed
character segmentation utilizing information as you move
from background pixels to foreground pixels in horizontal
and vertical directions of the character image.

Doetsch et al. [9] proposed hybrid RNN-HMM for English
offline handwriting recognition. They introduced a new vari-
ant of a LSTM memory cell by using a scalar multiple for
every gate in each layer of the RNN. The scaling technique
for LSTM gates reduced Character Error Rate (CER) by
0.3%. Bluche et al. [1] compared CNN and traditional feature
extraction techniques along with HMM for transcription.
Pham et al. [22] proposed Multidimensional RNN using
dropout to improve offline handwriting recognition accuracy

by 3%.

Dewan and Srinivasa [8] and Xie et al. [31] used CNNs
for offline character recognition of Telugu and Chinese
characters respectively. [8] used auto encoders, where the
model was trained in a greedy layer wise fashion to learn
weights in an unsupervised fashion, then fine-tuned with
supervised data.

III. METHODS

An important part of character recognition is Region of
Interest (ROI) extraction. Areas of text are extracted from
documents using regional based classifiers such as R-CNNs
[24] or pixel based segmentation [7]. These regions are split
into lines of text using modified XY tree [6]. Each line of text
is then split into word blocks, where a word block is a string
of symbols separated by white space. The string of symbols
could be a word, phone number, surname, acronym, etc.
Word block boundaries can again be determined by modified
XY tree. Using punctuation detectors [27], it is possible to
detect and store a string of word blocks to form sentences,
and possible to detect and store a string of sentences to form
paragraphs. The FCNs in this research take extracted word
blocks as input. Preprocessing such as contrast normalization
and deslanting have shown to be effective for handwriting
recognition [18] [30], but are not used in this research.

We propose a three staged approach in this paper for
the recognition of handwritten characters. In the first stage,
we train a CNN to quickly predict the word label for
common words such as “the”, “her”, “this”, etc. This
model is a typical image classification model where the
ground truth classes correspond to discrete words from
the training set. We call this a Vocabulary CNN, as it
can only predict the common lexicon of words from the
training set. The architecture of the Vocabulary CNN is



C(64,3,3)-C(64,3,3)-C(64,3,3)-P(2)-C(128,3,3)-C(128,3,3)-
C(256,3,3)-P(2)-C(256,3,3)-C(512,3,3)-C(512,3,3)-P(2)-
C(256,4,16)-FC(V)-SoftMax where C(D,H,W) stands for
convolution with the dimensions of the filter as HxW
and the depth D. Each convolutional layer is followed
by a batch norm and ReLU layer. P(2) represents a 2x2
pooling layer with stride 2. The last layer FC(V) is a fully
connected layer with V being the lexicon size. We consider
a prediction to be valid if the confidence level is more than
0.7, else we process the block through the next two stages.

In the second stage, we train a CNN to predict the number
of symbols in a word block. We refer to this CNN as the
Length CNN. This model has a similar architecture to the
Vocabulary CNN with additional max-out layers in between
convolutional layers. The ground truth classes correspond
to the length of the word blocks in the training set. The
predicted number of symbols from the Length CNN is used
to resize the word block to a canonical representation of
32 x 128N, where N is the number of symbols. This resized
word block is then passed into the third stage which is a fully
convolutional variant of CNN.

In the third stage, a dual stream FCN predicts an arbitrary
length sequence of characters from a variable length word
block. FCN’s are a natural choice for processing variable
length word blocks as regular CNNs require fixed length
inputs. We call this third stage the Symbol CNN, as it can
recognize words at a symbol level. Figure[I] pictorially shows
the dual stream architecture used. The top stream takes in an
image of size 32 x 128 which is passed through a series
of convolutional layers and a fully connected layer. The
fully connected output (fc) size of the top stream is 1024.
These features represent the global information in the word
block. The second stream consists of only convolutional and
pooling layers. The fully connected layer is replaced by a
fully convolutional layer which makes 2N + 1 predictions
for a word block of length N. The outputs from both the
streams are added and passed through a fully connected layer
of size Ny where N, represents the lexicon of symbols. The
final output size is (2N + 1) x N,. We found that this dual
stream model is able to encode rich information about the
global and local context of the symbols in the word block.

