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Abstract—We present docExtractor, a generic approach for
extracting visual elements such as text lines or illustrations from
historical documents without requiring any real data annotation.
We demonstrate it provides high-quality performances as an off-
the-shelf system across a wide variety of datasets and leads
to results on par with state-of-the-art when fine-tuned. We
argue that the performance obtained without fine-tuning on a
specific dataset is critical for applications, in particular in digital
humanities, and that the line-level page segmentation we address
is the most relevant for a general purpose element extraction
engine. We rely on a fast generator of rich synthetic documents
and design a fully convolutional network, which we show to
generalize better than a detection-based approach. Furthermore,
we introduce a new public dataset dubbed IlluHisDoc dedicated
to the fine evaluation of illustration segmentation in historical
documents.

Index Terms—deep learning, document layout analysis, histor-
ical document, page segmentation, text line detection, synthetic
data

I. INTRODUCTION

In the context of a rising interest in digital humanities,
the need for easy-to-use and efficient tools to automatically
analyse document images has dramatically increased. Yet,
document analysis is usually broken down into multiple sub-
problems depending on the precise task (paragraph-level page
segmentation, text line detection, photograph or illumination
extraction, etc.) and the specific type of document (modern or
historical, printed or handwritten, its language, its condition,
etc.), each often treated independently and requiring a specific
set of training data and annotations. It is thus difficult for non-
specialists to find their way to the suited solution and universal
engines that can tackle multiple tasks across various types of
documents would be highly beneficial.

With the rise of deep learning, impressive improvements
have been made in the document analysis domain. Neural-
based methods not only have set new state-of-the-art in most
of document layout analysis tasks, but also enabled the devel-
opment of powerful generic solutions that can tackle multiple
analysis tasks with a same core method. Nonetheless, each task
specific solution can hardly be used off-the-shelf as it always
requires a dedicated training phase, involving a considerable
amount of annotations and some expertise.

In this work, we tackle the problem of document element
extraction as a unified line-level page segmentation task. We
present a fast and scalable synthetic document generation
engine that produces a wide diversity of documents with fine-
grained ground truth. We show that a fully convolutional

network trained on resulting dataset called SynDoc (i) is a
powerful off-the-shelf system with remarkable performances
across multiple layout analysis tasks and (ii) leads to state-
of-the-art results when fine-tuned with real data. In a detailed
ablation study, we demonstrate that our new data generation
process as well as our proposed network architecture are key
components for these results. To better evaluate generalization,
we also introduce a new public test dataset dubbed IlluHisDoc
and dedicated to the evaluation of illustration segmentation
methods for historical documents.

Synthetic generation pipeline, network implementation and
IlluHisDoc dataset are all available at our project webpage:
http://imagine.enpc.fr/~monniert/docExtractor/.

II. RELATED WORK

Page segmentation. Also called document layout analysis,
page segmentation is an active research area with numer-
ous competitions [1]–[4] and datasets [5]–[8]. They usually
consider many semantic categories (e.g., caption, paragraph,
title) and split text regions at paragraph level. To perform text
recognition, text line detection needs to be performed with
dedicated methods such as described in the next paragraph.
We argue that for many practical applications on historical
documents in which layout is often simple, important elements
are illustrations and text lines. In contrast to prior work, we
thus target segmenting illustrations and text lines jointly, a
problem we refer to as line-level page segmentation.

Text line detection. While text line detection in modern
printed documents is considered as a solved problem, it
remains challenging for historical documents [2], [9]–[11].
In most recent competitions [9], [11] the task is actually to
detect text baselines, which represent a compromise between
annotation cost and descriptive power. We use instead the x-
height representation [12] which not only enables to infer
the baseline but also we believe to be more robust, easier
to generalize and more directly useful for downstream text
recognition tasks. Recent competitions were dominated by
deep learning based approaches.The ICDAR2017 competition
on BAseline Detection (cBAD2017) [9] was won by the
approach proposed by Fink et al. [13], a sliding-window
dense prediction using a U-Net architecture [14]. Later, the
winning entry was successively surpassed by the ResNet [15]
adaptation of Ares Oliveira et al. [16] and by the model
proposed by Grüning et al. [17] which added an attention
mechanism and developed a sophisticated post-processing step
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based on superpixels. A slightly refined version of the latter
also won the cBAD2019 challenge [11]. We use a plain
segmentation approach similar to [16] followed by a simple
post-processing step designed to work for both text lines and
illustrations.

