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Abstract—The task of writer verification is to provide a
likelihood score for whether the queried and known handwritten
image samples belong to the same writer or not. Such a task
calls for the neural network to make it’s outcome interpretable,
i.e. provide a view into the network’s decision making process.
We implement and integrate cross-attention and soft-attention
mechanisms to capture the highly correlated and salient points
in feature space of 2D inputs. The attention maps serve as an
explanation premise for the network’s output likelihood score.
The attention mechanism also allows the network to focus more
on relevant areas of the input, thus improving the classification
performance. Our proposed approach achieves a precision of
86% for detecting intra-writer cases in CEDAR cursive “AND”
dataset. Furthermore, we generate meaningful explanations for
the provided decision by extracting attention maps from multiple
levels of the network.

I. INTRODUCTION

Writer independent verification is the task to measure the
similarity of two given handwritten samples as how likely is it
that the samples were written by the same, without having any
knowledge of writers identity. There have been many efforts
in this field to provide an automated hint to streamline the job
of manual handwriting examiners, making this an interesting
research problem.

A general intuition is that samples from a single source
tend to be similar while samples from different sources tend
to show bigger variances. The premise for finding unique
characteristics is based on the hypothesis that every individual
has a unique way of writing [1]. Further studies show that two
different writers may also happen to have a similar writing
style. This makes the problem of handwriting verification
challenging.

With the advent of automated pattern learning methods; es-
pecially with models that can be trained to focus on key areas,
it is possible to design a robust system to assist a Forensic
Document Examiner (FDE). In this work we propose attention
based approaches for the task of handwriting verification. We
produce two kind of attention maps1 which highlights (i) the
important corresponding pixel regions between two images
that the network deemed similar (ii) the high correlated pixel
regions, in the feature space of given samples, that the network
attends to provide its decision. Such visualizations render the
desired interpretability for forensic verification systems.

1Code is publicly available on:
https://github.com/mshaikh2/AttentionHandwritingVerification

II. RELATED WORK

The task of verification is prevalent across bio-metric
domains, viz. face verification in DeepFace [2], fingerprint
verification [3], handwritten evidence verification [4], iris
verification [5], speaker verification [6]. Our paper focuses
on handwritten evidence verification and proposes a novel
approach for writer independent verification.

Earlier, researchers in the field of handwriting verification
used handcrafted features coupled with classic learning tech-
niques, where, Rjean et al [7] present an overview of pre-
processing techniques and feature extraction methods from
handwritten text, Srihari et al introduced Gradient Structural
Concavity (GSC) feature extraction technique [1] for writer
identification and verification and present CEDAR-FOX tool,
which is a noteworthy contribution in this field. L Bovino et
al [8] present a multi-expert system based on stroke-oriented
description for dynamic verification, Marius Bulacu et al [9]
present statistical methods that operate on the texture level and
the character-shape (allograph) level, AA Brink [10] prove that
slantness as a feature for handwritten text is overrated which
shows the robustness of handcrafted features, K Tselios et al
[11] present automated feature extraction method based for
handwritten text, D. Bertolini et al [12] discuss the use of
texture descriptors to perform writer verification, M. N. Abdi
et al [13] propose a grapheme-based approach to offline Arabic
writer identification and verification, Manabu Okawa et al [14]
propose a text and user generic model for writer verification
that uses a combination of pen pressure information from ink
intensity and writing indentations.

However, the recently proposed deep learning models en-
abled automatic extraction of generic features. Ameur Bensefia
[15] use Levenshtein edit distance based on Fisher-Wagner
algorithm to estimate the cost of transforming one handwrit-
ten word into another, Shaikh et al [16] present a Hybrid
Deep Learning architecture combining handcrafted features
and Convolutional Neural Network (CNN) based features, Chu
et al [17] propose an end-to-end deep learning method based
on statistical features extracted on set-of-samples level.

Nevertheless, verification is still a challenge, as lack of
interpretability still exists in these current widely used models.
This makes it tough for the FDE to rely on model’s binary
decision. There is a demand to provide visual or textual
explanations for a models decision which can aid the FDE’s
in verification of the samples confidently. Chauhan et al [18]
generate explanations for the confidence provided by CNN by
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mapping the input image to 15 annotated features provided
by experts. However, the generation of such annotated data
using using manual labor takes significant effort and is time
consuming.

