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Abstract—Power gating is a common approach for reducing
circuit static power consumption. In FPGAs, resources that
dominate static power consumption lie in the routing network.
Researchers have proposed several heuristics for clustering
multiplexers in the routing network into power-gating regions.
In this paper, we propose a fundamentally different approach
based on K-means clustering, an algorithm commonly used in
machine learning. Experimental results on Titan benchmarks and
Stratix-IV FPGA architecture show that our proposed clustering
algorithms outperform the state of the art. For example, for
32 power-gating regions in FPGA routing switch matrices, we
achieve (on average) almost 1.4x higher savings (37.48% vs.
26.94%) in the static power consumption of the FPGA routing
resources at lower area overhead than the most efficient heuristic
published so far.

I. INTRODUCTION

Field-programmable gate arrays (FPGAs) offer fast time-to-
market, reduced nonrecurring engineering costs, inexpensive
design updates, and almost unlimited design flexibility. All
these features make FPGAs an extremely attractive alternative
to application-specific integrated circuits (ASICs). Yet, these
benefits come at a cost of higher power consumption with
respect to ASICs [1]. As a consequence, if FPGAs are to
compete with ASICs for the applications that require low
power consumption, we need new techniques and improved
FPGA architectures.

A common approach for reducing FPGA static power
consumption is through power gating the FPGA logic or the
routing resources [2]-[7]. Controlling the power gating regions
can be done either during FPGA configuration time (statically)
or while an application is running (for example, via a control
circuit that decides when and which regions to enable). In this
paper, our focus is on statically-controlled power gating of
FPGA routing resources, as the routing network contributes
to more than 70% of total static power consumption [8], [9].
Our contributions in this paper can be summarized as follows:

o This paper is the first to use a machine learning technique
to design power gating regions in the FPGA routing
network with the goal to reduce FPGA static power
consumption.

o We define similarity metric, cluster pattern, and power
gating efficiency, and use them to design three clustering
algorithms: SiM, SiM-PR, and SiM-IPR. They are all
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derived from K-means clustering—a common machine
learning algorithm—and yet adapted to the problem at
hand.

e We compare the efficiency in switching off unused
routing multiplexers among our new algorithms, the
standard K-means clustering algorithm, and the power
gating strategies proposed by other researchers [5]-[7].
To choose the power-gating clusters and to test their
efficiency, we use the Titan benchmarks [10] (industrial-
size FPGA circuits covering a wide range of application
domains) and the Intel Stratix-IV FPGA architecture,
available in the latest Verilog-to-Routing (VTR) pack-
age [11]. This FPGA architecture faithfully illustrates
heterogeneous FPGA logic and routing architectures.
We use COFFE [12] and HSPICE to estimate the area
overhead of the power-gating approaches and the static
power consumption of the routing resources.

The results show that our clustering algorithms outperform the
state of the art. For example, for 32 power-gating regions in
the FPGA routing switch matrices, we achieve (on average)
1.39x higher savings (37.48% vs. 26.94%) in the static power
consumption of the FPGA routing resources at lower area
overhead than the most efficient heuristic available [7].

II. RELATED WORK

Previous research on reducing FPGA power consumption
are mostly studies that target the static power consumption
through power gating of various FPGA resource types. Since
our focus is on power gating the FPGA routing resources, we
review here only the most closely related publications.

Bsoul et al. propose a power-gating scheme to reduce the
static power consumption of both routing resources and logic
blocks [5]. They control the power consumption of FPGA
resources through dynamic coarse-grained power gating. In
their work, the switch matrices (SMs) can operate in different
power modes: “always off”, “power-controlled”, and “always
on”. The “always off” SMs are permanently unused. The
power consumption of “power-controlled” SMs is controlled
dynamically by an on-chip controller. The power controller
signals are routed through the “always on” SMs. Since Bsoul
et al. do not focus on the power consumption reduction of
partially unused SMs, the power efficiency of this method is



limited to the number of entirely unused SMs, which is not
very high. They report 70% to 84% reduction in the static
power consumption.