Synthetic data. Training deep networks for both page and
text line segmentation requires large amounts of data. For
modern documents, Yang et al. [7] and Zhong et al. [8]
proposed synthetic document generation engines based on
modern formats (respectively Latex and PDF) yielding to
large-scale and heterogeneous document datasets. However,
these documents are too simple to train a model that per-
form well on historical documents. To overcome the issue,
Capobianco and Marinai [18] as well as Journet et al. [19]
proposed toolkits to expand an existing annotated document
dataset by generating similar semi-synthetic documents with
the help of advanced data augmentation strategies. Resulting
datasets are thus limited in diversity and they are not designed
for generalization to new datasets. Besides, all the proposed
generation processes either don’t include graphical elements,
or rely on very simple ones. On the contrary, we propose a
complete synthetic document generation approach that gener-
alizes well to a large variety of historical document datasets
for both text line and illustration segmentation. Note that our
synthetic documents can also be used for text recognition,
similar to [20].

III. APPROACH

We consider line-level page segmentation as a pixel-wise
classification task and propose to solve it using a deep neural
network trained on our large-scale synthetic document dataset
SynDoc, followed by a simple connected component filtering.
In this section, we first introduce our synthetic data generation
engine, then describe our segmentation method.

A. Synthetic document generation and labeling

While several datasets [5]–[8] are available for page seg-
mentation, they do not embrace the wide diversity of historical
documents. Furthermore, text regions are always annotated as
coarse text blocks preventing straightforward line extractions.
To address these issues, we created a fast and scalable syn-
thetic document generation engine with pixel-wise annotations
and use it to generate a dataset of 10k images called SynDoc.
We first present an overview of the generation process, then the
basic elements we used to obtain challenging data and finally
the labeling we designed for optimal generalization. Examples
of generated documents can be seen in Fig. 1.

1) Document generation process: The document genera-
tion process includes three randomized steps. First, a page
background is selected from a set of 177 empty pages we
collected and undergoes augmentations: it can be symmetrized
to mimic a double page or pasted on a contextual image
picked from a set of 15 images. Second, a grid page layout
is drawn and each empty cell is filled with an element with
random margins. In the case the element is graphical, a
horizontal and vertical caption can be added. Third, different

forms of degradations are applied to avoid overfitting and
increase robustness: Gaussian blur, structured noise (random
shapes) addition and bleed-through. Bleed-through degrada-
tion is critical in manuscript layout analysis and we perform
it by overlaying another grid of random elements with low
opacity. This modular approach enables to easily add new
types of elements.

2) Element generation: We implemented four types of
elements which we found to be critical to obtain good results
on real historical documents:

• text: we used texts scraped from random wikipedia pages.
Texts can then be generated in 5 different layouts:
caption, floating-word, paragraph, table and title. We
augment them using translation (to Arabic or Chinese),
font changes (selection from 405 fonts we downloaded
from the web2 and formatting such as size or spacing),
justification, strike through, underlining, rotation and
bounding box addition,

• image: we used the Wikiart dataset1 which contains much
more difficult images for page segmentation than natural
image datasets.

• drawing: we transformed images scraped from random
wikipedia pages into drawings by blending them with
their blurred negative through color dodging,

• glyph: we collected 91 decorated fonts from the web2 and
a random uppercase letter is picked to generate a glyph.

At generation time, we perform generic on-the-fly augmen-
tations such as blurring, colorization and opacity variation.
Each element class is associated to its own labeling described
in the next paragraph. The benefits of using background
augmentations, drawings, glyphs, text translation and bleed-
through are experimentally demonstrated in Sec. IV-C.