Hence, there is a need for a model to display what location
is it attending to, while making a decision. Attention models
proposed by Dzmitry Bahdanau et al [19] automatically search
for parts of a source input that are relevant to predicting the
output, Luong et al [20] proposed hard and soft attention
wherein hard attention allows the output to be influenced by
exactly one most relevant input, and soft attention uses a less
strict criteria by only boosting the most relevant input while
still allowing a subset of other inputs to contribute towards the
models decision. Vaswani et al [21] presented a very powerful
model in Natural Language Processing (NLP) based solely
on multi headed attention mechanisms, dispensing with recur-
rence and convolutions entirely. Han Zhang et al [22] extend
the concept of attention to 2d images to capture non-local
dependencies and demonstrate the models efficacy generating
images. Furthermore, Naofumi Tomita et al [23] leverage 3D
CNN to perform object localization using attention.

In this work, we propose to tackle the writer verification task
with Multi-Head Cross Attention (MHCA) mechanism, where
the model compares the two input images and focuses on the
corresponding and relevant pixel in their feature space. The
network integrates a Soft Attention (SA) mechanism designed
using 3D CNN to help it attend more on the important
correlated features for classification. We then generate two
attention maps, (i) to show which locations in the two images
are highly correlated, (ii) to show at which locations the model
focuses for classification. We conduct extensive experiments
on two datasets to show the effectiveness of cross attention
combined with soft attention. Our experiments demonstrate
that the approach performs at par or better than the existing
state of the art methods on widely used datasets while also
providing insightful explanation on model’s decision.

III. DATASET

We perform experiments on “AND” Dataset [1], [18] and
test the performance of best model on CEDAR Signature [24]
dataset. Samples in both the datasets were handwritten on a pa-
per and then scanned to create images of the manuscripts. For
both datasets, after appropriate square padding corresponding
to the maximum width and height of the sample, we resize
each of them to have consistent size of 64×64 using bi-cubic
interpolation. Moreover, we invert the pixels such that all the
background pixels are 0. We apply a threshold on the images in
CEDAR Signature dataset and change any pixel values which
less than 30 to 0. Finally, we normalize the images in both
datasets by dividing each pixel with 255 so that the range of
values of the pixels stay between 0 and 1.

A. Cursive “AND”

The dataset is formed by cropping segments containing the
word “AND” from the full letter CEDAR dataset [1]. Post
cropping, some non-“AND” words were removed manually.

After cleaning, we have a dataset of 1533 writers, constituting
around 14000 samples variable shapes.

We define the samples written by the same and different
writer as “intra-writer” and “inter-writer” pairs respectively.

0002a_numX 0001a_numX forgery_10_X original_10_X

(a) (b)

Fig. 1. (a) Samples from the CEDAR cursive “AND” dataset. (b) Samples
from CEDAR Signatures dataset. The green arrows indicate pairing of samples
from the same writer. The red arrows indicate pairing of samples from
different writers. The character X ∈ {1, 2, 3}

Each writer on an average has 9 samples of the word
“AND”. Hence we have around

(
9
2

)
= 36 samples of similar

pair per writer. Therefore, we have around 1533× 36 = 55188
pairs of intra-writer samples. Furthermore, we shuffle all the
samples and use K-Fold cross validation [25] with K = 5.
We choose 4 folds as training set and 1 fold as testing set.
Within the respective folds, we randomly generate 10 times
more inter-writer pairs than intra-writer pairs, to make the
training more effective as done in [26]. Thus, the ratio of intra-
writer pairs to inter-writer pairs in our training and testing sets
is 1:10 for all experiments with this dataset.

B. CEDAR signature

CEDAR signature database [24] contains signatures from
55 individuals. Each of these signers signed 24 genuine
signatures. For each signer there are 24 forgery samples from
about 20 skillful forgers. Hence the dataset contains 1,320
genuine signatures as well as 1,320 forged signatures. All
images in this dataset are available in gray scale mode.

