arXiv:1808.01423v1 [cs.CV] 4 Aug 2018

Language Model Supervision for Handwriting Recognition Model Adaptation

Chris Tensmeyer*ﬁ, Curtis Wigington*ﬁ, Brian Davis®, Seth Stewart!, Tony Martinez! and William Barrett'
tDept. of Computer Science - Brigham Young University. Provo, USA
tAdobe Research - San Jose, CA
tensmeyer@byu.edu

Abstract—Training state-of-the-art offline handwriting
recognition (HWR) models requires large labeled datasets,
but unfortunately such datasets are not available in all
languages and domains due to the high cost of manual
labeling. We address this problem by showing how high
resource languages can be leveraged to help train models
for low resource languages. We propose a transfer learning
methodology where we adapt HWR models trained on a
source language to a target language that uses the same
writing script. This methodology only requires labeled data
in the source language, unlabeled data in the target language,
and a language model of the target language. The language
model is used in a bootstrapping fashion to refine predictions
in the target language for use as ground truth in training
the model. Using this approach we demonstrate improved
transferability among French, English, and Spanish languages
using both historical and modern handwriting datasets. In the
best case, transferring with the proposed methodology results
in character error rates nearly as good as full supervised
training.

Keywords-Handwriting Recogntion; Language Model; Trans-
fer Learning; Bootstrap; Historical Document Analysis

I. INTRODUCTION

State-of-the-art offline handwriting recognition (HWR)
models are based on deep Convolutional Neural Net-
works (CNNs) and Bidirectional Long-Short Term Memory
(BLSTM) networks and are trained on large amounts of
labeled line images [1]. Obtaining such large annotated
training sets is expensive and time consuming, because a
person must segment thousands of text lines and manually
type transcriptions for the ground truth. However, such a
process is often necessary for each language and domain
because trained HWR models often fail to generalize suf-
ficiently across domains, languages, and writers that were
not observed during training. Eliminating or lessening this
requirement is the goal of unsupervised HWR and related
approaches.

Prior work has attempted to address the lack of a large
labeled training set for low resource languages/domains
through several means. Training on synthetic data is an ap-
pealing direction because an arbitrary amount of labeled data
may be generated with little human effort. In some works,
synthetic data is obtained by applying annotation preserving
transformations to real data in order to simulate the natural

“Equal Contribution

variability in handwriting [2]-[4)]. However, these methods
depend on the availability of sufficiently diverse labeled data,
which is not always the case. Other works have modeled
the writing process for generating isolated characters using
prototypes for Chinese [5]] and Korean [6] characters, though
it is not clear how such models could be extended to cursive
scripts. Elarian et al. proposed a concatenative model for
handwritten Arabic, though it relies on a database of pre-
segmented characters and the concatenation procedure is
specific to Arabic [7].

An alternative semi-supervised formulation of the prob-
lem assumes that there is a small labeled training set
and a larger unlabeled training set. The main methodology
involves propagating annotations from the labeled set to the
unlabeled set through model prediction. Subsequent models
then train as if the noisy predicted labels were ground truth
annotations. Frinken et al. explored this method for isolated
word image recognition in the framework of co-training,
where a Hidden Markov Model (HMM) and a BLSTM
model each made prediction that was used to further train the
other model [§]]. In a separate work, Frinken and Bunke use
an ensemble of BLSTM networks for self-training, where
high confidence ensemble predictions on the unlabeled data
are subsequently used as ground truth to further train the
ensemble. Ball and Srihari used a similar idea to adapt writer
specific HWR models from a general model by iteratively
updating segmented character prototypes after performing
recognition on unlabeled data [9].

In this work, we propose a transfer learning methodology
that allows us to train a HWR model for a farget language
for which we have no labeled images. Our method only
requires a labeled training set of line images in a sufficiently
similar source language, a trained Language Model (LM) in
the target language, and a set of unlabeled images in the
target language. A source language is sufficiently similar
to the target language if the character sets of the two
languages have a large overlap. For example, Latin based
languages, such as English, French and Spanish, are all
sufficiently similar because they all use the written Latin
script. The LM can be obtained from digital text in the target
language that is unrelated to the unlabeled images. Digital
text for training a LM is much more commonly available
than labeled handwriting images, so our methodology helps
extend automated HWR to lower resource languages.