2N + 1 predictions were chosen such that each of the
N symbols in a word block are straddled on both sides by
a small gap which we refer to as a blank space character.
In particular we align the ground truth symbols with blank
spaces as shown in Figure [2] In our experiments, we found
this to be intuitive and empirically performs well in both
dictionary constrained and non-dictionary use cases. There
are a total of 123 ground truth symbols which include
alphabets (English, French, Spanish, German), numbers, and
special characters such as $, &, period etc.

By not constraining the Symbol CNN output, our model
is able to predict any random sequence of characters such
as phone numbers, social security numbers, email ID etc.
As such, the Symbol CNN is particularly useful to digitize
tax, insurance, and medical documents. The dual stream
and full convolutional nature of the model enables it to be

<b> m |<b>| e |<b>| e [<b>| t |<b>

Fig. 2. During training, blank space characters(<b >) are added in between
ground truth symbols to improve symbol alignment.
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Fig. 3. Calculating CER error between words fymme and time using
dynamic programming. From left to right: after one step, after finishing
“t”, after finishing first “m”, and final CER of 2.

quite effective at symbol recognition with or without a word
lexicon.

IV. CER AND VOCABULARY MATCHING

We report our results using Character Error Rate (CER):
CEFR=R+D+C (1)

where R is number of characters replaced, D is the
number of characters deleted and C' is the number of correct
characters. This can be efficiently computed using dynamic
programming and we show an example of the computation in
Figure [3] Equation [2] describes the CER computation where
Co,0 = 0 and CER = (j, where [ is the length of the label
and h is the length of the prediction. p; is the i*" character

of the prediction and L; is the j*" character of the label.

Ci,j = min(C;_1 j+1, C; j_1+1, Diag) )
where:
Ci1,j- ) i i = L;
Dlag: Lj—1 pr ] J
Ci—1j-1+1, otherwise

To improve performance in applications that have a
known-limited vocabulary, we applied a CER-based vocabu-
lary matching system using dynamic programming as shown

in (@),

W (p) = arg min CER(p,L) 3)
LeVv



where V' is the vocabulary set and W (p) is the word
prediction based on the sequence prediction p. The sequence
prediction p is the set of symbols predicted by FCN.

The above method improved CER, but discards most of
the information computed with the neural network. An im-
provement to the above vocabulary matching system, which
we refer to as probabilistic CER, uses character probabilities
instead of the discrete top character prediction. Equationd]
describes probabilistic CER method.

Cij= mil’l(ci_l,j +1-P(p; = Lj)7
C@j,l +1-— P(pi = blank), @)
Ci—1j-1+1—P(p; = Lj),)

Since we now have a method to compute word probabili-
ties from sequence probabilities, we can combine predictions
into the same system. We use the frequency of occurrence
of a given word C(L) to further improve the vocabulary
matching using (©).

. 1
W (p) = arg min CER(p, L) + m (5)

Lev 1
V. ATTENTION MODELING

When known variation of handwriting is both common and
easily computer generated, data augmentation can be used to
generate a family of resized word blocks to predetermined
conditions. For example, given an input handwritten word,
deslanting algorithms can be used to create a family of
inputs, each at a predetermined slant. A similar family
of inputs can be created by varying stroke width, noise
variation, and paper/background. Given a family of resized
word blocks, a vector of attention weights associated with the
family of resized word blocks is learned. Using the generated
vector attention weight, a single resized word block is formed
as a linear combination of resized word blocks, and passed
through the CNN in normal fashion.

VI. TRAINING

We used Caffe [17] to perform all experiments. Custom
layers were implemented in python to handle ground truth
and the blankspace symbol alignment. We trained jointly on
IAM [20], RIMES [3] and NIST [1] datasets. All experiments
used batch size of 64 (24 IAM, 24 RIMES and 16 NIST
samples) and ran for 50k iterations. We used a learning
rate of 0.001 to train the network with 0.9 momentum. The
learning rate was decreased to 0.0001 after 40k iterations.
We also used L2-regularization with A = 0.0025.