Li et al. propose a coarse-grained power-gating scheme that
dynamically controls the power consumption of the power-
gating regions [13], which include logic blocks and their
corresponding connection blocks, through a power control
hard macro (PCHM). Since the clock signals of the power
gating regions come from the PHCM, this scheme can also
decrease the dynamic power consumption of idle regions
through clock gating. In addition, this study modifies the cost
function of the placement algorithm to increase the power
gating opportunities. Li et al. report up to 51% reduction in
the power consumption.

Hoo et al. decrease the static power consumption of uni-
directional switch matrices through a coarse-grained power
gating technique [14]. In their approach, the buffers in each
side of a switch matrix are grouped together. In addition,
they modify the VTR routing algorithm to increase the power
gating opportunities. Hoo et al. also dynamically turn off the
FPGA modules during their idle periods, to increase the power
savings. They reported that ~ 40% of the power gating regions
could be turned off in their experiments.

Yazdanshenas et al. propose a fine-grained power-gating
scheme to reduce the static power consumption of both unused
SRAM cells in the logic blocks and the routing resources [15].
They divide each look-up table (LUT) into smaller ones to
increase the controllability of the power consumption of the
LUTs. They also control the power consumption of each
switch block through one configuration cell. The experimental
results show that the suggested architecture results in 4%,
27%, and 75% power saving in the switch blocks, the con-
figuration blocks, and the LUTSs, respectively.

Seifoori et al. show that the utilization rate of the routing
resources is related to the FPGA routing architecture [7].
They examine power gating granularities and select the most
efficient for various routing architectures. They report up to
57% reduction in the static power consumption, but the routing
network in the target FPGA architecture in their work is
outdated: it is composed of uniform wirelengths and simple
routing switch patterns. In this work, we compare their most
performing strategy with our approaches, and we do that using
newer FPGA routing architecture.

Static power reduction obtained thanks to power gating
depends on the number and composition of the power-gating
regions. Providing an optimal or near optimal clustering of
routing multiplexers in power-gating regions can significantly
improve the static power consumption and mitigate the costs of
area and power overheads caused by the added power-gating
circuitry. All of the previous works that design statically-
controlled power gating regions do it using heuristic ap-
proaches listed above. Here, we take a different approach: we
first analyze the utilization of the routing resources and then
decide how to cluster them into power-gating regions.
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Fig. 1. FPGA architecture: besides logic blocks (in blue), FPGAs contain hard
IP blocks (for example, DSPs), embedded memory blocks, external memory
interfaces, transceivers, phased-locked loops, etc. Connectivity between all
these elements is established using a configurable routing network, composed
of horizontal and vertical routing wires and configurable switches.

III. BACKGROUND AND MOTIVATION

In this section, we explain the basics of the FPGA architec-
ture, motivate our work, and introduce K-means clustering.

A. FPGA Architecture

Traditionally, FPGAs are seen as arrays of logic blocks,
distributed and block RAM memories, phased-locked loops,
and I/O pins. Today, FPGAs are often equipped with special-
ized hardware, such as processor cores, hard external memory
interfaces, on-chip hard IP blocks (for digital signal pro-
cessing, for example), and transceivers for various signalling
standards [16], [17] (Fig. 1).

Logic blocks, commonly referred to as the configurable
logic blocks (CLBs) or the logic array blocks (LABs), are
the most numerous elements of the FPGA. They implement
the general purpose logic. The LABs are composed of

« logic elements (LEs), comprising look-up tables (LUTs),
programmable registers, and a number of multiplexers
that allow the use of either look-up tables or registers,
and

« intra-LAB routing resources that connect the local feed-
back LE outputs or the inter-LAB wires to the LE inputs.