After training a HWR model on the source language, our
proposed method begins a hybrid training procedure where
training occurs on both source data and target data. There is
no ground truth for the target data, so we combine the model
prediction with the LM to produce a corrected prediction that
we then use as ground truth.

We perform several experiments to analyze the behavior
of our proposed transfer learning methodology for HWR.
These experiments are performed using 4 datasets and 3 lan-
guages: English, Spanish, and French. We examine factors
such as how long the source model is trained, LM decoding
hyperparameters, and the proportion of source and target
training used during hybrid training. In the best cases, we
find that transferring produces Character Error Rates (CER)
nearly as low as those obtained by traditional supervised
learning on the target data.

II. LANGUAGE TRANSFER LEARNING

We formulate our problem as follows. Suppose we wish
to obtain a trained HWR model for a target language Y that
has no labeled training data available, but there are many
unlabeled text line images in this language. We also have
sufficient digital text in language Y, such that we can train
a Language Model (LM). For another language X we have
segmented text line images with corresponding ground truth
transcriptions. Noting that languages X and Y have similar
character sets, we want to use the data in both languages to
produce the HWR model for language Y.

Though our discussion uses the term language, our
methodology is also applicable to transfer learning HWR
problems where there is a difference in domains (e.g. modern
vs historical) or writers. We demonstrate this later by trans-
ferring between a modern English dataset and a historical
English dataset.

A. Source Model Training

We begin transfer learning by training a state-of-the-art
HWR model on the source language for which we have
ground truth transcriptions. Fig. [l| shows our CNN-BLSTM
architecture, which is similar to the model in [4], but
introduces an auxiliary classifier and loss. This model learns
high level features using convolution operations that are
vertically collapsed to a 1D horizontal sequence of feature
vectors that are fed to a 2-layer BLSTM. In the BLSTM,
context is propagated both forwards and backwards along
the sequence. Two separate frame-wise, linear character
classifiers are each applied to the output of the CNN and the
output of the combined CNN-BLSTM. Both classifiers are
trained using Connectionist Temporal Classification (CTC)
loss [[10] which automatically aligns frame-wise outputs with
the ground truth transcriptions.

The classifier that operates on the output of the CNN is
considered an auxiliary classifier and it is discarded after
the training procedure, meaning that the model outputs the

Main Main
» < .
CTC Loss Classifier
-
R Auxiliary ——
CTC Loss BLSTM
—
T A
Auxiliary |_
Classifier
CNN
Ground Truth T
Transcription Input Image

Figure 1: CNN-BLSTM architecture with auxiliary classifier
and loss after the CNN.

predictions made by the main classifier that operates on
the output of the BLSTM. We found that introducing an
auxiliary classifier improves transferability of the model,
likely because it forces the CNN visual features to be
discriminative of characters themselves instead of depending
on further processing from the BLSTM layers. When trans-
ferring between languages, the visual difference of some
shared characters is small, so the CNN should be robust to
the language difference. In contrast, the BLSTM considers
the whole sequence, so it is more sensitive to transferring
between datasets.

The precise architecture of our HWR model is based on
the model presented in [4]. The size of the the input image is
W %60, where W is the image width, which can dynamically
vary. The CNN is composed of 6 convolutional layers with
3x3 learnable kernels, and there are 64, 128, 256, 256, 512,
and 512 feature maps respectively for the 6 layers. We apply
Batch Norm (BN) after layers 4 and 5 and 2x2 Max-Pooling
(MP) with a stride of 2 after layers 1 and 2. After layers
4 and 6, we vertically collapse features by using 2x2 MP
with a vertical stride of 2 and a horizontal stride of 1. To
form the input for the BLSTM and for the CNN auxiliary
classifier, we concatenate features in the same column to
form a 1D horizontal sequence of 1024-dimensional feature
vectors. The BLSTM has 2-layers each with 512 hidden
nodes that have a 0.5 probability of node dropout. A linear
classifier is applied to each time step to produce the final
prediction, which is a probability distribution over characters
at each timestep.

The model is trained using CTC loss over both the main
classifier and the auxiliary classifier:

L(z,y) = Acrc(o(z),y) + (1 — N Lere(¥(x),y) (1)

where x represents an input image, y, the corresponding

ground truth transcription, Lo is the CTC loss [10]], ¢ is
the auxiliary CNN classifier, and % is the BLSTM classifier.
We empirically set A = 0.25 based on cross validation using
validation data.

