
Word Beam Search: A Connectionist Temporal
Classification Decoding Algorithm

Harald Scheidl, Stefan Fiel, Robert Sablatnig
Computer Vision Lab

TU Wien
1040 Vienna, Austria

harald scheidl@hotmail.com, {fiel,sab}@cvl.tuwien.ac.at

Abstract—Recurrent Neural Networks (RNNs) are used for
sequence recognition tasks such as Handwritten Text Recognition
(HTR) or speech recognition. If trained with the Connectionist
Temporal Classification (CTC) loss function, the output of such
a RNN is a matrix containing character probabilities for each
time-step. A CTC decoding algorithm maps these character
probabilities to the final text. Token passing is such an algorithm
and is able to constrain the recognized text to a sequence of
dictionary words. However, the running time of token passing
depends quadratically on the dictionary size and it is not able
to decode arbitrary character strings like numbers. This paper
proposes word beam search decoding, which is able to tackle
these problems. It constrains words to those contained in a
dictionary, allows arbitrary non-word character strings between
words, optionally integrates a word-level language model and
has a better running time than token passing. The proposed
algorithm outperforms best path decoding, vanilla beam search
decoding and token passing on the IAM and Bentham HTR
datasets. An open-source implementation is provided.

Index Terms—connectionist temporal classification, decoding,
language model, recurrent neural network, speech recognition,
handwritten text recognition

I. INTRODUCTION

Sequence recognition is the task of transcribing sequences
of data with sequences of labels [1]. Well known use-cases
are Handwritten Text Recognition (HTR) and speech recog-
nition. Graves et al. [2] introduce the Connectionist Temporal
Classification (CTC) operation which enables neural network
training from pairs of data and target labelings (text). The
neural network is trained to output the labelings in a specific
coding scheme. Decoding algorithms are used to calculate the
final labeling. Hwang and Sung [3] present a beam search
decoding algorithm which can be extended by a character-level
Language Model (LM). Graves et al. [4] introduce the token
passing algorithm, which constraints its output to a sequence
of dictionary words and uses a word-level LM. The motivation
to propose the Word Beam Search (WBS) decoding algorithm1

is twofold:
• Vanilla Beam Search (VBS) decoding works on character-

level and does not constrain its beams (text candidates)
to dictionary words.

• The running time of token passing depends quadratically
on the dictionary size [4], which is not feasible for large

1An open-source implementation is available at:
https://github.com/githubharald/CTCWordBeamSearch

dictionaries as shown in Section V. Further, the algorithm
does not handle non-word character strings. Punctuation-
marks and large numbers occur in the IAM and Bentham
datasets, however, putting all possible combinations of
these into the dictionary would enlarge it unnecessarily.

WBS uses a prefix tree that is created from a dictionary
to constrain the words in the recognized text. Four different
methods to score the beams by a word-level LM are proposed:
(1) only constrain the beams by the dictionary, (2) score when
a word is completely recognized, (3) forecast the score by
calculating possible next words (Ortmanns et. al [5] use this
idea in the context of hidden Markov models) and (4) forecast
the score with a random sample of possible next words.
Further, there is an operating-state in which arbitrary non-word
character strings are recognized. The proposed algorithm is
able to outperform best path decoding, VBS and token passing
on the IAM [6] and Bentham [7] datasets. Furthermore, the
running time outperforms token passing.

The rest of the paper is organized as follows: in Section II,
a brief introduction to CTC loss and CTC decoding is given.
Then, prefix trees and LMs are discussed. Section IV presents
the proposed algorithm. The evaluation compares the scoring-
modes of the algorithm and further compares the results with
other decoding algorithms. Finally, the conclusion summarizes
the paper.

II. STATE OF THE ART

First, the CTC operation is discussed. Afterwards, two
state-of-the-art decoding algorithms, namely VBS and token
passing, are presented.

