
A Novel Naive Bayes Voting Strategy for Combining Classifiers

C. De Stefano, F. Fontanella, A. Scotto di Freca
Department of Electrical and Information Engineering (DIEI)

University of Cassino and Southern Lazio
Cassino (FR), Italy

{destefano, fontanella, a.scotto}@unicas.it

Abstract—Classifier combination methods have proved to be
an effective tool for increasing the performance in pattern
recognition applications. The rationale of this approach follows
from the observation that appropriately diverse classifiers make
uncorrelated errors. Unfortunately, this theoretical assumption
is not easy to satisfy in practical cases, thus reducing the
performance obtainable with any combination strategy. In this
paper we propose a new weighted majority vote rule which
try to solve this problem by jointly analyzing the responses
provided by all the experts, in order to capture their collective
behavior when classifying a sample. Our rule associates a
weight to each class rather than to each expert and computes
such weights by estimating the joint probability distribution
of each class with the set of responses provided by all the
experts in the combining pool. The probability distribution
has been computed by using the naive Bayes probabilistic
model. Despite its simplicity, this model has been successfully
used in many practical applications, often competing with
much more sophisticated techniques. The experimental results,
performed by using three standard databases of handwritten
digits, confirmed the effectiveness of the proposed method.

Keywords-Classifier Ensembles; Combining Rules; Naive
Bayes Classifiers; Neural Networks.

I. INTRODUCTION

Classifier combination methods have proved to be an
effective tool for increasing the performance in pattern
recognition applications. The rationale of this approach
follows from the observation that the errors produced by
appropriately diverse classifiers, such as those based on
different classification strategies or working on different
feature sets, are likely to be uncorrelated. This implies
that, by combining their responses, the overall classification
accuracy could be improved [1], [2], [3].

Unfortunately, the theoretical assumption that the classi-
fiers to be combined make uncorrelated errors is not easy
to satisfy in practical cases, especially when their number
is high. In fact, as the number of classifiers increases,
it may happen that a correct classification provided by
some classifiers is overturned by the convergence of other
classifiers on the same wrong decision, thus reducing the
performance obtainable with any combination strategy.

Among the different techniques proposed in the literature,
linear combining rules are the most widely used approaches
for combining the classification results provided by different

experts [4]. In this framework, a natural way of imple-
menting such rules is using some form of voting in which
classifier outputs may be simply averaged or weighted by
using an estimate of their global reliability [5], [6], [7].
Such an estimate can be computed, for instance, by simply
considering the recognition rate of each single expert on a
training set or by maximizing the performance of the whole
set of experts during a learning phase. Simple and weighted
majority vote rules belonging to this last category are used
in popular ensemble learning algorithms, such as Bagging
[8] and Boosting [9], and have been successfully adopted
for a large number of applications.

It should be noted, however, that the introduction of some
confidence measures for weighting the results provided by
a pool of experts does not allow us to solve in the general
case the drawbacks due to correlation among errors. In fact,
when the measures are separately computed on each expert,
once and forever, the combining rule gives more importance
to the responses of top performing classifiers: this fact may
significantly reduce some of the advantages of classifiers
combination because less performing classifiers are often
added to the pool of experts to correctly recognize those
samples which have not been adequately learned by the top
ones.

Even when the confidence measures are jointly computed
evaluating the performance of the whole set of experts,
the results may be not satisfactory: experimental studies on
the classifier diversity obtained with bagging and boosting
have shown that these techniques do not ensure to obtain
sufficiently diverse classifiers [10], [11]. In particular, as
regards boosting, in [11] it has been observed that while
at first steps highly diverse classifiers are obtained, as
the boosting process proceeds classifier diversity strongly
decreases.

When the experts to be combined directly provide a
confidence measure for each classified sample, a weighted
majority vote rule may be simply obtained by using such
measures as weights. In this case, however, there is a
possible lack of consistency because different confidence
measures, defined for different classification schemes work-
ing on different feature spaces, are compared or combined
into an overall measure.

Moving from these considerations, we propose a new



weighted majority vote rule which try to solve the main
drawbacks of the above mentioned techniques. Our rule
associates a weight to each class rather than to each expert
and computes such weights by estimating the joint proba-
bility distribution of each class with the set of responses
provided by all the experts in the combining pool. In this
way, even less performing experts may effectively contribute
to the recognition of samples not adequately learned by the
top ones. Moreover, there are no inconsistencies since the
reliability of each expert in assigning an input sample to
a certain class is jointly evaluated through the probabilistic
model.