We divide this dataset in 11 folds based on writer ids. Next,
we consider random 10 parts as training set and remaining
1 part as test set. Thus, there are 50 writers are in train-
ing set and 5 writers in testing set. Furthermore, we have(
24
2

)
= 276 genuine pairs per writer with 50 × 276 = 13800

and 5 × 276 = 1380 genuine-genuine pairs in training and
in testing set respectively. Furthermore, we consider all the
24 × 24 × 50 = 28800 and 24 × 24 × 5 = 2880 genuine-
forgery pairs for training and testing set respectively. Hence,
the ratio of genuine-genuine-writer pairs to forgery-genuine-
writer pairs in our training and testing sets is almost 1:2 for
this dataset.



IV. METHOD

We employ cross attention (CA) and soft attention (SA)
mechanism in conjunction with Inception-Resnet-v2 (IRv2)
[27], a powerful feature extractor. The overall network is
displayed in Fig. 4. We first process the input through the
original stem block of IRv2 or two convolutional blocks of
VGG16 (we consider this as VGG16’s stem). The stem block
extracts d features while scaling down the input height H and
width W to h′ and w′ respectively. The higher level modules
are discussed below:

A. Shared Weights

To process two input images simultaneously we train two
copies of the stem block in a Siamese setting, such that both
the branches have shared weights. The stem block outputs a
3D tensor Rh′×w′×d. The stem is the replica of the IRv2 stem
block, with only difference that inputs are gray scaled and of
size 64× 64.

B. Cross Attention

To cross attend f1, f2 the feature outputs of stem 1 and stem
2 respectively, we first generate the key k, value v and query
q. Where k = M(f2); v = N(f2); q = L(f1) and M,N,L
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Fig. 2. Internal working of a Cross Attention module. L, M, N and V are
separate 1 × 1 convolutions. R is the reshape operation. � represents matrix
multiplication. S denotes softmax which is performed per row to generate
Attention Map.

are 1×1 convolution functions. Evidently in Fig. 2, image 2 is
considered as key input and image 1 as the query input. The k,
q and v are then reshaped to tensor ∈ Rh′∗w′×d = Rt×d. Cross
Attention (CA) is inspired by the self-attention presented in
[22] and is demonstrated in Fig. 2. We calculate the relevance
between q and k, which are features of two distinct inputs.

βi,j =
exp(zij)∑t
j=1 exp(zij)

,where zij = k � qT ; zij ∈ Rt×t (1)

Here, � represents matrix multiplication; zij calculates the
relevance between every ith and jth location in k and q respec-
tively. βij , the attention map represents softmax normalization
across every ith row as Eq. 1 boosts the most relevant jth value
and suppresses the non-relevant values, for each corresponding

ith row . Next, we calculate the enhanced representation r, of
image 1 with infused contextual representation of image 2.

ri =

t∑
j=1

βi,jvj ,where ri ∈ {r1, r2, . . . , rt} (2)

r is then reshaped to tensor ∈ Rh′×w′×d and the final output
vector o is calculated. Here, o = V (r), where V is 1 × 1
convolution function.

Furthermore, we swap the inputs and perform the aforemen-
tioned calculations again. This recalculation makes sure that
features of image 1 have the context of image 2 and vice-
versa. Finally, the two outputs are concatenated on channel
axis such that the resultant output ∈ Rh′×w′×2d

The above operations constitute two attention heads, that is
one set of weights for each output. We can scale this module
to have n attention heads. In our experiments n = 8, such that
first four heads are setup with image 1 as key and remaining
four have image 2 as key. Multiple attention heads help the
network to identify more than one relevant feature locations
of one image with respect to a given index in another.

C. Soft Attention
The foreground pixels that contain a handwritten stroke

are useful pixels. Each sample in the data contains only
7% percent of such useful pixels, as rest of the pixels are
background with no information. Inspired by the work done
by [23] we propose a soft attention technique that uses 3D-
convolution [28] to attend and identify only the most important
features responsible for classification.
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Fig. 3. Internal working of a Soft Attention module. ⊕ denotes aggregation
and ∗ represents convolution operation. S denotes softmax which is performed
over one feature map to generate one attention map.

Convolving a given three dimension output fx ∈
Rhx×wx×dx with one 3D kernel g of size 3×3×dx, generates
a feature map f3d ∈ Rhx×wx×1.