A. Connectionist Temporal Classification

A Recurrent Neural Network (RNN) outputs a sequence
of length T with C + 1 character probabilities per sequence
element, where C denotes the number of characters [4].
An additional pseudo-character is added to the RNN output
which is called blank and is denoted by “-” in this paper.
Picking one character per time-step from the RNN output and
concatenating them form a path π [4]. The probability of a
path is defined as the product of all character probabilities on
this path. A single character from a labeling is encoded by
one or multiply adjacent occurrences of this character on the
path, possibly followed by a sequence of blanks [4]. A way

DOI 10.1109/ICFHR-2018.2018.00052
©2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or
reuse of any copyrighted component of this work in other works.

Fig. 1. FSM which produces valid paths (encodings) for the labeling “ab”.
The two left-most states are the initial states while the right-most state is the
final state.

Fig. 2. An example of a RNN output. The sequence has a length of 2 with
time-steps t0 and t1. For each time-step a probability distribution over the
possible characters (“a” and “b” and blank “-”) is outputted by the RNN.
Lines indicate four different paths through the RNN output: the dotted line
indicates the best path yielding the labeling “” while the dashed lines indicate
paths yielding the labeling “a”.

to model this encoding is by using a Finite State Machine
(FSM) [3]. The FSM is created as follows: the labeling is first
extended by inserting blanks and then a state is created for
each character and blank. Consecutive states are connected by
a transition and a self-loop is added to each state. Further, a
direct transition skipping the blank is added for consecutive
but different characters. Figure 1 shows a FSM which produces
valid paths for the labeling “ab” by proceeding from a start
state to the final state on an arbitrary path, e.g. “ - a a - - b -”
or “a b” among others.

To decode a path into a labeling, the encoding operation
implemented by the FSM has to be inverted which is done
by a collapsing function B [3]. It is applied to a path π and
yields a labeling l by first removing repeated characters and
then removing blanks on the path. To give an example, the path
“a - b b - -” is collapsed to B(“a - b b - -”) =“ab”. The loss is
calculated by taking all paths yielding the target labeling l (i.e.
all paths π for which B(π) = l holds) and summing over their
probabilities. This enables training the RNN without knowing
the character-positions of the target labeling in the input.

After the RNN is trained by the CTC loss, new samples are
presented to the neural network to recognize the handwritten
text. A first approximation of decoding the RNN output is to
take the most probable character per time-step forming the
so called best path and then apply the collapsing function B
to this path [4]. This approximation algorithm is called best
path decoding [4]. However, there are situations for which
this yields the wrong result as illustrated in Figure 2. The

Fig. 3. Iteratively extending beam-labelings (from top to bottom) forms this
tree. Only the two best-scoring beams are kept per time-step (i.e. BW = 2),
all others are removed (red). Equal labelings get merged (blue).

given RNN output has a length of 2 and has 2 possible
characters “a” and “b” and further the blank “-”. Taking
the most probable characters yields the best path “- -” and
therefore the empty labeling B(“- -”)=“” with probability
0.6 · 0.6 = 0.36. However, the correct answer is “a”, this
can be seen by summing up the probabilities of all paths
yielding this labeling: “a -”, “- a” and “a a” with probability
2 · 0.6 · 0.4 + 0.4 · 0.4 = 0.64. The other decoding algorithms
presented in this paper are able to correctly handle such
situations.

B. Vanilla Beam Search Decoding

The VBS decoding algorithm is described in the paper of
Hwang and Sung [3]. An illustration is shown in Figure 3. The
RNN output is a matrix of size T ×(C+1) and is fed into the
decoding algorithm. Multiple candidates for the final labeling
are iteratively calculated and are called beams. At each time-
step, each beam-labeling is extended by all possible characters.
Additionally, the original beam is also copied to the next
time-step. This forms a tree as shown in Figure 3. To avoid
exponential growth of the tree, only the best beams are kept at
each time-step: the Beam Width (BW) governs the number of
beams to keep. If two beam-labelings at a given time-step are
equal, they get merged by first summing up the probabilities
and then removing one of them. A character-level LM can
optionally be used to score the extension of a beam-labeling
by a character. Constrained decoding is possible by removing
a beam as soon as an Out-Of-Vocabulary (OOV) word occurs
[8]. However, there is the chance that each beam contains an
OOV word which limits the usage of this constrained decoding
approach.