In this study, we have computed the conditional proba-
bility distribution of each class by using the naive Bayes
probabilistic model. We have chosen this model because of
both its simplicity and its effectiveness. In fact, it has been
shown in the literature that, despite the strong assumption
of independence among variables, this approach results
remarkably successful in practice, often competing with
much more sophisticated techniques [12], [13]. Naive Bayes
has proved to be effective in many practical applications,
including text classification, intrusion detection systems and
systems performance management [14], [15].

The main advantage of the naive Bayes approach comes
from the computational efficiency of the learning procedure,
which exhibits a linear computational complexity with re-
spect to the number of random variables to be modeled (the
number of experts in our case).

The experimental results, performed by using three stan-
dard databases of handwritten digits, confirmed the effec-
tiveness of the proposed method.

The remainder of the paper is organized as follows:
Section 2 illustrates the naive Bayes Classifier, Section 3
presents the architecture of the method, Section 4 reports
the experimental results, while some concluding remarks are
eventually left to Section 5.

II. THE NAIVE BAYES CLASSIFIER

A naive Bayes Classifier (nBC) is a probabilistic classifier
which applies the Bayes’ theorem with a strong (naive)
assumption: it is assumed that the features describing the
objects to be classified are statistically independent each
other. Such statistical model is often referred in the literature
as the “independent feature model” [16]. As anticipated in
the Introduction, in spite of this strong assumption, nBc
have demonstrated to be very effective in many real world–
applications.

Given a feature space X in which the objects to be
classified are represented by m feature variables f1, . . . , fm,
the nBC is based on the Bayes’ theorem:

p(c|f1, . . . , fm) =
p(c)p(f1, . . . , fm|c)

p(f1, . . . , fm)
(1)

where c is the class variable. Usually, the denominator of
the above equation is not considered since it is constant
with respect to the class variable c.

According to the underlying assumption of the nBC,
namely the statistical independence of the features, the above
equation can be rewritten in the following way:

p(c|f1, . . . , fm) =
1
Z

p(c)
m∏

i=1

p(fi|c) (2)

where Z = p(f1, . . . , fm), is a scaling factor not depending
on c. According to the maximum likelihood estimation,
the model parameters, are estimated from a training set
of data (say D). The class prior is estimated as follows:
if nk is the number of samples in D belonging to the
class k and nD is the total number of samples in D,
then P (c = k) = nk/nD. As concerns the estimation of
the feature distribution parameters, two distinct approaches
can be followed depending on whether the features assume
continuous or discrete values. Details can be found in [13].

Once the above parameters have been estimated, nBC
classifies an unknown sample x represented by a feature
vector x = (f1, . . . , fm) according to the maximum a
posteriori decision rule:

e(x) = arg max
k

p(c = k)
m∏

i=1

p(fi|c = k) (3)

Despite the fact that the independence assumptions may
be in some cases inaccurate, nBC has several properties that
make it very effective in practical applications. For instance,
the factorization of the class conditional feature distributions
means that each distribution can be independently estimated.
This helps to avoid the the curse of dimensionality problem,
i.e. the need for very large data sets, whose number of
samples scale exponentially with the number of features.

III. THE COMBINER ARCHITECTURE

Consider the responses e1, . . . , eL provided by a set of
L experts E1, . . . , EL for an input sample x in a N class
problem, and assume that such responses constitute the input
to the combiner, as shown in Fig.1. Each expert Ei gives
as output the label of the class assigned to the sample
x, in the set C = {C1, . . . , CN}, while the combiner
provides the final classification result. In this stage the
combiner can be defined as a higher level classifier that
works on a L-dimensional discrete-values feature space. The
combiner uses a supervised learning strategy, which consists
in observing both the responses {e1, . . . , eL} and the true
class label c for each sample of a training set, in order to
compute the conditional probability p(c|e1, . . . , eL).

Once this conditional probability has been learned from
a set of training data, the combiner classifies each unknown
sample by using a weighted voting strategy.



Figure 1. The Combiner scheme.

Before introducing the proposed weighted voting rule, let
us briefly recall the main properties of two basic voting rules,
namely the majority vote and the weighted majority vote.
According to the Majority Vote rule (hereafter MjV) the
class ĉ of an unknown sample x is computed as:

ĉ = max
k∈C

∑
i

ri,k

where ri,k is a function whose value is 1 when the classifier
Ei classify the sample x as belonging to the class k, and 0
otherwise. Such voting strategy is the most democratic one,
since each classifier contributes in the same manner to the
final decision. As previously discussed, however, the higher
the correlation among classifiers, the lower the performance
of the rule.