Having K such kernels represents K attention heads and
generates a feature map f3d ∈ Rhx×wx×K . Next, we normalize
each of the K feature maps and aggregate them to calculate
the soft attention scores ζ:

ζ =

K∑
k=1

exp(f3dij )∑wx

i=1

∑hx

j=1 exp(f3dij )
; where f3d = g(fx) (3)

The normalization assigns an importance score for relevant
locations in the feature map. Next we multiply fx with ζ and



obtain fxζ , to scale the values of salient locations. Finally, oζ is
calculated by adding fx with the product of fxζ and ω, where
ω is a learnable scalar.

oζ = fx + ωfxζ (4)

This enables the network to decide how much attention should
be applied over specific locations of the feature map.
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Fig. 4. End to end architecture using VGG16 [29] or Inception-Resnet-v2
(IRv2) [27] blocks, multiple Cross Attention (CA) and Soft Attention (SA)
modules. ⊗ indicates concatenation on channel axis.

D. Loss Function

This problem is set up as a two class classification problem.
Hence, we optimize the network using categorical cross-
entropy (CCE) function

LCCE = − log(pt) (5)

However, since there is a large skew between inter and intra-
class samples, we also experiment with Focal Loss (FL) [30]
and implement the categorical focal loss Lfl as

LFL = −αt(1− pt)γ log(pt); (6)

where

pt =

{
p if y = 1

1− p otherwise
;αt =

{
α if y = 1

1− α otherwise

p ∈ [0, 1] is the model’s estimated probability, and y ∈ [0, 1]
is the ground truth label.

V. EXPERIMENTS AND EVALUATION

A. Setup

The initial building blocks of our feature extraction model
uses the feature extraction blocks from VGG16 [29] or
Inveption-ResNetv2 (IRv2) model [27]. These networks are
the state-of-the-art image feature extractors trained on Ima-
geNet [31] dataset for classification.

We train the model in two settings of input: (1) Two images
concatenated on channel axis (Concat), (2) Two images in
parallel(Siamese). In Concat setting, there is only one input to
the network as we pre-process the two input images to overlay
on one another. Soft-Attention mechanism is applicable to both
the settings, and Cross-Attention is applicable only in case 2,
when the two inputs are in a Siamese setting. Siamese setting
is as displayed in Fig. 4.

The CA blocks are laid in parallel to extract key point
correspondence between the input images. Next, a block,
of SA layer followed by a 2 × 2 max-pool layer, is used
alongside a standard feature reduction 2× 2 max-pool block.
The outputs of the SA max-pool and standard max-pool are
then concatenated on channel axis. This helps the network
attend more on important features for classification and reduce
adherence to noisy part of data. To introduce some data
augmentation and regularization we introduce a dropout of
0.5% probability after each convolutional block.

We train the network for 100 epochs with an early stopping
patience of 20 epochs. Validation loss is monitored at every
epoch to checkpoint the weights of the best model. For
all the experiments we use Adam optimizer with learning
rate, lr = 0.0001 and a decay, lrdecay = 1.0−6. Both
the customized VGG16 and IRv2 networks contain around
23 million parameters respectively. We utilized three 11 GB
Nvidia 1080Ti GPUs in parallel for all the experiments which
were written in Keras framework on Tensorflow backend.

B. Evaluation metrics

We evaluate our models using F-1, Precision (P), Recall (R),
False Acceptance Rate (FAR), False Rejection Rate (FRR) and
Accuracy (Acc). FRR, also known as “Type I” error, is the
measure of the likelihood that the model will incorrectly clas-
sify an intra-writer sample as inter-writer. FAR, also known
as “Type II” error, is the measure of the likelihood that the
model will predict an inter-writer sample as intra-writer.

C. Results

Table I shows the performance of baseline models for “Con-
cat” and “Siamese” setting without any attention modules.
In Table I when γ is set to 0, FL is same as CCE. We set
α = 0.75 and γ = 2.0 and adopt Siamese setting for our
further experiments.