B. Language Model Decoding

The HWR model predicts each output character inde-
pendently, and this may produce linguistically improbable
sequences of characters. Decoding with a Language Model
(LM) combines the individual predicted character probabili-
ties with how likely sequences of characters occur together.

Our LM decoding implementation uses the Kaldi Speech
Recognition Toolkit [11]], which has been used previously in
HWR models [[12]]. Similar to [[13]], we use a 10-gram charac-
ter LM, which estimates p(c;|c;—1¢i—2...¢;—g) from digital
text. Not all 10-gram character sequences are observed, so
we smooth the empirical 10-gram distribution and employ
backoff, where n-grams shorter than 10 are used to estimate
the probability of infrequent 10-grams [14].

The decoding operation finds the most likely sequence of
hidden states in a Hidden Markov Model (HMM), where the
emission probabilities are determined by the HWR model
and the transition probabilities are determined by the LM:

N
h = arg mlzllxl:[p(hﬂhj@)p(xi\hi) 2)

where h is the sequence of hidden states corresponding to
characters, h;.; indicates all states prior to h;, x is the
observed data, and w determines the relative importance of
the CNN-BLSTM and LM predictions. Because characters
can span multiple output frames, we model each character
using 3 states (corresponding to character start, middle, and
end) as is commonly done in speech recognition [[15]. The
LM directly encodes the p(h;|hj<;) term, but the CNN-
BLSTM outputs p(h;|z;). Using Bayes Rule, we have

p(zilhi) = o)

We can estimate p(h;) by examining the CNN-BLSTM
outputs, but p(z;) is unknown. Following Bluche et al., we
approximate 5 Eib) ~ p(h;)~%, where « is a hyperparame-
ter [12]]. An exact solution to Eq. [2| can be intractable, so
in practice, we use a beam search which efficiently searches
the state-space, but in some cases may not find the exact

maximal sequence of characters.

3

C. Hybrid Training

Our hybrid training procedure leverages the recognition
performance achieved by the source model on the source
language to then learn recognition over the target language.
The overall process is shown in Algorithm [I]

The main difference between hybrid and source training
is in the data used for learning. During hybrid training, part
of the data comes from the source dataset (typically 50%)

Algorithm 1 Hybrid Training Procedure

Input: Source Model S, Source Data Xg, Source Transcrip-
tions Yg, Target Data X, Target LM Q
Output: Target Model T
1: Initialize T with weights of S
2: for k£ =0 to 50 do
3: // First update LM marginal probabilities to reflect T

4: for 7 =0 to 100 do

5 Sample a minibatch xt from X

6: P+ T(XT)

7: Use P to update p(h;) (used in Eq.
8: end for

9: // Train T on source and target data

10 for j =0 to 100 do

11: Sample a minibatch xt from X

12: P <+ T(xT)

13: yt + Q(P) (Eq.

14: Sample a minibatch (xs,ys) from (Xg,Ys)
15: x < xr||xs, ¥y < yrlys

16: Update T according to L(x,y) (Eq.
17. end for

18: end for

with the rest coming from the target dataset for which there
are no ground truth transcriptions. However, the training
loss for hybrid training is the same as in source training
(Eq. [I), which means that to train we need to provide some
transcriptions for the target data.

We obtain target transcriptions by applying the LM of
the target language to the predictions of the network. The
intuition is that due to the similarity of the source and target
languages, the predictions of the network will be much better
than random, though still quite poor at first. Applying the
LM will improve the poor predictions to make better targets,
which in turn helps the network to learn the target language
better. We do, however, continue to train on source data to
stabilize the learning process with real ground truth.

At the beginning of hybrid training, the model has never
seen any instances of characters that are only part of the tar-
get language and will make incorrect predictions. However,
the LM can correct some of these errors based on the context
of surrounding correct predictions. For example, English
words contain no accented characters, so a source model
trained on English would never predict accented characters,
but French and Spanish do use accents. The LM is able
to correct the model predictions to include accents and thus
introduce these characters into the ground truth so the model
can learn to predict these characters in the future.

Because LM decoding depends on the marginal distri-
bution of CNN-BLSTM outputs, p(h;) in Eq. |3} we need
to periodically update this quantity. This is done in lines

3-7 in Algorithm [I] In normal HWR model training, this
is unnecessary because the LM is applied only as post-
processing and not as part of the training process.