The time-complexity can be derived from the pseudo-
code of Algorithm 1. At each time-step, the beams are
sorted according to their score. In the previous time-step,
each of the BW beams is extended by C characters, there-
fore BW · C beams have to be sorted which accounts for
O(BW · C · log(BW · C)). As this sorting happens for
each of the T time-steps, the overall time-complexity is

Fig. 4. Three word models (blue) are put in parallel. Information flow is
implemented by tokens (red) which are passed through the states and between
the words.

O(T · BW · C · log(BW · C)). The two inner loops can be
ignored as they only account for O(BW · C).

C. Token Passing

This algorithm is proposed by Graves et al. [4], however,
the following discussion is based on another publication from
Graves [1]. A dictionary, a LM and a RNN output are given
and the algorithm outputs a sequence of dictionary words.
For each word a word-model is created, which essentially
is a state machine connecting consecutive characters with
respect to the already discussed CTC coding scheme. A word
sequence is modeled by putting multiple word-models in
parallel, connecting all end-states with all begin-states. The
information flow is implemented by tokens, which are passed
from state to state. Each token holds the score and the history
of already visited words. The algorithms searches for the most
likely sequence of dictionary words by aligning them with
the RNN output and scoring word-transitions with a word-
level LM. Figure 4 shows three word-models which are put in
parallel. The time-complexity of this algorithm is O(T ·W 2),
where T denotes the sequence length and W the dictionary
size [1].

III. METHODOLOGY

The proposed WBS decoding algorithm uses a prefix tree to
query the characters that can extend the current beam-labeling.
Further, words which have the current beam-labeling as prefix
can also be queried. A LM is used to score the beams on
word-level.

A. Prefix Tree

A prefix tree or trie (from retrieval) is a basic tool in the
domain of string processing [9]. Figure 5 shows a prefix tree
containing 5 words. It is a tree-datastructure and therefore
consists of edges and nodes. Each edge is labeled by a
character and points to the next node. A node has a word-
flag which indicates if this node represents a word. A word
is encoded in the tree by a path starting at the root node and
following the edges labeled with the corresponding characters
of the word. Querying characters which follow a given prefix
is easy: the node corresponding to the prefix is identified and
the outgoing edge labels determine the characters which can
follow the prefix. It is also possible to identify all words which
contain a given prefix: starting from the corresponding node

Fig. 5. Prefix tree containing the words “a”, “to”, “too”, “this” and “that”.
Double circles indicate that the word-flag is set.

of the prefix, all descendant nodes are collected which have
the word-flag set. As an example, the characters and words
following the prefix “th” in Figure 5 are determined. The node
is found by starting at the root node and following the edges
“t” and “h”. Possible following characters are the outgoing
edges “i” and “a” of this node. Words starting with the given
prefix are “this” and “that”.

Aoe et al. [10] show an efficient implementation of this
datastructure. Finding the node for a prefix with length L needs
O(L) time in their implementation. The time to find all words
containing a given prefix depends on the number of nodes
of the tree. An upper bound for the number of nodes is the
number of words W times the maximum number of characters
M of a word, therefore the time to find all words is O(W ·M).

B. Language Model

A LM is able to predict upcoming words given previous
words and it is also able to assign probabilities to given
sequences of words [11]. It can be queried to give the proba-
bility P (w|h) that a word sequence (history) h is followed
by the word w. Such a model is trained from a text by
counting how often w follows h. The probability of a sequence
is then P (h) = P (w1) · P (w2|w1) · P (w3|w1, w2) · ... ·
P (wn|w1, w2, ..., wn−1) [11].

It is not feasible to learn all possible word sequences,
therefore an approximation called N-gram is used [11]. Instead
of using the complete history, only a few words from the past
are used to predict the next word. N-grams with N=2 are called
bigrams. Bigrams only take the last word into account, i.e. they
approximate P (wn|h) by P (wn|wn−1). The probability of a
sequence is then given by P (h) = P (w1)·

∏|h|
n=2 P (wn|wn−1).

Another special case is the unigram LM, which does not
consider the history at all but only the relative frequency of a
word in the training-text, i.e. P (h) =

∏|h|
n=1 P (wn).