Next, we experiment on the proposed attention based mod-
els and show the results in Table II. We also managed to
replicate the work done in [18] and report their metrics. As
for work done by [16] we could only report their accuracy on
this dataset. The MHCA combined with SA achieves the best
results in Siamese setting. Moreover, the network is able to



TABLE I
ESTABLISHING BASELINE ON “AND” DATASET AND PARAMETER SELECTION FOR FL

Concat Setting Siamese Setting

α γ F-1 P R FAR FRR Acc F-1 P R FAR FRR Acc

0.50

0.00 0.72 0.85 0.62 1.12 37.53 95.56 0.78 0.83 0.74 1.69 25.99 95.74
0.10 0.71 0.85 0.61 1.05 39.11 95.48 0.77 0.91 0.66 0.94 33.63 96.82
0.20 0.73 0.83 0.65 1.38 34.79 95.58 0.77 0.88 0.69 1.07 31.48 96.92
0.50 0.74 0.83 0.67 1.35 33.09 95.76 0.79 0.89 0.71 1.10 29.06 97.10
1.00 0.73 0.88 0.62 0.83 37.78 95.80 0.81 0.93 0.72 1.71 27.99 97.14
2.00 0.74 0.82 0.67 1.47 33.31 95.63 0.79 0.88 0.73 1.45 27.38 96.97
5.00 0.73 0.77 0.68 2.00 31.69 95.29 0.75 0.83 0.69 1.02 31.19 96.63

0.75

0.10 0.71 0.83 0.62 1.33 37.56 95.37 0.77 0.88 0.68 0.67 32.54 96.71
0.20 0.73 0.85 0.64 1.13 36.09 95.69 0.79 0.91 0.69 0.92 31.03 97.03
0.50 0.74 0.83 0.67 1.42 32.66 95.73 0.79 0.88 0.72 1.07 28.01 97.07
1.00 0.72 0.83 0.64 1.31 35.69 95.56 0.79 0.89 0.71 1.70 28.91 96.89
2.00 0.74 0.81 0.68 1.59 32.41 95.60 0.81 0.87 0.76 1.77 24.33 96.94
5.00 0.72 0.86 0.62 1.00 38.46 95.58 0.79 0.92 0.69 1.36 30.86 96.92

TABLE II
EXPERIMENT RESULTS OF VARIOUS MODELS ON “AND” DATASET

Method F-1 P R FAR FRR Acc

HDL [16] - - - - - 92.16
DAAM SAE [18] 0.70 0.85 0.59 3.69 40.57 95.23
Concat Baseline 0.72 0.85 0.62 1.59 37.53 95.60
Concat SA 0.73 0.85 0.64 1.73 36.36 95.69
Siamese Baseline 0.78 0.83 0.74 1.77 26.00 96.18
Siamese CA SA 0.79 0.84 0.74 1.93 25.82 96.34
Siamese MHCA SA 0.81 0.86 0.76 1.73 24.03 96.39

lower the FRR considerably as compared to vanilla settings.
The difference in FAR and FRR values are due to the low
number and high imbalance of samples per writer. We also
experiment the application of MHCA on various levels of
feature maps and display it’s optimum location in Table III.
We observe that as we increase the feature map size the

TABLE III
EXPERIMENTS TO LOCATE THE OPTIMUM FEATURE MAP SIZE TO ADD CA

MODULE

FeatureMap Size F-1 P R FAR FRR Acc

16 × 16 0.70 0.78 0.64 1.84 35.81 95.06
32 × 32 0.81 0.86 0.76 1.73 24.03 96.39

performance improves. This is because as size reduces the
features in the map become more abstract and there are less
evidences to relate features of two images. [22]

TABLE IV
EXPERIMENT RESULTS OF VARIOUS METHODS ON CEDAR SIGNATURE

DATASET

Method FAR FRR Acc

Graph matching [32] 8.20 7.70 92.10
SigNet [33] 0.00 0.00 100.00
SigNet-F (SVM) [34] 4.63 4.63 -
Siamese MHCA SA 5.70 6.30 92.37

Furthermore, we train our model on CEDAR Signature [24]
to demonstrate that the proposed MHCA-SA mechanism is
effective across different datasets. As displayed in Table IV

our method achieves comparable potential with most widely
used methods.