IIT. DATASETS

In this work we use 4 datasets: IAM [16], Rimes [17],
Rodrigo [18]], and Bentham (2014 HTR competition) [[19]
collections. Each dataset is composed of a number of line
images with corresponding ground truth transcriptions.

Rodrigo is a single author, 853 page Spanish manuscript
written in 1545 with 20000 segmented line images. We
used the first 750 pages as training data, the next 50 pages
as validation data, and the remaining pages as test data.
The annotations contain some meta information that we
preprocessed to exclude. Some examples of this include
symbols that indicate that whitespace should be inserted or
deleted for correctness, i.e. the manuscript author did not
conform to modern usage of whitespace.

The Bentham collection are the writings of the English
philosopher Jeremy Bentham (1748-1832), though some
images may be handwritten copies of his works produced by
others [19]]. For preprocessing, we deskewed the line images
and performed height normalization. For IAM, we use the
standard split, merging the two defined validation sets. For
Rimes, there is only a defined train/test split, so we used a
subset of the training data for a validation set.

Each image collection has different low level differences
(e.g. color, texture), so we opted to binarize each dataset to
eliminate those differences. This allows our analysis to focus
on adapting to salient differences in language and style rather
than on adapting to low level domain differences. For IAM,
Rimes, and Rodrigo, we used Otsu binarization [20] but for
Bentham, we used adaptive Wolf binarization [21] because
it produced visually better binarizations.

To train the LMs for each dataset used in most ex-
periments, we used the transcriptions of the training data.
Though this corresponds to having an optimal LM for hybrid
training, we also explore using LMs trained on unrelated
data. For these LMs, we sampled 50000 sentences from the
United Nations proceedings subset of the Europarl machine
translation dataset [22] in Spanish, English, and French.

To obtain the character classes predicted by our models,
we take the union of the character sets of each dataset.
Because of this, during source model training, the classi-
fiers output distributions over all characters, not just those
characters contained in the source dataset. This way if the
target dataset has additional characters, we do not need to
modify the classifiers before hybrid training.

IV. EXPERIMENTAL RESULTS

In the following experiments, we use the following pro-
tocol. For source models, we trained 4 models for each
dataset for 10 epochs using the ADAM optimizer to perform
weight updates [23]]. We then selected the best model using

Table I: CER of source models evaluated on each dataset.

Test Data
Bentham IAM Rimes Rodrigo
£ Bentham 4.7 455 433 26.1
A 1AM 27.8 8.4 16.1 24.3
£ Rimes 35.0 24.6 49 34.4
& Rodrigo 69.5 67.0 67.1 6.8

the Character Error Rate (CER) on the validation set after
performing LM decoding using the dataset-specific LM. All
reported numbers for source models are on the designated
test splits for each dataset. These source models were used as
the initial models in all hybrid training experiments, except
where noted.

For hybrid training, we also trained 4 models where each
hybrid model is initialized with the weights learned on the
source dataset. Hybrid models are trained for approximately
12000 weight updates using mini-batches of 8 images, where
mini-batches contain both source and target images. To re-
port metrics, we select the best model based on the validation
set for the target data and then evaluate this model on the
target data. While in practice this is not feasible because
target data would not have ground truth transcriptions, this
allowed us to fairly compare different methods of hybrid
training. We leave a method for selecting the best model
without using ground truth as future work.

A. Source Model Evaluation

Table [[shows the CER of source models when evaluated
on each dataset. As expected, source models obtain low
CER when the test data matches the training data and high
CER when there is a mismatch. Though this result may be
obvious, it demonstrates the need for our hybrid training
methodology in order to transfer models from one language
to another. We also note that even though IAM and Bentham
are both English datasets, models trained on one do not
perform well on the other and have need of transfer learning.

The CERs obtained are competitive when compared with
previous results reported in the literature. For example, [12]
reports CER of 3.9 and 3.8 for JAM and Rimes respectively,
while we achieve 8.4 and 4.9 CERs. In [24]], a CER of 3.0
is reported on the Rodrigo dataset, though this number is
not directly comparable to our reported results because they
use a different data split and transcription preprocessing.
Additionally, we binarized our data for transferability and
generally CNN-BLSTM models perform better when using
grayscale inputs. The best CER on Bentham reported in
the 2014 ICFHR HTR compeition is 5.0 for the restricted
track [19]]. Also, our reported numbers are on source models
that have not trained to convergence (this improves hybrid
training) but further training of the source models produces
1-2% lower CERs.