VII. RESULTS

Results are demonstrated on the IAM, RIMES, and NIST
offline handwritten datasets. The IAM [20] dataset contains
115,320 English words, mostly cursive, by 500 authors. This
dataset includes training, validation, and test splits, where
an author contributing to a training set, cannot occur in
the validation or test split. The RIMES [3] dataset contains
60,000 French words, by over 1000 authors. There are

several versions of the RIMES dataset, where each newer
release is a super-set of prior releases. We utilize the popular
ICDAR2011 release.

The NIST Handprinted Forms and Characters Database,
Special Database 19 [1], contains NIST’s entire corpus of
training materials for handprinted document and character
recognition. Each author filled out one or more pages of
the NIST Form-based Handprint Recognition System. It
publishes handprinted sample forms from 810,000 character
images, by 3,600 authors.

A. TAM Results

We first test our system on the IAM English handwritten
dataset. We fine-tuned our model on IAM and it achieves
CER of 4.43%. Table [I] highlights the results of our model
with dictionary correction which is quite competitive to the
current leaders of this dataset. Table [lIf shows examples of
predictions obtained on the JAM dataset using only the FCN
model without dictionary correction.

TABLE I
COMPARISON OF RESULTS ON IAM DATASET TO PREVIOUS METHODS.

Model WER | CER
Dreuw et al. [10] 18.8 10.1
Boquera et al. [11] 15.5 6.90
Kozielski et al. [18] 13.30 5.10
Bluche et al. [5] 11.90 | 4.90
Doetsch et al. [9] 1220 | 4.70
Our work 8.71 4.43
Voigtlaender et al. [30] 9.3 3.5
Poznanski and Wolf [23] 6.45 3.44

Drewu et al. [10] showed that competitive results can be
obtained by hybrid approaches of MLP and Gaussian HMMs.
Kozielski et al. [18] used a novel HMM based system. Drewu
etal. [10] and Boquera et al. [11] use a hybrid neural network
and Hidden Markov Model HMM approach. Bluche et al.
[5] used Gaussian HMMs to initialize neural networks and
showed that both deep CNNs and RNNs could produce state
of the art results. Doetsch et al. [9] uses a custom LSTM
topology along with CTC alignment. [9], [S] used all words
in a sentence and paragraph respectively to provide word
context. Poznanski and Wolf [23] used deep CNNss to extract
n-gram attributes which feed CCA word recognition. [18],
[23], [9], [11] use deslanting, training augmentation, and an
ensemble of test samples.

Our work uses a first Vocabulary CNN of 1100 common
words. The Symbol CNN uses 123 symbols, and we use
probabilistic CER correction. Aside from the probabilistic
CER correction, no CTC alignment or CCA post correction
was applied. Although our competitive results are not ranked
the best, our processing path can work at both the symbol
and lexicon level, and we include substantially more symbols
than prior methods (e.g. [23] can only recognize upper and
lower case Latin alphabet).

B. RIMES Results

We use a vocabulary CNN of 800 common words and
fine-tuned our model on RIMES dataset. Table [[II] shows



TABLE I
SYMBOL SEQUENCE PREDICTION ON THE IAM DATASET. THE THIRD
EXAMPLE HAS A QUESTIONABLE GROUND TRUTH AND A PREDICTION
THAT COULD BE CONSIDERED VALID OUT OF CONTEXT.

TABLE V
SYMBOL SEQUENCE PREDICTION ON NIST GENERATED SAMPLES.