3) Element labeling: Even though labeling can be element-
specific, we argue a wide diversity of labels makes it difficult
to generalize to new types of documents. Following most text
line detection competitions [9]–[11], we thus label all text
elements the same way and associate to all graphical elements
a single illustration label.

While labeling images is straightforward, we label the shape
of glyphs and drawings using closing operations. Contrary to
bounding box or contour labels, we believe such labeling is
not only accurate enough to extract the targeted region without
surrounding elements but also coarse enough to be easily
learned by the model. For text, to perform page segmenta-
tion at line level, we adopted x-height representation, which
corresponds to the core area of the text without ascenders and
descenders. Unlike bounding box or baseline labels, it enables
a straightforward line extraction while preventing lines from
merging. Besides, we expect that x-height representation has
a better generalization power to unknown fonts than baseline
labels as it doesn’t require to infer text orientation. Because we
still observed lines vertically merged by small pixel bridges
in the case of thin interline spaces, we labeled border regions

1http://www.wikiart.org/
2https://www.dafont.com/, https://fonts.google.com/



Fig. 1. SynDoc examples with ground-truth. Elements are: page-bkg , paragraph , table , title , caption , floating-word , image , drawing , glyph .

around the text representations to help the model learn interline
spaces. We experimentally show in Sec. IV-C the improve-
ments stemming from such text labeling choices.

B. Segmentation method

We perform line-level page segmentation using a fully con-
volutional network, optimized with a standard cross-entropy
loss and followed by a simple post-processing.

1) Network architecture: Similar to [16], we use a simple
encoder-decoder architecture combining the descriptive power
of ResNet [15] with the localization recovering capacity of
U-Net [14]. Compared to [16], we use a smaller ResNet-18 as
backbone encoder since detecting text lines requires keeping
document images as large as possible, which constraints mem-
ory, and we perform small modifications in the architecture
resulting in better performances. The full network architecture
is summarized in Fig. 2.

We replaced the max-pooling operation in ResNet conv2
block by a 2-strided 3x3 convolutional layer, as max-pooling
has been shown [21] to lead to gridding artifacts. The decoder
is composed of 5 upscaling blocks and a final convolutional
layer which assigns a class to each pixel. Each upscaling block
is composed of an upscaled version of the previous feature map
concatenated with the corresponding encoding feature map and
a 3x3 convolutional layer. Because text lines can be small,

conv2*

conv1

conv3

conv4

conv5 ResNet-18	layer
deconvolution

convolution	3x3
convolution	1x1

copy

3

64

64

128

256

512

256

128

64

32

32 32 c

S

S/2

S/4

S/8

S/16

S/32 256

128

64

64

Fig. 2. Network architecture. * indicates max-pooling replacement.

we upsample features using deconvolutional [22] layers with
stride 2 rather than bilinear interpolation.

2) Post-processing: We use a simple post-processing step
filtering out connected components with low area using a
class-specific ratio threshold.

To compare with state-of-the-art baseline detection methods,
we either retrieve baselines from the segmentation maps, or
for low shot comparisons change our labels to directly predict
baselines. To compute a baseline from a x-height component,
we first fit a straight line to retrieve the text orientation and
its bottom line. We then fit to the latter a 5-degree polynomial
to get a smooth baseline prediction. This process assumes that
the page is well oriented and it particularly fails in the case
of transposed texts (90° or 180° rotated).

3) Implementation details: All images are resized so that
their larger side is 1280 pixels, keeping the aspect ratio
constant. We perform per-channel standardization and dur-
ing training several on-the-fly data augmentations including
Gaussian blur, brightness and contrast variation, image rotation
and transposition. When fine-tuning on real datasets, we also
perform random scaling which we found to be critical for
high-performances. We limit the maximum number of pixels
to 3.5×106 to avoid memory error while scaling. For memory
reasons, we process one sample per batch and use Instance
Normalization [23] with a momentum of 0.1 instead of batch
normalization. We use ImageNet [24] pre-trained weights for
the encoder, which significantly speeds up the training, and
Xavier initialization [25] for the other convolutional layers.
We train for 100 epochs with Adam optimizer [26] with a
weight decay of 10−6. Learning rate is initially set to 0.001
and divided by 2 after 30, 60 and 80 epochs. On a Nvidia
GeForce RTX 2080 Ti GPU, training takes approximately 3
days and single image inference takes 1.06 second.