The connectivity between the FPGA blocks (logic ele-
ments, memory, hard IPs, etc.) is achieved using the FPGA
routing network composed of wires, organized in horizontal
and vertical routing channels, and routing switch matrices,
which serve to enable the wires to connect to each other.
Fig. 2 illustrates a part of a switch matrix found in FPGA
routing networks, such as the Intel Stratix IV. Between two
consecutive columns of FPGA resources, there are two types
of vertical interconnects: C4 (wires that span four rows of
the FPGA array) and C12 (long interconnects, wires that span
12 rows). Similarly, between two consecutive rows of FPGA
elements, there are two types of horizontal interconnects:
R4 and R20 (wires that span 20 columns). The nonuniform
wirelengths are used to balance the flexibility, the delay, and
the area of the routing network. The short wires (R4 and C4)
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Fig. 2. Connectivity between the FPGA elements is achieved using the routing
resources: wires organized in horizontal and vertical routing channels and
routing switch matrices, which enable the wires to connect to each other.
This figure illustrates a modern FPGA routing network based on the Intel
Stratix IV FPGA architecture description available in VIR tool [11].
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Fig. 3. An illustration of a part of a switch matrix inside the Stratix IV
FPGA. It shows two multiplexer types (12:1 and 40:1) as well as two types
of connections: (1) between the column wires (C4, C12) and the LAB inputs
(in blue) and (2) among the LAB outputs (in red), the column interconnects,
and the row interconnects.

are accessible by FPGA elements (can drive the LE inputs
or be driven by the LE outputs). The wires in horizontal
(row) and vertical (column) channels can be connected to
form long routes. These connections are possible thanks to the
multiplexers inside switch matrices. The multiplexers often
have nonuniform sizes: large multiplexers (40:1) drive long
wires, while small multiplexers (12:1) drive short wires, as
illustrated in Fig. 3. Four different types of switch matrices
can be identified in Stratix IV FPGA description [11]. They
are listed in Table I and shown spatially distributed in Fig. 4.

B. Motivation

Routing resources can be clustered into power-gating re-
gions to reduce static power consumption. Clustering can be
coarse grained or fine grained [2]-[7], [13], [15]. However,
both approaches have their advantages and drawbacks: the
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Fig. 4. Spatial distribution of switch matrices in Stratix IV, shown on a small
part of the FPGA. Horizontal and vertical lines represent routing channels,
composed of unidirectional wires of nonuniform lengths (Fig. 2). Four types
of switch matrices can be identified (SM1, SM2, SM3, and SM4, listed in
Table I). They differ in the number of 12:1 and 40:1 multiplexers. A periodic
pattern in the switch matrix distribution can be observed, which is in fact
expected given that the wirelengths are all multiples of four.

TABLE I
ROUTING SWITCH MATRIX TYPES EXTRACTED FROM THE INTEL STRATIX
IV FPGA ARCHITECTURE DESCRIPTION IN VTR [11]. THE NUMBER OF
MULTIPLEXERS PER SWITCH MATRIX TYPE DIFFERS, AS THE TOPOLOGIES
ARE ADAPTED FOR CONNECTING WIRES OF NONUNIFORM LENGTHS.

Multiplexer | SM1 | SM2 | SM3 | SM4
12:1 128 128 132 132
40:1 4 8 4 8

coarse-grained clustering limits the power-gating opportuni-
ties, while the fine-grained clustering imposes higher area
and power overhead. Additionally, for any granularity, the
clustering can be done in many different ways, which are not
all equally good.

To illustrate this on an example, let us consider a simplified
FPGA routing architecture, in which all routing segments are
of the length one, all switch matrices are composed of the same
number and type of multiplexers, and the routing channels are
32-bit wide. Fig. 5 shows the topology of the corresponding
switch matrix; one quarter of the switch matrix multiplexers
are used per each side (top, bottom, left, and right) to drive
unidirectional routing segments and enable connecting them to
form longer wires. Then, let us use Verilog-to-Routing (VTR)
to place and route a benchmark circuit [11], for example usb-
phy from the IWLS’05 benchmark suite [18], and analyze the
utilization pattern of the multiplexers in the switch matrices.
Firstly, it can be observed that the utilization pattern varies
from one switch matrix to another. For example, in one of
the switch matrices (SM1) inside the region occupied by the
benchmark circuit, only the multiplexers shaded in dark gray in
Fig. 5 are in use; others not. In another switch matrix inside the
same region (SM2) different multiplexers are in use. Table II
lists the multiplexer utilization patterns (0-unused, 1-used) for
SM1 and SM2.