Table II: CER of hybrid trained models for all language pairs across a variety of experimental settings.

Experimental Conditions Source: Bentham Source: IAM Source: Rimes Source Rodrigo
Source M LM Amount Transfer to Transfer to Transfer to Transfer to Avg.
Epochs data w/ o Source IAM Rim. Rod. Ben. Rim. Rod. | Ben. IAM Rod. Ben. IAM Rim. | (no Rod.)
10 Train 04705 50% 9.2 73 12.0 8.2 6.3 13.0 8.8 8.2 12.6 64.5 772 351 8.0
50 Train 0.4/0.5 50% 9.8 7.5 13.3 8.6 6.3 13.5 9.3 8.4 13.4 70.3 743 70.1 8.3
10 Train 04705 75% 9.3 7.6 13.2 7.5 5.7 12.1 9.4 7.8 12.8 59.4 647 334 7.8
10 Train 047/0.5 25% 10.7 7.8 13.1 9.3 6.3 11.9 8.5 8.7 12.6 71.8 738 375 8.6
10 Train 0.870.4 50% 12.1 8.1 100.0 8.2 6.7 97.0 8.9 8.9 13.5 67.2 80.1 18.3 8.8
10 Train 12/03 50% 30.8 9.3 91.7 11.1 72 79.1 103 124 96.0 66.7 74.1 11.1 13.5
10 None - 50% 543 69.4 38.4 273 174 27.0 | 587 22,1 444 | 1000 844 984 41.5
10 Europarl 0.4/0.5 50% 326 80.5 85.8 134 120 236 | 207 18.6 36.8 99.8 99.1 99.8 29.6
Source Model - no Hybrid Training 455 433 26.1 27.8 16.1 243 | 350 246 344 59.5 67.0 67.1 32.1
1.0
0.48 0.9 0.40
0.44 0.8 0.36
0.40 0.7 0.32
© © 0.28
58:? o ﬁg:g 0.24
© 0.32 © 0.4 0.20
0.28 ' 0.16
0.3
0.24 0.12
0.2
0.20 o1 0.08
' 0.5 1.0 15 2.0
w
(a) Bentham (b) Rimes (c) IAM

Figure 2: LM parameter search visualized as a heatmap of resulting CER. We used the IAM source model and evaluated on
Bentham, Rimes, and IAM validation sets for many values of «, w. For Bentham and Rimes, the optimal o ~ 0.5, w =~ 0.4.

For 1AM, the optimal oo = 0.3, w = 1.2.

B. Hybrid Training

In hybrid training, we varied 4 factors to gain a better
understanding of the sensitivities of the method:

o Length of source model training time
« Proportion of source and target data
o Data used to train the LM

e The w and o LM parameters

Table shows the CER after hybrid training for all
language pairs for all experimental settings. Here we explain
the column semantics of Table [l Source Epochs indicates
how long source models were trained before hybrid training
began. We also varied the data used for LM training - either
the ground truth training set transcriptions, Europarl corpus
subset, or no LM was used. The next 2 columns respec-
tively indicate the LM hyperparameters and percentage of
source data used in hybrid training. Remaining columns
indicate Source-Target dataset pairs, where the first header
row indicates the source language with target languages
listed below. For example, the first data column is Bentham
as the source with IAM as the target. The last column
shows the average performance of the 6 language pairs
involving Bentham, IAM, and Rimes. For this average, we
excluded Rodrigo because of the extremely high CERs of
unsuccessful transfers, which would dominate the average.
For comparison, the last row shows performance of the
source models before hybrid training, i.e. the off-diagonal

entries of Table I

Considering the first 4 rows of Table |lI} pairwise transfers
between Bentham, IAM, and Rimes are extremely suc-
cessful, achieving CERs near to those obtained with full
supervised training in some cases. It is interesting that while
these three datasets can transfer to Rodrigo with CERs of
about 13%, the reverse is not true. Only Rodrigo to Rimes
hybrid training managed to significantly improve the CER
over the source model, achieving 11.1% CER under one
set of experimental conditions, though this language pair
appears sensitive to variations in experimental conditions.

When the source model is trained to convergence,
i.e. trained for 50 epochs instead of 10, CER on the source
data improves by about 1-2% (data not shown), but the CER
after transferring increases for all language pairs except one.
The average CER increases by 0.3%. This is because after
training for so long, the models can overfit the source data
and may have difficulty unlearning factors unique to the
source dataset.