IV. EXPERIMENTS

In this section, we first introduce the sets of datasets used for
text line detection and illustration segmentation evaluations,
including our new IlluHisDoc. Then, we present quantitative



Fig. 3. Examples from IlluHisDoc dataset with ground-truth and segmentation outputs of our method ( illustration and text ). From left to right: printed
documents (P), manuscripts with illuminations (MSI), manuscripts with scientific diagrams (MSS), manuscripts with drawings (MSD).

results with comparisons to state-of-the-art of both our off-the-
shelf and fine-tuned approach. Finally, we present a methodical
ablation study of our approach.

A. Datasets

The cBAD competitions [9], [11] involve large datasets with
a great variety of historical document images and are the
standard benchmarks for text line detection. To the best of
our knowledge, there is no dataset for illustration segmentation
with such a diversity. Hence, we evaluate our method using
three diverse datasets: Mandragore3, RASM20194 and our
proposed IlluHisDoc dataset.

1) cBAD2017 and cBAD2019: Dataset for cBAD2017 is
split in two, Simple and Complex Tracks, with respectively
216 and 270 images for training, 539 and 1010 images for
evaluation. Larger and more diversified, cBAD2019 contains
1510 training and 1511 evaluation images.

2) Mandragore: Dedicated to the illustration detection, the
dataset is composed of 8 manuscripts, gathering 2807 pages
including 631 illustrations annotated with bounding boxes.
Because of inconsistent annotations, we removed Français
2692 and Latin 757 manuscripts as well as all book spine
and cover images, resulting in a dataset of 1691 images.

3) RASM2019: Dataset is composed of Arabic scientific
handwritten manuscripts. Initially meant for text detection and
recognition, it also includes annotations for scientific figures
labeled as graphics and images, which we merged into a global
illustration class. Test set consists in 100 images.

4) IlluHisDoc: To provide a more representative evaluation
for illustration segmentation, we created a new test dataset
dubbed IlluHisDoc (Illustrated Historical Documents). We
designed it to include diverse types of illustrations relevant for
digital humanities and to embrace a wide variety of documents,
layouts and degradations. Document images were mainly
downloaded from Gallica5. We explicitly split IlluHisDoc in
4 parts corresponding to different types of illustrations:

• P: 5 printed documents that comprise multiple forms of
illustration (drawing, ornament, painting, photo),

• MSS: 5 manuscripts with scientific diagrams,
• MSI: 5 manuscripts with illuminations,
• MSD: 5 manuscripts with drawings.

3http://api.bnf.fr/mandragore-echantillon-segmente-2019
4https://www.primaresearch.org/RASM2019/resources
5gallica.bnf.fr, Bibliothèque nationale de France

TABLE I
RESULTS FOR CBAD2017 DATASET

Method Training Simple Track Complex Track

set used P-val R-val F-val P-val R-val F-val

Tesseract4 0.396 0.545 0.459 0.322 0.520 0.398
Ours (off-the-shelf) 0.871 0.930 0.900 0.844 0.782 0.812

LITIS [9], [12] X 0.780 0.836 0.807 - - -
IRISA [9] X 0.883 0.877 0.880 0.692 0.772 0.730
UPVLC [9] X 0.937 0.855 0.894 0.833 0.606 0.702
BYU [9] X 0.878 0.907 0.892 0.773 0.820 0.796
dhSegment [16] X 0.88 0.97 0.92 0.79 0.95 0.86
DMRZ [9], [13] X 0.973 0.970 0.971 0.854 0.863 0.859
Planet [17] X 0.98 0.98 0.978 0.93 0.92 0.922
Ours (fine-tuned) X 0.948 0.978 0.963 0.883 0.947 0.914