The weighted Majority Vote rule (hereafter wMjV) is
less democratic then the previous one, since it uses some
reliability measures for weighting the responses provided
by the experts. These measures, are generally obtained by
considering the recognition rate of each expert on a training
set [3]. In this case the class ĉ assigned to an unknown
sample x is:

ĉ = max
k∈C

∑
i

Riri,k

where Ri represents the reliability of the expert Ei. Note
that the weights are preliminary computed during a training
phase and their values do not change in the operative phase.
When the experts to be combined provide also a reliability
value, together with the classification result, it should be also
possible in principle to use such measures as weights. As
discussed in the introduction, however, this choice may lead
to inconsistencies because the reliability measures refer to
different classification schemes working on different feature
spaces and their values cannot be directly compared.

In this study, we propose a new weighted majority vote
rule, which uses the conditional probability p(c|e1, . . . , eL)

for weighting the votes of each class to be recognized
rather than the vote of each expert. According to the Naive
Bayes theory, such conditional probability may be computed
through Eq. 2, but considering as random variables to be
modeled the set of classifier responses {e1, . . . , eL} instead
of the set of features {f1, . . . , fm}. Thus Eq. 2 can be
rewritten as:

p (c|e1, . . . , eL) =
1
Z

p(c)
L∏

i=1

p(ei|c) (4)

where Z = p(e1, . . . , eL), is a scaling factor not depending
on c and the random variables ei assume discrete values
as they represent the responses provided by the experts.
Moreover it is assumed that variables ei are independent
each other, but all dependent on c. Under these assumptions,
Z =

∏L
i=1 p(ei) and p(ei|c) is obtained by counting the

occurrences of each value of ei for each value of the true
class c in a training set. In the Bayesian Network jargon, the
result of each single count represents a parameter and the
whole process of computing all the parameters is defined as
parameter learning. In case of a N class problem, N ∗ N
parameters must be computed for each expert. Considering
that:

p(c, e1, . . . , eL) = p(c|e1, . . . , eL) Z

and that the term Z does not depends on c, without
loosing generality, we can consider the joint probabil-
ity p(c, e1, . . . , eL) instead of the conditional probability
p(c|e1, . . . , eL). From Eq. 4 we obtain:

p(c, e1, . . . , eL) = p(c)
L∏

i=1

p(ei|c)

Thus, the weight wk associated to a class k is:

wk(e1, . . . , eL) = p(c = k)
L∏

i=1

p(ei|c = k) (5)

An high value for the the weight wk(e1, . . . , eL) means
that the set of responses (e1, . . . , eL) provided by the experts
for an unknown sample is very frequent in the training set
in correspondence of the class k.

The proposed weighted majority vote rule, denoted as
Naive Bayes weighted Majority Vote rule (hereafter NB-
wMjv) computes the class ĉ of the unknown sample x by
using the formula:

ĉ = max
k∈C

∑
i

wkri,k (6)

Summarizing, our system operates in two different modal-
ities: during the learning phase, a training set of samples
is used for learning the parameters of the Naive Bayes
Classifier. In the operative phase, for each input sample x
the set of responses (e1, . . . , eL) provided by the experts is



used to compute the weights wk(e1, . . . , eL), 1 ≤ k ≤ N
and then the final decision is taken according to the Eq. 6.

The rationale of our approach is to jointly analyze the
responses provided by all the experts, in order to capture the
collective behavior of the whole system when classifying a
sample. This approach tries to solve some of the main ques-
tions in combining classifiers: should the decision provided
by each expert be considered equally reliable, or should the
decision delivered by the most competent experts be ac-
cepted without giving importance to the majority consensus?
According to our method, the decision of each expert must
be evaluated only in the context of the decisions provided by
all the other experts, without considering the performance of
each single classifier. In this way, even if for certain samples
the majority of the experts provide a wrong decision, the
whole set of responses may constitute a pattern adequately
learned by the Naive Bayes Classifier, for which a high
probability (not necessarily the highest) may be assigned
to the correct class. Consider, for instance, a case in which
the classifiers E4 and E7 confuse the class C1 with the class
C3 in 20% and in 40% of the cases, respectively. After the
parameter learning we have p(e4 = C1|c = C3) = 0.2
and p(e7 = C1|c = C3) = 0.4: these values contribute to
increase the probability to obtain a correct decision when
classifying a sample belonging to the class C3, even if both
the experts E4 and E7 provided a wrong result.