Next we examined what proportion of source and target
data is used during hybrid training. Overall, using 75%
source data produces an average CER of 7.8% vs 8.0%
for equal proportions and 8.6% for 25% source data. We
also note that the optimal percentage of source data varies
by language pair. Because the target labels provided by
the LM are not always correct, the model can diverge if

it is presented with too many poor quality target labels.
Source data helps stabilize hybrid training, so using a larger
proportion of source data may make training more stable.

Next we examined the LM parameters w and « used
during LM decoding (Eqs. 2J3). We determined our default
values of w = 0.4 and a = 0.5 by cross validation to
optimize the CER of source models evaluated on the datasets
that they were not trained on (i.e., the off-diagonal entries
of Table [I). For example, Fig. [2] shows heatmaps for the
source JAM model evaluated on Bentham and Rimes. When
evaluating the IAM model on Bentham or Rimes, we see
better performance when w ~ 0.4 and a =~ 0.5, but when
we evaluate on IAM, w = 1.2 and o = 0.3 perform best.
We saw a similar trend when evaluating the Bentham source
model on the other datasets.

A similar trend also holds for hybrid training. Our default
parameters of w = 0.4, & = 0.5 achieved an average CER of
8.0%, which is lower than 8.6% with w = 0.8, o = 0.4 and
13.5 with w = 1.2, o = 0.3. Also, transferring to Rodrigo
becomes unsuccessful when using these alternate parame-
ters. However, it is interesting that these parameter settings
greatly improve transfer from Rodrigo to Rimes (achieving
18.3 and 11.1 CER). Thus the optimal LM hyperparameters
vary based on the language pair, and unfortunately, they
cannot be estimated by cross validation in a real setting
as cross validation relies on the ground truth for the target
language.

We conclude our experiments by varying the data used to
train the LM. If we do not apply LM decoding during hybrid
training (or equivalently use a LM where all sequences of
characters are equally likely), we see that some language
pairs improve over the source model performance, though
some do not improve or get worse. When we use the
Europarl trained LMs, we see degraded performance with
respect to the LMs trained on the dataset training sets,
but this is expected to some degree. The Europarl corpus
uses very formal language, and the modern Spanish is
very different from the historical Spanish used in the 1545
Rodrigo manuscript. Transferring Bentham to IAM and vice
versa, using the Europarl English LM greatly improves CER
compared to using no LM at all. The same is also true for
IAM and Rimes.

V. CONCLUSION

In this work we proposed a methodology that trains HWR
on a target language without using any labeled data in that
language. It does so by leveraging labeled images in a
closely related source language and a language model in
the target language. After training a source model, we train
on both the source and target data, inputting target labels
using the current model predictions decoded by the LM.
We demonstrate that our approach is successful on many
pairs of languages using the IAM, Rimes, Bentham, and
Rodrigo datasets. We explored the design choices of our

hybrid training approach and make conclusions about the
LM training data, LM hyperparameters, amount of source
data in hybrid training, and length of source model training.

REFERENCES

[1] A. Graves, M. Liwicki, S. Fernandez, R. Bertolami, H. Bunke, and J. Schmidhu-
ber, “A novel connectionist system for unconstrained handwriting recognition,”
IEEE transactions on pattern analysis and machine intelligence, vol. 31, no. 5,
pp. 855-868, 2009.

P. Y. Simard, D. Steinkraus, J. C. Platt et al., “Best practices for convolutional
neural networks applied to visual document analysis.” in /CDAR, vol. 3, 2003,
pp- 958-962.

T. Varga and H. Bunke, “Perturbation models for generating synthetic training
data in handwriting recognition,” in Machine Learning in Document Analysis
and Recognition. Springer, 2008, pp. 333-360.

[4] C. Wigington, S. Stewart, B. Davis, B. Barrett, B. Price, and S. Cohen, “Data
augmentation for recognition of handwritten words and lines using a cnn-Istm
network,” in ICDAR, vol. 1. 1EEE, 2017, pp. 639-645.

[5] C.-H. Tung, Y.-J. Chen, and H.-J. Lee, “Performance analysis of an ocr system
via an artificial handwritten chinese character generator,” Pattern Recognition,
vol. 27, no. 2, pp. 221-232, 1994.