TABLE II
RESULTS FOR CBAD2019 DATASET

Method Training set used P-val R-val F-val

Tesseract4 0.442 0.552 0.491
Ours (off-the-shelf) 0.844 0.815 0.829

Baseline [11] X 0.773 0.743 0.758
TJNU [11] X 0.852 0.885 0.868
UPVLC [11] X 0.911 0.902 0.907
DMRZ [11] X 0.925 0.905 0.915
Planet [11] X 0.937 0.926 0.931
Ours (fine-tuned) X 0.920 0.931 0.925

In each source document, we annotated 10 images with at
least one illustration and 10 images without any resulting in
400 pages. Annotations were performed at pixel-level using
VGG Image Annotator [27]. Note that the aim of this dataset
is to evaluate the generalization capability of out-of-the-box
solutions to generalize to unseen data and not for training.
Examples of our four types of documents are shown in Fig. 3.

B. Results

In this section, we evaluate our approach for both baseline
detection and illustration segmentation. We compare to the off-
the-shelf open-source Tesseract4 and state-of-the-art methods.

1) Baseline detection: We evaluate our method for baseline
detection on the test split of cBAD2017 and cBAD2019 using
the competition evaluation scheme. We report results for off-
the-shelf and fine-tuned configurations in Table I and II.

While never trained on real data, our off-the-shelf approach
provides good results across the three benchmarks, outper-
forming Tesseract4 by a large margin and showing results
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Fig. 4. F-value with different amount of training data on cBAD2017 Simple
Track using networks randomly initialized and pre-trained on SynDoc.

comparable to the weaker methods trained on real data. This
shows that our method trained only on computer-generated
data generalizes well to real and complex handwritten data.

After fine-tuning on the respective training sets, our method
leads to results on par with state-of-the-art methods. This
is a strong result since these methods typically involve very
advanced and specific post-processing steps, while ours is very
simple and common across all datasets and element types. Our
performance could likely be further improved, for example
using the superpixel-based post-processing of [17] which they
demonstrate to provide a remarkable boost. This is however
orthogonal to the goal of our work, which is providing a
simple, robust and generic method.

Our synthetic training data could also be used to initialize a
network and fine-tune it with a few real examples. To evaluate
this setup, we split cBAD2017 Simple Track training set in
two, keeping 40 samples as evaluation set and training on the
rest. In Fig. 4, we compare random and SynDoc initializations
with an increasing number of training samples to fine-tune the
network. Remarkably, SynDoc initialization consistently leads
to better results, with particularly large gaps when less than
20 annotated samples are available.

2) Illustration segmentation: We evaluate our off-the-
shelf approach for illustration segmentation on Mandragore,
RASM2019 and IlluHisDoc. Mean Intersection over Union
(mIoU) scores are reported in Table III.

To validate the benefits of both our synthetic dataset and
our segmentation approach, we also report results using the
synthetic PubLayNet dataset introduced in [8] as well as one
of their benchmarked methods, Mask-RCNN [28]. Our full
method provides results far above any baseline, including
Tesseract4 which generalizes poorly to historical documents.
Two effects can be clearly identified. First, for both training
datasets, our segmentation approach provides much better
results than a detection-based approach across all datasets.
Second, training on SynDoc provides much better general-
ization on historical datasets than training on PubLayNet both
for Mask-RCNN and our segmentation method.

C. Ablations

We here show the benefits of our contributions for synthetic
document generation, text labeling and network architecture.

TABLE III
ILLUSTRATION SEGMENTATION (MIOU IN %)

IlluHisDoc

Method Training Mandra. RASM avg P MSS MSI MSD

Tesseract4 17.2 6.0 14.8 41.4 9.2 2.0 6.5
M-RCNN PubLay. 9.8 4.2 11.5 34.3 3.1 1.5 7.2
Ours PubLay. 18.3 14.8 24.3 57.7 16.9 5.3 17.2
M-RCNN SynDoc 72.3 36.9 55.4 93.5 60.3 40.3 27.6
Ours SynDoc 86.6 71.0 76.1 97.2 61.8 76.8 68.5

TABLE IV
ABLATION STUDY ON SYNDOC IMPROVEMENTS (MIOU IN %)