Finally, we want to remark that the our approach try to
overcome one of the main drawbacks related to the estima-
tion of the joint probability distribution of the true class and
the ensemble responses, e.g. the need of large sets of data,
which may be not available in real world applications. In
fact, as above discussed, in case of a N class problem the
Naive Bayes Classifier requires, for each expert, the learning
of N ∗ N parameters whose values are estimated during a
training phase looking at the set of responses provided by
that expert for each sample of a training set. When a set of
responses provided by the experts represents a pattern not
adequately learned by the probabilistic model, more classes
may have similar joint probabilities, thus making ineffective
a maximum a posteriori probability (MAP) rule. According
to our weighted majority vote combining rule, instead, when
more classes exhibit similar joint probabilities, the final
decision mainly depends on the number of votes received
by such classes. On the contrary, when a set of responses
provided by the experts represents a pattern adequately
learned by the probabilistic model, there is just one class
exhibiting a high joint probability value: this value will be
used to weight the votes received by such class thus making
very likely that it will be chosen as final decision.

IV. EXPERIMENTAL RESULTS AND DISCUSSION

In order to ascertain the effectiveness of the proposed
approach, three real world datasets involving handwritten
characters have been taken into account.

The following datasets have been used for testing the
proposed approach: Mfeat, Optodigit and Pendigit. These
datasets are publicly available from the UCI machine learn-
ing repository [17]. From each dataset, we have randomly
extracted three sets of data: TR1, TR2 and TS. TR1 and
TR2 have been used as training sets for the classifiers and
for the combiner respectively, while TS has been used for
the whole system performance evaluation. Dataset partitions
are summarized in Table I. In the following an accurate
description of each data set is given.

The Mfeat dataset (Multiple Features Data Set) contains
2000 instances of handwritten digits, 200 for each digit,
extracted from a collection of Dutch utility maps. Data are
described by using six different sets of features, totaling 649
features. Each set of features has been used to describe all
the handwritten digits, and arranged in a separate dataset.
For each dataset, the type of features and their number are
the following: Fourier coefficients of the character shapes
(76 features); Zernike moments (47); morphological features
(6); Karhunen-Love coefficients (64); pixel averages in 2 x 3
windows (240); profile correlations (216). Starting from the
provided datasets we generated a dataset (DS) obtained by
merging all the descriptions included in the previous ones,
in such a way to describe each sample by the whole set of
649 available features.

The second considered dataset is the Optical Recognition
of Handwritten Digits Data Set (Optodigit). It contains 5620
samples equally distributed among the ten classes. Each
sample is described by 64 features. Such data have been
obtained by preprinted forms, extracting normalized 32x32
bitmaps of handwritten digits. Each bitmap is divided into
non-overlapping blocks of 4x4 and the number of black
pixels are counted in each block. This generates an input
matrix of 8x8 where each element is an integer in the range
[0, 16]. As a consequence, a character is represented by a
feature vector of 64 elements where each element contains
a value of a 8x8 matrix.

The third dataset taken into account is Pendigit. It contains
11220 samples, and has been created by collecting 250
samples from 44 writers. The samples written by 30 writers
has been used for building the training set, while the digits
written by the remaining 14 writers has been used as
test set. The data has been collected by using a pressure
sensitive tablet with an integrated LCD display. Each sample
is represented by a set of (x, y) coordinates of the pen,
recorded at a fixed time interval (100 milliseconds). The
data collected from the tablet has been normalized in order

Table I
DATASET PARTITION SIZES.

Dataset TR1 TR2 TS
Mfeat 700 650 650
Optodigit 1911 1911 1911
Pendigit 3747 3747 3498



Table II
COMPARISON RESULTS AMONG THE NBWMJV RULE AND THE MAJORITY VOTE (MJV) AND WEIGHTED MAJORITY VOTE (WMJV) RULES.

Dataset Ens. Best Avg. MjV wMjV NBwMjv

Mfeat 25 97.54 96.02 97.54 97.69∗ 97.85
50 96.92 95.58 97.38 97.54∗ 97.69

Optodigit 25 96.74 95.61 97.33 97.38∗ 98.05
50 96.74 96.12 97.16 97.22∗ 97.50

Pendigit 25 96.99 95.98 96.86 96.91∗ 97.06
50 96.99 96.09 97.06 97.06 97.03∗

to make them invariant to translations and scale distortions.
Note that, because of the writer speed or the digit, feature
vectors may be of different lengths, e.g., feature vectors
describing the ’1’ digit are shorter than the ones describing
the ’8’. In order to represent all the samples by feature
vectors having the same length, the original feature vectors
have been spatially resampled by using a linear interpolation
between pairs of points. In our data a spatial resampling of
8 points has been performed, as a consequence each digit is
represented by a sequence of 8 points (x1, y1), . . . , (x8, y8),
regularly spaced in arc length.