One possibility is to create 16 clusters, each containing four
muxes in total, where every mux in a cluster is driving the
routing track of the same number [7]; In other words, all
muxes marked as M1 comprise one cluster, all muxes marked
as M2 comprise another cluster, etc. As a result, 25% of all
clusters can be switched off in SM1 and only one cluster in
SM2 (clusters that can be switched off are marked in red in
Table II), which is equivalent to 36% and 11% of all unused



162 G3 G4 G5 G6 G7 G8 G9 G10G11G12G13G14G15G16
LAB LAB
RERAARALA riyivivivivl,
6 Wu T fl TITITITIT i
- Top: 0000010000000000 ﬁ G6
a1 S| b— G11
G11 - o
G2 — -
. > T =3
G3 e § D Unused MUX =4
= b —
GH::::;:QES ﬁﬂlkmmmm i _a—
g £
Gl3j b Gn  Power gating group n TS :‘A—Gs
G5 -8 S
5 S S-Pp— G13
67 -3 :T_GH
8 — (g b= -
614 — Q—g 3:4) - &
G i 4g‘ G15
> 616
G15 _7' - s
G10 — G9
G16 — Bottom: 0011010010011000 - 1o
bt} (NN M16
X7Y7"‘H§J’ &W%Y%JFW
LAB ™ [A|A[A[A[A[A]A[4 A {(A[A[A[AIR AR

Gl G2 G6G11 G3 G12 G4 G5 G13 G7 G8G14G15 G9 G10G16

Fig. 5. Distribution of used switch-matrix multiplexers and power gating
groups (sample switch matrix No. 1 in usb-phy benchmark circuit).

TABLE 11
UTILIZATION PATTERN OF THE MULTIPLEXERS IN TWO RANDOMLY
CHOSEN SWITCH MATRICES INSIDE THE FPGA REGION OCCUPIED BY
USB-PHY BENCHMARK. TO P&R THE BENCHMARK, VTR [11] AND A
SIMPLIFIED FPGA ARCHITECTURE DETAILED IN FIG. 5 ARE USED.
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muxes in SM1 and SM2, respectively. Another, less obvious
clustering possibility is labelled as Gt in Fig. 5 and Table III.
This clustering would allow to switch off many more unused
muxes: ~80% in SM1 and ~36% in SM2. Yet, it is not certain
that this clustering, if applied to all switch matrices used by the
usb-phy circuit, would result in the optimal power reduction
scheme. Hence, to find a clustering solution that performs well
in general, we need to extend the analysis to a wide range of
application domains. Since finding the optimal clustering is
a known NP-complete problem, we can try using a machine-
learning technique to solve it.

C. K-means Clustering

Clustering algorithms are used in many different applica-
tions, from pattern classification [19] to knowledge discovery
and data mining [20]. One of the most popular and studied

TABLE III
CLUSTERING LABELED G¢ IN FIGURE 5 IS SUPERIOR, AS MORE UNUSED
MULTIPLEXERS ARE GROUPED IN THE SAME POWER GATING REGIONS.

SM SIDE Gl [ G2 [ G3 | G4 | G5
SMI-TOP 0 0 0 0 0
SMI-RIGHT 0 0 0 0 0
SM1-BOTTOM 0 0 0 0 0
SMI-LEFT 0 0 0 0 0
SM2-TOP 0 0 1 1 0
SM2-RIGHT 1 0 1

SM2-BOTTOM 0 0 1 1 1
SM2-LEFT 0 0 1
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clustering algorithm in unsupervised machine learning is K-
means clustering [21], [22].

Given a set of N data points V = {vy,vs,...,un}, wWhere
each data point is an m-dimensional vector, K-means cluster-
ing partitions the data into k clusters C = {C4,Cy,...,C},
with the aim of maximizing the disparity among the clusters
and minimizing the disparity within the clusters [23], [24].
The notion of disparity and what metric should be measured
to calculate it depends on the application [25]. The algorithm is
iterative in nature. It starts by setting the initial cluster centers
and then repeats the following steps:

1) Assign each data point v;, 1 < ¢ < N, to the cluster C},

1 < j <k, whose center has the least squared Euclidean
distance to v; [26]-[28].