Experiment Mandragore RASM2019 IlluHisDoc

SynDoc 86.6 71.0 76.1
w/o bleed-through 84.3 67.0 77.2
w/o text translation 84.4 63.6 76.6
w/o drawing & glyph 80.5 23.6 52.5
w/o bkg augmentations 55.9 44.6 44.1

All experiments are trained on SynDoc following Sec. III-B3.
1) SynDoc: In Table IV, we evaluate the improvements

proposed for synthetic document generation by systematically
removing them from the generation engine. Evaluation is done
for illustration segmentation in Mandragore, RASM2019 and
IlluHisDoc. Results show that adding bleed-through, texts in
different languages, drawings and glyphs as well as augment-
ing page backgrounds with double pages or contextual images,
all contribute to our high performances in amounts that differ
depending on the specificity of each test dataset.

2) Text labeling: In Table V, we show the benefits of our
x-height representation with border labels for text lines. We
train our approach with different labels and evaluate baseline
detection on cBAD2017 and cBAD2019. Two main effects
can be seen. First, predicting x-height representation and
using the prediction to infer baselines performs better than
directly predicting the baseline. Second, adding border labels
dramatically boosts performances both when training with x-
height and baseline representations. Nonetheless, the boost is
much clearer when using x-height, because in this case borders
are necessary to avoid merging different close lines. On the
three benchmarks, the combination of x-height with border
labels provides a very significant boost, allowing our method
to perform well without advanced post-processing.

3) Network architecture: We now validate the benefits
of the architecture changes we made compared to dhSeg-
ment [16]: a simple ResNet-18 backbone, the replacement of

TABLE V
ABLATION EXPERIMENTS FOR TEXT LABELING CHOICES (F-VALUE)

cBAD2017

text label border label Simple Complex cBAD2019

baseline 0.663 0.719 0.637
baseline X 0.714 0.771 0.678
x-height 0.749 0.724 0.758
x-height X 0.900 0.812 0.829



TABLE VI
ABLATION EXPERIMENTS FOR ARCHITECTURE MODIFICATIONS

EVALUATED ON SYNDOC (IOU IN %)

conv2 upscaling #param bkg illustration text border avg

max-pooling bilinear 13.6M 97.5 94.6 85.8 74.6 88.1
strided conv bilinear 13.6M 97.6 95.0 86.6 75.5 88.7
strided conv deconv 14.4M 97.7 94.9 87.6 77.2 89.3

the max-pooling by a strided convolution and the deconvolu-
tional upscaling. In Table VI, we evaluate three variants of
our model on a synthetic testing set, with and without max-
pooling and upscaling replacements using IoU for all labels.
This enables us to obtain results similar to those of dhSegment
on the same data (88.8% in average compared to 89.3% for our
architecture, dhSegment being slightly better for illustrations
and worse for texts) while using much less parameters (14.4M
versus 32.9M for dhSegment). This is important as we found
that high-resolution images and upscaling data augmentation
when fine-tuning were crucial to obtain results on par with
state-of-the-art baseline detection methods.

V. CONCLUSION

To the best of our knowledge, we presented the first robust
off-the-shelf system for generic element extraction in historical
documents. Our approach relies on a single network and
simple post-processing that simultaneously perform text line
and illustration segmentation. Its success is based on two
key components we introduced: (i) a rich, fast and modular
synthetic document generation engine and (ii) an adapted
segmentation network that predicts bounding shapes for illus-
trations and x-height+border representation for text lines. We
demonstrated our off-the-shelf approach provides, without any
fine-tuning, remarkable performances across a wide variety
of challenging datasets. Furthermore, when annotated training
images are available, our network can be used as a good
initialization for fine-tuning and leads to results on par with
the more complex state-of-the-art approaches.

We see our work as a first step toward the development
of universal off-the-shelf open-sourced methods for practical
historical document analysis. Indeed, a lot of efforts has been
dedicated to boosting performances on specialized challenging
datasets. Yet, we believe that generic approaches that do not
rely on specific trainings for each type of document and task
are also an important challenge and can have a strong impact
to increase applications in the humanities. We also think our
synthetic generation engine will be easy to improve on by
adding new elements and more advanced augmentations for
even greater generalization capabilities.
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