D. Discussion and Ablation Analysis

Writer verification data is inherently biased with signifi-
cantly more negative samples overwhelming positive samples.
We mainly rely on Precision, Recall and F-1 score due to
their robustness to such imbalanced data. Accuracy and FAR
on the other hand are sensitive to the ratio of negative samples.
This may be the case in our experiments where an increase in
the number of easy negative samples in test set can lead to a
drastic drop in FAR and increase accuracy.

(a) (b)

query querykey key

Fig. 5. CA Maps for input images. (a) CA Maps when inputs are are from
the same writer, (b) CA Maps when inputs are from different writers.

Based on our observations, using VGG16 blocks performed
better than employing IRv2 blocks, and hence, we report the
results with VGG16 blocks. Furthermore, we use softmax in
our classification layer rather than sigmoid as softmax coupled
with CCE tend to distribute the probability distribution far
apart without requiring any constant margin. Moreover, CA
finds the corresponding related pixels between two given im-
ages using cosine similarity score in feature space which leads
to further improvement in feature generation. Additionally, SA
boosts the network’s ability of important feature selection and



hence performance.
We extract the attention maps from the CA and SA modules

which provides interpretation on the models learning process
and finding evidence of writer similarities. Fig. 5 displays
attention energy maps from one of the CA heads. The images
in Fig. 5a and Fig. 5b show the cross attention correspondence
maps, when the images were from the same/different writer
respectively. In both the subsections the images on the left
are considered as the query and the adjacently right images
are considered as key images to attend on. As shown in 5a,
when a pixel on the curve of “a” is used as a query, two
corresponding points from the key image are returned by the
model. Visibly, these two points extracted from the key image
are similar in shape and stroke. We hypothesize that the model
uses this information to further strengthen it’s belief that the
images are from same writer.

Furthermore, as seen in Fig. 5b the model could not identify
similar strokes, edges or contours, from the key image for the
given query points, in the two images towards bottom right.
This perhaps enhances the ability of the model to identify
dissimilar writings.

We observe the pattern, of matching corresponding key
points in similar alphabets, uniform across intra-writer sam-
ples. Also, the phenomena of query pixel matching an exact
same black/non-important pixel in the image, is consistent for
inter-writer samples. This provides a hint to the FDE’s for the
reason behind the models decision.

Next, we extract the attention maps from the SA layers, to
display the areas which the network has jointly attended. Fig.

(a) (b)

Fig. 6. SA Map for input images. (a) SA Maps when inputs are are from
same writer, (b) SA Map when inputs are from different writers.

6 displays energy maps from the SA layer. These maps are
calculated from the output of convolutional layer connected
post the CA features are extracted concatenated. Since, this SA
layer was connected after the layer that outputs feature maps
of shape 16×16, the shape of this SA map is 16×16. We resize
these maps to 64×64 using linear interpolation and mask it on
the inputs. The red and green contours show the areas that the
network finds most useful for classification. Specifically, the
red areas have received highest attention and the green areas
have received lower attention, while the dark blue areas are

mere background regions. As evident from Fig. 6a top row,
the energy is concentrated around the loop of “a” and “d” and
the tent of “n” which are very visually similar in the samples,
where as in the top row of Fig. 6b the energy concentrations
are around dissimilar portions of “n” and dissimilar loops of
“d”. This shows that the network is able to indicate pixel
regions relevant to the classification of inter and intra-class
samples respectively.

We experimented with VGG16 and IRv2 and observed
better results and faster convergence with VGG16. Also
applying batch-normalization after each attention layer and
ReLU activation after each concatenation layer improved the
performance and also led to faster convergence.

VI. CONCLUSION

In the domain of handwriting verification, it is required to
explain the model’s decision which can assist the Forensic
Document Examiner (FDE). In this work, we have displayed
the potential of Cross Attention and Soft Attention mechanism
for this task which not only performs at par or better than the
state-of-the-art methods but also provides insightful explana-
tions on our model’s decision. The CA modules can be easily
set up to work with multi-modality data, i.e. to find cross-
relevance in data modalities. Here, CA modules extract the
intra-writer relevancies very effectively, while the SA module
successfully extracts the most crucial pixel locations in the
joint input. In future work we plan to apply CA to multi-modal
datasets and also extend the current approach to handwritten
full page datasets comprising of multiple words. We also plan
to test the feasibility of SA on larger datasets for classification
and related tasks.
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