The N-gram distributions are learned from a training-text.
For the unigram distribution, the number of occurrences of
a word is counted and normalized by the total number of
words in the text. The bigram distribution is calculated by

Fig. 6. A beam can be in one of two states.

first counting how often a word w1 is followed by a word
w2 and then normalizing by the total number of words which
follow w1. If a word is contained in the test-text but not in
the training-text, it is called OOV word. In this case a zero
probability is assigned to the sequence, even if only one OOV
word occurs. To overcome this problem smoothing can be
applied to the N-gram distribution, more details are available
in Jurafsky [11].

IV. PROPOSED ALGORITHM

WBS decoding is a modification of VBS decoding and has
the following properties:
• Words are constrained to dictionary words.
• Any number of non-word characters is allowed between

words.
• A word-level bigram LM can optionally be integrated.
• Better running time than token passing (regarding time-

complexity and real running time on a computer).
To constrain words to dictionary words and also allow

arbitrary non-word characters between words, each beam is
in one of two states. If a beam gets extended by a word-
character (typically “a”, “b”, ...), then the beam is in the word-
state, otherwise it is in the non-word-state. Figure 6 shows
the two beam-states and the transitions. A beam is extended
by a set of characters which depends on the beam-state. If
the beam is in the non-word-state, the beam-labeling can be
extended by all possible non-word-characters (typically “ ”,
“.”, ...). Furthermore, it can be extended by each character
which occurs as the first character of a word. These characters
are retrieved from the edges which leave the root node of the
prefix tree. If the beam is in word-state, the prefix tree is
queried for a list of possible next characters. Figure 7 shows
an example of a beam currently in the word-state. The last
word-characters form the prefix “th”, the corresponding node
in the prefix tree is found by following the edges “t” and “h”.
The outgoing edges of this node determine the next characters,
which are “i” and “a” in this example. In addition, if the
current prefix represents a complete word (e.g. “to”), then the
next characters also include all non-word-characters.

Optionally, a word-level LM can be integrated. A bigram
LM is assumed in the following text. The more words a beam
contains, the more often it gets scored by the LM. To account
for this, the score gets normalized by the number of words.
Four possible LM scoring-modes exist and names are assigned
to them which are used throughout the paper:
• Words: only a dictionary but no LM is used.

Fig. 7. A beam currently in the word-state. The “#” character represents a
non-word character. The current prefix “th” can be extended by “i” and “a”
and can be extended to form the words “this” and “that”. The prefix tree from
Figure 5 is assumed in this example.

• N-grams: each time a beam makes a transition from the
word-state to the non-word-state, the beam-labeling gets
scored by the LM.

• N-grams + Forecast: each time a beam is extended by a
word-character, all possible next words are queried from
the prefix tree. Figure 7 shows an example for the prefix
“th” which can be extended to the words “this” and “that”.
All beam-extensions by possible next words are scored
by the LM and the scores are summed up. This scoring
scheme can be regarded as a LM forecast.

• N-grams + Forecast + Sample: in the worst case, all
words of the dictionary have to be taken into account
for the forecast. To limit the number of possible next
words, these are randomly sampled before calculating the
LM score. The sum of the scores must be corrected to
account for the sampling process.

Algorithm 1 shows the pseudo-code for WBS decoding. The
set B holds the beams of the current time-step, and P holds
the probabilities for the beams. Pb is the probability that the
paths of a beam end with a blank, Pnb that they end with a
non-blank, and Ptxt is the probability assigned by the LM.
Ptot is an abbreviation for Pb + Pnb. The algorithm iterates
from t = 1 through t = T and creates a tree of beam-labelings
as shown in Figure 3. An empty beam is denoted by ∅ and the
last character of a beam is indexed by −1. The best beams
are obtained by sorting them with regard to Ptot · Ptxt and
only keep the BW best ones. For each of the beams, the
probability of seeing the beam-labeling at the current time-
step is calculated. Separately book-keeping for paths ending
with a blank and paths ending with a non-blank accounts for
the CTC coding scheme. Each beam gets extended by a set of
possible next characters, depending on the beam-state. When
extending a beam, the LM calculates a score Ptxt depending
on the scoring-mode. The normalization of the LM score is
achieved by taking Ptxt to the power of 1/numWords(b),
where numWords(b) is the number of words contained in
the beam b. After the algorithm finished its iteration through
time, the beam-labelings get completed if necessary: if a beam-
labeling ends with a prefix not representing a complete word,
the prefix tree is queried to give a list of possible words
which contain the prefix. Two different ways to implement the
completion exist: either the beam-labeling is extended by the
most likely word (according to the LM), or the beam-labeling
is only completed if the list of possible words contains exactly
one entry.