[6] D.-H. Lee and H.-G. Cho, “A new synthesizing method for handwriting korean
scripts,” International Journal of Pattern Recognition and Artificial Intelligence,
vol. 12, no. 01, pp. 45-61, 1998.

[7] Y. Elarian, I. Ahmad, S. Awaida, W. G. Al-Khatib, and A. Zidouri, “An arabic

handwriting synthesis system,” Pattern Recognition, vol. 48, no. 3, pp. 849—

861, 2015.

V. Frinken, A. Fischer, H. Bunke, and A. Foornes, “Co-training for handwritten

word recognition,” in JCDAR. IEEE, 2011, pp. 314-318.

[91 G. R. Ball and S. N. Srihari, “Semi-supervised learning for handwriting
recognition,” in /ICDAR. 1EEE, 2009, pp. 26-30.

[10] A. Graves, S. Ferniandez, F. Gomez, and J. Schmidhuber, “Connectionist
temporal classification: labelling unsegmented sequence data with recurrent
neural networks,” in International Conference on Machine learning. ACM,
2006, pp. 369-376.

[11] D. Povey, A. Ghoshal, G. Boulianne, L. Burget, O. Glembek, N. Goel,
M. Hannemann, P. Motlicek, Y. Qian, P. Schwarz, J. Silovsky, G. Stemmer,
and K. Vesely, “The kaldi speech recognition toolkit,” in IEEE 2011 Workshop
on Automatic Speech Recognition and Understanding, Dec. 2011.

[12] T. Bluche, H. Ney, and C. Kermorvant, “A comparison of sequence-trained deep

neural networks and recurrent neural networks optical modeling for handwriting

recognition,” in International Conference on Statistical Language and Speech

Processing. Springer, 2014, pp. 199-210.

P. Voigtlaender, P. Doetsch, and H. Ney, “Handwriting recognition with

large multidimensional long short-term memory recurrent neural networks,”

in ICFHR. IEEE, 2016, pp. 228-233.

[14] S. F. Chen and J. Goodman, “An empirical study of smoothing techniques
for language modeling,” Computer Speech & Language, vol. 13, no. 4, pp.
359-394, 1999.

[15] M. Mohri, F. Pereira, and M. Riley, “Speech recognition with weighted finite-
state transducers,” in Springer Handbook of Speech Processing. Springer,
2008, pp. 559-584.

[16] U.-V. Marti and H. Bunke, “The iam-database: an english sentence database
for offline handwriting recognition,” IJDAR, vol. 5, no. 1, pp. 39-46, 2002.

[17] E. Augustin, J.-m. Brodin, M. Carr, E. Geoffrois, E. Grosicki, and F. Priteux,
“RIMES evaluation campaign for handwritten mail processing,” in /WFHR,
2006.

[18] N. Serrano, F. Castro, and A. Juan, “The rodrigo database.” in LREC, 2010,
pp. 19-21.

[19] J. A. Sanchez, V. Romero, A. H. Toselli, and E. Vidal, “Icfhr2014 competition
on handwritten text recognition on transcriptorium datasets (htrts),” in ICFHR.
IEEE, 2014, pp. 785-790.

[20] N. Otsu, “A threshold selection method from gray-level histograms,” IEEE
transactions on systems, man, and cybernetics, vol. 9, no. 1, pp. 62-66, 1979.

[21] C. Wolf, J.-M. Jolion, and F. Chassaing, “Text Localization, Enhancement and
Binarization in Multimedia Documents,” in Proceedings of the International
Conference on Pattern Recognition, vol. 2, 2002, pp. 1037-1040.

[22] P. Koehn, “Europarl: A parallel corpus for statistical machine translation,” in
MT summit, vol. 5, 2005, pp. 79-86.

[23] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” arXiv

preprint arXiv:1412.6980, 2014.

[2

3

8

[13

[24] E. Granell, E. Chammas, L. Likforman-Sulem, C.-D. Martinez-Hinarejos,
C. Mokbel, and B.-I. Cirstea, “Transcription of spanish historical handwritten
documents with deep neural networks,” Journal of Imaging, vol. 4, no. 1, p. 15,
2018.

	I Introduction
	II Language Transfer Learning
	II-A Source Model Training
	II-B Language Model Decoding
	II-C Hybrid Training

	III Datasets
	IV Experimental Results
	IV-A Source Model Evaluation
	IV-B Hybrid Training

	V Conclusion
	References