Input Label Prediction
q/b/‘q% 9/10/1966 9/10/1966
( 2H6) 343104 (246)344-9702 (246)344-9702
$gé¥sf33 $8643133 $8643133
}SPP'L tyimet M Spectrometry Spectrometry
+609 L0 +6091620 +6091620
Q&%‘*%RHQE.E 92.84.8A.b4.AE.15 | 92.84.8A.b4AE.15

Input Label Prediction
%,_ / that that
M had had

\;N 3} Q\y\.\ Liverpool livepool
2 o on oui
L” £-C
WM’*L mistaken mistahon
[ 4
, ,FM Tyg;mwu f/b implements | implement
,4; (1__ 7,% least least
h‘\/k—&% mist mist
/;ﬂ:é e }f interest interest

our model obtained a CER of 2.22% using an ensemble
of three models, each with dictionary correction. Table
shows examples of predictions obtained from one of the
models without dictionary correction. In general, errors can
be attributed to character ambiguity, segmentation artifacts
(sample “effet” contains a comma even though it isn't part
of the label). For most of the examples in Table [IV] our
model made perfect predictions.

TABLE III
COMPARISON OF RESULTS ON RIMES DATASET TO PREVIOUS

METHODS.

Model WER | CER

Kozielski et al. [18] 13.70 | 4.60

Doetsch et al. [9] 1290 | 4.30

Bluche et al. [5] 11.80 3.70

Our work 5.68 2.22

Poznanski and Wolf [23] 3.90 1.90

TABLE IV
SYMBOL SEQUENCE PREDICTION ON THE RIMES DATASET.

Input Label Prediction
- A Q Q
v (5 \ A&P) vous vous
C.tAe titre titre
ANTMLL avancé avance
e H ek ) effet , effett
0102 désire diésiire
_Ié_()e’neucn( téléphone télénhone
M relevés relves
el hech c.m'[ salutations salutations
i ex et an I’expression | 1’expression
e { (~ chiian effectuer effectuer

C. NIST

While there are several class specific handwritten datasets,
both at the character and word level, there is no large hand-
written dataset that concentrates on word blocks of arbitrary
symbols. To test the performance of our model on generic
word blocks made of arbitrary symbols, we created a new
symbol recognition dataset by stochastically combining the
NIST individual character images into realistic word blocks.
Images of hand printed text are simulated by extracting
character images from a randomly selected writer in the
NIST dataset and concatenating them into word blocks of
random dictionary words, random strings of alphanumeric
characters, or random strings of numeric characters. In
addition, the NIST dataset has been supplemented with
handwritten punctuation, mathematical symbols and other
common special characters such as the dollar sign, email
character and the ampersand to facilitate in generating word
block images of common form-field inputs.

The images are further augmented by adding random
amounts of displacement, stretching and rotation to each
symbol to simulate the natural variability in writer’s pen-
manship. A random amount of skew is then applied to each
concatenated image to vary the slant of the word block.
Finally, random amounts of noise and blur are added to
simulate the effects of image digitization. Table [V| shows
randomly generated samples from NIST characters and cor-
responding predictions. Our model achieves 92.4% accuracy
on a subset of 12,000 word blocks (consisting English,
French and special characters) generated from NIST.

Some of the characters in handwritten word blocks are
too hard to decipher and require contextual information for
human or machine interpretation. In order to provide more
contextual information and recognize characters which are
ambiguous due to incomplete pen strokes and inconsistencies
in handwriting, we utilized both the contextual path intro-
duced at the top of Figure [I] as well as an attention mecha-
nism. After preprocessing an input word block with a series
of known variations such as slant and noise, the attention
mechanism formulates a single input as a linear combination
of these variations. Although the attention mechanism is
intuitive, empirical results have yet to show any significant
improvement and were not used in the results in Tables [I] or

il



VIII. CONCLUSION

We introduce a novel offline handwriting recognition al-
gorithm using a fully convolutional network. Unlike lexicon
constrained methods, our method can recognize common
words as well as infinite symbol blocks such as surnames,
phone numbers and acronyms. Our dual stream architecture
along with blank space symbol alignment eliminates the
need of complex character alignment methods such as CTC
in recurrent based methods. Our fully convolutional model
enables processing of arbitrary length inputs and utilizes
a large symbol set. Despite not using a word lexicon and
handling of a large symbol set, our method performs on
par with current state of the art methods on English based
IAM, French based RIMES, and NIST arbitrary symbol
handwritten dataset. Our model is flexible and can be easily
extended to other languages.
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