Algorithm 1: Word Beam Search
Data: RNN output matrix mat, BW and LM
Result: most probable labeling

1 B = {∅};
2 Pb(∅, 0) = 1;
3 for t = 1...T do
4 bestBeams = bestBeams(B,BW);
5 B={};
6 for b ∈ bestBeams do
7 if b != ∅ then
8 Pnb(b, t) += Pnb(b, t− 1) ·mat(b(−1), t);
9 end

10 Pb(b, t) += Ptot(b, t− 1) ·mat(blank, t);
11 B = B ∪ b;
12 nextChars = nextChars(b);
13 for c ∈ nextChars do
14 b′ = b+ c;
15 Ptxt(b

′) = scoreBeam(LM, b, c);
16 if b(t) == c then
17 Pnb(b

′, t) += mat(c, t) · Pb(b, t− 1);
18 else
19 Pnb(b

′, t) += mat(c, t) · Ptot(b, t− 1);
20 end
21 B = B ∪ b′;
22 end
23 end
24 end
25 B = completeBeams(B);
26 return bestBeams(B, 1);

The time-complexity depends on the scoring-mode used. If
no LM is used, the only difference to VBS is to query the
next possible characters. This takes O(M · C) time, where
M is the maximum length of a word and C is the number
of unique characters. The overall running time therefore is
O(T ·BW ·C · (log(BW ·C)+M)). If a LM is used, then a
lookup in a unigram and/or bigram table is performed when
extending a beam. Searching such a table takes O(log(W)).
This sums to the overall running time of O(T · BW · C ·
(log(BW ·C)+M+log(W))). In the case of LM forecasting,
the next words have to be searched which takes O(M ·W).
The LM is queried S times, where S is the size of the word
sample. If no sampling is used, then S =W . The running time
sums to O(T ·BW ·C ·(log(BW ·C)+S · log(W)+W ·M)).

V. RESULTS

Evaluation is done using the IAM and Bentham HTR
datasets. The goal of the evaluation is to compare the perfor-
mance of different decoding algorithms given the same neural
network output. It is not about achieving or outperforming
state-of-the-art results on the mentioned datasets. Character
Error Rate (CER) and Word Error Rate (WER) are chosen
as error measures [12]. The neural network is inspired by
the CRNN model proposed by Shi et al. [13] and is imple-

mented using the TensorFlow framework. It consists of seven
convolutional layers, two RNN layers and a final CTC layer.
The output sequence of the neural network has a length of
100 time-steps. IAM consists of 79 different characters while
Bentham has 93 characters, therefore the output of the RNN
is a matrix of size T × (C + 1) = 100 × 80 and 100 × 94
respectively. The tested algorithms are: best path decoding,
token passing, VBS and WBS. The last three algorithms
are implemented as custom TensorFlow operations in C++.
For WBS decoding, the four scoring modes are evaluated.
Experiments for the BW values 15, 30 and 50 are conducted.
The LM is either trained with the text of the test-set (denoted
as Te) or the text of the training-set concatenated with a word
list2 (denoted as Tr+L) which consists of 370,099 words. The
resulting dictionary sizes are as follows: 3,707 and 373,412
unique words for IAM and 1,911 and 372,933 unique words
for Bentham. Training the LM with the text that has to be
recognized can be seen as the best case and is of course a
simplification (LM has zero OOV words). Using the training-
set concatenated with the word list, on the other hand, is a very
rudimentary training-text for the LM. In practice, results can
be expected to be in between these two extreme cases. The LM
uses add-k smoothing with a smoothing value of k = 0.01.