In our experiments, we have considered the neural net-
work classifier architecture of Learning Vector Quantization
(LVQ) [18]. The LVQ networks have been trained by using
the well known and largely used Frequency Sensing Compet-
itive Learning (FSCL) algorithm. In order to induce diversity
among the learned experts, we have trained networks having
a different number of neurons in the output layer. In practice,
for each dataset 50 classifiers have been learned, each
starting from a different random initialization and a diverse
number of output neurons. In particular, the neurons number
has been varied from 50 to 1 per class, generating a pool
of experts with different recognition rate. From this set of
classifiers two pools have been extracted: the first one is
made of the first 25 classifiers, i.e. those having a number
of output neurons per class in the range 50−25; the second
one includes all 50 trained classifiers.

In Table II the best and average test accuracy results of
the single classifiers making up the pools are reported (Best
and Avg columns). The set of responses provided by these
two pools have been used for learning the parameters of the
our combining rule, namely the probability distributions of
the nBC classifier (eq. 2). The test accuracy rates achieved
by the proposed rule are shown in the last columns of Table
II (NBwMjv header). Moreover, this table also reports the
recognition rates of the two voting strategies mentioned
above: majority vote (MjV header) and weighed majority
vote (wMjV header). As concerns the weights of the wMjV
rule, we used the recognition rates obtained by each classifier
on the training set TR2. For each ensemble, the values in
bold highlight the best test results, while the second best
outcomes are starred.

From the table it can be observed that in all cases but
one (Pendigit 25), the proposed approach achieves better

Table III
COMPARISON AMONG NBWMJV AND BAGGING AND BOOSTING.

Dataset Ens. Bag Boost NBwMjv

Mfeat 25 96.60∗ 93.16 97.85
50 96.63∗ 93.15 97.69

Optodigit 25 95.60∗ 90.57 98.05
50 95.65∗ 90.41 97.50

Pendigit 25 90.87∗ 86.67 97.06
50 90.89∗ 87.14 97.03

performance than those obtained by the two compared
combining rules. Even if, in absolute terms, the improvement
may seem negligible, it should be considered with respect
to the maximum achievable one. Indeed, for all datasets
high test accuracy rates (≈ 97%) are obtained by the best
two methods, this implies that also little improvements
may represent a significant part of the maximum possible
improvement. For example, if we consider the Mfeat 25
data, the absolute improvement obtained (0.16%) amounts to
the 7% of the maximum possible improvement. In the case
of Optodigit 25 results, the absolute enhancement (0.67%)
represents the 25% of the best possible one.

For the sake of comparison the proposed approach has
been also compared with two well known algorithms for
building classifier ensembles: bagging [8] and boosting [9].
In order to perform a fair comparison, for both algorithms
we used as base classifier an LVQ network. Moreover, as
regards the parameter values, all but the number of neurons
in the output layer, have been set to the same values used for
training the experts employed in our approach. As mentioned
above, in our experimental setup the number of neurons in
the LVQ output layer has been varied in order to induce
expert diversity. But in the case of the bagging and boosting
algorithms this option is unavailable, since all the parameters
of the base classifier must be set to a single value. In all
the experiments performed, such value has been set to 20
neurons per class. The achieved results by bagging, boosting
and NBwMjv are summarized in Table III. The values in
bold highlight the best test results, while the starred values
represent the second best outcomes are starred. From the
table it can be seen that the proposed approach always
obtains the best result, while the second best results are
always achieved by the bagging algorithm. Moreover, it is



worth noting that, the accuracy trends of the bagging and
boosting algorithms is similar to those of NBwMjv, Mjv
and wMjv: there are no significant difference between the
25 and 50 classifiers pools.