The results of the experiments are shown in Table I and are
given in the format CER (%) / WER (%) / time per sample
(ms). The latter value includes the time needed to evaluate
the neural network. WBS is always able to outperform best
path decoding and token passing in at least one of its scoring-
modes. Regarding the BW, increasing this value for VBS only
marginally changes the results. The CER does not change at
all except when using the Tr+L training-text for IAM, while
the WER varies by around 0.1%. This suggests that a BW of
15 is large enough for this algorithm. In contrast, both error
measures improve when increasing the BW of WBS. CER
gets improved by up to 0.76% and WER by up to 0.86%.
WBS using Words mode outperforms VBS as long as the BW
is large enough (30 or 50). A possible explanation for the
different impact of this parameter can be derived from the
variability of the words contained in the beam-labelings of a
single time-step. The word-variability of VBS is greater than
the one of WBS and the beam-labelings of the latter algorithm
mainly differ in the punctuation. Therefore WBS needs a larger
number of beams to allow recovering from a wrong word-
hypothesis. Increasing the BW from 15 to 50 increases the
running time by a factor of around 3. Regarding the scoring
modes of WBS (BW fixed to 15 from now on), the WER
achieved by the Words mode can always be outperformed by
at least one of the other modes which incorporate N-gram
probabilities. For IAM the best CER and WER is obtained
by N-grams + Forecast mode for the Tr+L training-text and
N-grams + Forecast + Sample mode for the Te training-text.
For both training-texts of Bentham N-grams mode yields the
best WER. The CER also benefits from considering N-gram
probabilities while decoding. The only exception is when using

2Taken from https://github.com/dwyl/english-words

TABLE I
EXPERIMENTAL RESULTS GIVEN AS CER / WER / TIME PER SAMPLE (MS). LM TRAINING TEXTS: TRAINING-SET CONCATENATED WITH WORD-LIST
(TR+L), TEST-SET (TE). WBS SCORING MODES: WORDS (W), N-GRAMS (N), N-GRAMS + FORECAST (N+F), N-GRAMS + FORECAST + SAMPLE

(N+F+S).

IAM Bentham
Algorithm Tr+L Te Tr+L Te

Best Path Decoding 8.77 / 29.07 / 12 8.77 / 29.07 / 12 5.60 / 17.06 / 15 5.60 / 17.06 / 15
Token Passing (not feasible) 10.46 / 12.37 / 762 (not feasible) 8.16 / 9.24 / 1250
VBS, BW=15 8.48 / 28.24 / 56 8.27 / 27.34 / 64 5.55 / 16.39 / 69 5.35 / 16.02 / 63
VBS, BW=30 8.49 / 28.27 / 101 8.27 / 27.36 / 108 5.55 / 16.45 / 125 5.35 / 15.96 / 124
VBS, BW=50 8.49 / 28.27 / 168 8.27 / 27.32 / 184 5.55 / 16.55 / 210 5.35 / 16.06 / 202

WBS, mode=W, BW=15 8.95 / 24.19 / 90 5.62 / 11.01 / 85 5.47 / 14.09 / 77 4.22 / 7.90 / 56
WBS, mode=W, BW=30 8.44 / 23.77 / 145 5.08 / 10.42 / 140 5.18 / 13.92 / 156 3.90 / 7.60 / 104
WBS, mode=W, BW=50 8.25 / 23.67 / 229 4.86 / 10.15 / 217 5.12 / 13.87 / 289 3.73 / 7.50 / 182
WBS, mode=N, BW=15 10.00 / 23.88 / 83 5.33 / 9.77 / 56 6.15 / 13.85 / 99 4.07 / 7.08 / 74

WBS, mode=N+F, BW=15 8.61 / 22.86 / 16388 5.23 / 9.82 / 1040 6.76 / 18.00 / 24465 4.05 / 7.36 / 274
WBS, mode=N+F+S, BW=15 8.62 / 22.91 / 12226 5.21 / 9.78 / 786 6.75 / 18.06 / 18349 4.06 / 7.39 / 223

the Tr+L training-text for Bentham, in which case Words
mode achieves the best CER. Best path decoding is the fastest
algorithm which needs at most 15ms per sample. VBS is
around 5 times slower than best path decoding. The running
time of WBS mainly depends on the scoring mode and the
dictionary size. It stays below 100ms for the Words and
N-grams modes. Increasing the dictionary size by a factor
of 100 increases the running time by a factor of 1.5 for
N-grams mode on the IAM dataset. However, when using
N-grams + Forecast mode on the same dataset the running
time increases by a factor of 15.7. Therefore the forecasting-
modes are only feasible for small dictionaries, while the Words
and N-grams modes can also be used with large dictionaries.
Token passing is only evaluated for the smaller dictionary
(because of its quadratic dependence on the dictionary size)
created from the Te training-text, for which the algorithm takes
762ms per sample for IAM and 1250ms for Bentham. This
proves the claim that WBS is faster than token passing when
used with N-grams mode (which matches the type of LM
integrated into token passing).

VI. CONCLUSION

A decoding algorithm for CTC-trained neural networks was
proposed which restricts words to dictionary words, allows
arbitrary character strings between words, can optionally in-
tegrate a word-level LM and is faster than token passing. It
comes with four different scoring-modes which govern the
effect of the LM and can also be used to control the running
time. The algorithm was evaluated on the IAM and Bentham
HTR datasets. Experiments have shown that the algorithm is
able to outperform best path decoding, VBS and token passing
for both an ideal and a rudimentary LM. The running time of
the Words and N-grams mode is in the order-of-magnitude
of VBS. In case only a dictionary but no word-level LM is
available, the Words mode is well suited which constrains the
words of the beam-labelings.

ACKNOWLEDGMENTS

This work has received funding from the European Union’s
Horizon 2020 research and innovation programme under grant
agreement No 674943 (project READ).

REFERENCES

[1] A. Graves, Supervised sequence labelling with recurrent neural net-
works. Springer, 2012.

[2] A. Graves, S. Fernández, F. Gomez, and J. Schmidhuber, “Connectionist
Temporal Classification: labelling unsegmented sequence data with
recurrent neural networks,” in Proceedings of the 23rd International
Conference on Machine Learning. ACM, 2006, pp. 369–376.

[3] K. Hwang and W. Sung, “Character-level incremental speech recognition
with recurrent neural networks,” in IEEE International Conference on
Acoustics, Speech and Signal Processing. IEEE, 2016, pp. 5335–5339.

[4] A. Graves, M. Liwicki, S. Fernández, R. Bertolami, H. Bunke, and
J. Schmidhuber, “A novel connectionist system for unconstrained hand-
writing recognition,” IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence, vol. 31, no. 5, pp. 855–868, 2009.

[5] S. Ortmanns, A. Eiden, H. Ney, and N. Coenen, “Look-ahead techniques
for fast beam search,” Computer Speech & Language, vol. 14, no. 1, pp.
15–32, 2000.

[6] U. Marti and H. Bunke, “The IAM-database: an English sentence
database for offline handwriting recognition,” International Journal on
Document Analysis and Recognition, vol. 5, no. 1, pp. 39–46, 2002.

[7] J. Sánchez, V. Romero, A. Toselli, and E. Vidal, “ICFHR2014 com-
petition on handwritten text recognition on transcriptorium datasets,” in
14th International Conference on Frontiers in Handwriting Recognition.
IEEE, 2014, pp. 785–790.

[8] A. Graves and N. Jaitly, “Towards end-to-end speech recognition with
recurrent neural networks,” in Proceedings of the 31st International
Conference on Machine Learning, 2014, pp. 1764–1772.

[9] P. Brass, Advanced data structures. Cambridge University Press
Cambridge, 2008.

[10] J. Aoe, K. Morimoto, and T. Sato, “An efficient implementation of trie
structures,” Software: Practice and Experience, vol. 22, no. 9, pp. 695–
721, 1992.

[11] D. Jurafsky and J. Martin, Speech and Language Processing. Pearson
London, 2014.

[12] T. Bluche, “Deep Neural Networks for Large Vocabulary Handwritten
Text Recognition,” Ph.D. dissertation, Université Paris Sud-Paris XI,
2015.

[13] B. Shi, X. Bai, and C. Yao, “An End-to-End Trainable Neural Network
for Image-based Sequence Recognition and its Application to Scene
Text Recognition,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 39, no. 4, pp. 2298–2304, 2016.