V. CONCLUSIONS

We presented a novel weighted majority vote rule for
combining the responses provided by a pool of classifiers.
The proposed rule has been devised in such a way that even
less performing experts can effectively contribute to cor-
rectly classify those samples that have not been adequately
learned by the top ones. This remarkable result is obtained
by estimating the joint probability distribution of each class
with the set of responses to be combined. These distributions
have been computed by using the naive Bayes probabilistic
model, which assumes the statistical independence of the
variables to be modeled. When more classes exhibit similar
joint probabilities, the final decision mainly depends on
the number of votes received by such classes. On the
contrary, when there is just one class exhibiting a high
joint probability value, this class will be likely assigned
to the input sample. This model has been chosen because
its computational complexity is linear with respect to the
number of experts to be combined. The experimental results
confirmed the effectiveness of the proposed method.

ACKNOWLEDGMENT

Many people deserve thanks for making the repository a
success. Foremost among them are the donors and creators
of the databases and data generators. Special thanks should
also go to the past librarians of the repository: David Aha,
Patrick Murphy, Christopher Merz, Eamonn Keogh, Cathy
Blake, Seth Hettich, and David Newman.

REFERENCES

[1] T. K. Ho, J. J. Hull, and S. N. Srihari, “Decision combination
in multiple classifier systems,” IEEE Trans. Pattern Anal.
Mach. Intell., vol. 16, no. 1, pp. 66–75, 1994.

[2] J. Kittler, M. Hatef, R. P. W. Duin, and J. Matas,
“On combining classifiers,” PAMI, IEEE Transactions on,
vol. 20, no. 3, pp. 226–239, 1998. [Online]. Available:
http://dx.doi.org/10.1109/34.667881

[3] L. I. Kuncheva, Combining Pattern Classifiers: Methods and
Algorithms. Wiley-Interscience, 2004.

[4] G. Fumera and F. Roli, “A theoretical and experimental
analysis of linear combiners for multiple classifier systems,”
PAMI, IEEE Transactions on, vol. 27, no. 6, pp. 942–956,
2005.

[5] L. Lam and C. Y. Suen, “Increasing classifiers for majority
vote in ocr. theoretical considerations and strategies,” in
Workshop on Frontiers in Handwriting Recognition, 1994, pp.
245–254.

[6] L. Xu, A. Krzyzak, and C. Y. Suen, “Methods of combining
multiple classifiers and their applications to handwriting
recognition,” IEEE Transactions on Systems, Man, and
Cybernetics, vol. 22, no. 3, pp. 418–435, May 1992.
[Online]. Available: http://dx.doi.org/10.1109/21.155943

[7] A. Della Cioppa, C. De Stefano, and A. Marcelli, “An
adaptive weighted majority rule for combining multiple clas-
sifiers,” in International Conference on Pattern Recognition
2002, 2002, pp. 1034–1038.

[8] L. Breiman, “Bagging predictors,” Machine Learning, vol. 24,
no. 2, pp. 123–140, 1996.

[9] Y. Freund and R. Shapire, “Experiments with a new boosting
algorithm,” in Proceedings of ICML96, 1996, pp. 148–156.

[10] L. Kuncheva, M. Skurichina, and R. P. W. Duin, “An experi-
mental study on diversity for bagging and boosting with linear
classifiers,” Information Fusion, vol. 3, no. 4, pp. 245–258,
2002.

[11] L. Kuncheva and C. Shipp, “An investigation into how ad-
aboost affects classifier diversity,” in Proceedings of IPMU02,
2002.

[12] I. Rish, “An empirical study of the naive bayes classifier,”
in IJCAI 2001 Workshop on Empirical Methods in Artificial
Intelligence, vol. 3, no. 22, 2001, pp. 41–46.

[13] H. Zhang, “The optimality of naive bayes,” in Proceedings
of FLAIRS 2004, V. Barr and Z. Markov, Eds. AAAI Press,
2004.

[14] N. Amor, S. Benferhat, and Z. Elouedi, “Naive bayes vs
decision trees in intrusion detection systems,” in Proceedings
of SAC 04. ACM, 2004, pp. 420–424.

[15] R. Caruana and A. Niculescu-Mizil, “An empirical compar-
ison of supervised learning algorithms,” in Proceedings of
ICML06, W. W. Cohen and A. Moore, Eds., vol. 148. ACM,
2006, pp. 161–168.

[16] R. O. Duda, D. G. Stork, and P. E. Hart, Pattern classification.
New York: Wiley, 2000.

[17] A. Frank and A. Asuncion, “UCI machine learning reposi-
tory,” 2010. [Online]. Available: http://archive.ics.uci.edu/ml

[18] T. Kohonen, M. R. Schroeder, and T. S. Huang, Eds., Self-
Organizing Maps, 3rd ed. Secaucus, NJ, USA: Springer-
Verlag New York, Inc., 2001.