2) Compute new cluster centers as the means of the cluster

members.

The algorithm stops once there are no updates to be made.

Three user-defined parameters that can significantly affect
the efficiency of the algorithm are the homogeneity metric,
the number of clusters &k, and the initialization of the cluster
centers. The homogeneity metric, which is often the distance
to the cluster center, can be changed according to the clustering
criteria. To find the most convenient number of clusters, the
algorithm can be repeated with variable number of clusters
and the obtained solutions compared.

There are several initialization procedures that affect the
K-means algorithm sensitivity to the initial cluster center. For
example, one can run K-means algorithm with different cluster
initializations and afterwards select the grouping that results in
the least squared distance. The main drawback of this approach
is its time complexity in clustering large data sets. Global K-
means clustering proposes an alternative initialization proce-
dure, based on incremental addition of one cluster center at a
time, based on the previously determined cluster centers [29].
This procedure is computationally intensive too, as it requires
a number of executions of the K-means clustering only to find
suitable initial cluster centers. Yet another, but considerably
less complex, initialization approach is k-means++ [30]. It
selects the center of the first cluster randomly, and then it
applies the probabilistic metric proportional to the distance
to the previously selected centers to find each subsequent
cluster center. A thorough comparative study by Celebi et
al. [31] finds that k-means++ performs generally well; hence,
we opted for this initialization method.

IV. PROPOSED CLUSTERING ALGORITHMS

As illustrated in the motivational example (Section III-B),
what may seem to be the optimal multiplexer clustering
in one switch matrix, can be far from optimal in another
switch matrix. Furthermore, trying all possible multiplexer
clustering opportunities is impractical, due to a prohibitively
large solution space. The above describes a common set of
problems that can be solved using machine learning (ML)
algorithms [32]-[36]. Hence, we decide to borrow from ex-
isting ML algorithms, such as K-means clustering, to solve
the multiplexer clustering problem efficiently.



However, prior to clustering, one needs to gather learning
data: create a set of multi-dimensional vectors that capture
all the information relevant for determining good clusters. In
our problem—assigning switch matrix multiplexers to power-
gating regions—it is the utilization pattern of all multiplexers
in all switch matrices, and for all benchmark circuits, that
captures the desired information. Hence, on a set of L training
(learning) benchmarks, we employ the following steps to
gather the data:

1) Place and route all L benchmarks on the target FPGA.

2) For every benchmark, in the FPGA region occupied by
it, identify all switch matrices that are in use'. If there
are several different types of switch matrices in the target
FPGA architecture, which is common in modern FPGAs
where interconnects have nonuniform lengths, consider
every switch matrix type as an independent clustering
problem. Consequently, split all the used switch ma-
trices in groups according to their types. Then, use
these groups to create input data sets for the clustering
algorithms, as described in the next steps.

3) For every switch matrix type and for every multiplexer
M; in a switch matrix, create a row vector

Vig ] (D

composed of a sequence of L smaller vectors v;,,, where
m is the index of the benchmark from which the vector
v;, 1s extracted. The length of vector v;_  equals the
number of times this particular switch matrix type is
in use by the benchmark B,, and may not be the
same across all benchmarks. An element in the column
j of the vector v;  represents the utilization of the
multiplexer M; in the j** instance of the switch matrix
in benchmark B,,: 1 if M; is in use by the benchmark
B,,,, 0 otherwise.
4) Add all vectors v; to the learning data set V.

v = [Uil Viq

In the following sections, we propose two approaches for
finding an efficient multiplexer clustering scheme. Their most
important difference lies in the metric used when assigning
objects to clusters. The first algorithm employs squared Eu-
clidean distance metric and assigns an object to the cluster
whose center is the least distant (Subsection IV-A). The
second, however, quantifies the similarity in multiplexer uti-
lization and assigns an object to the cluster that has the most
similar utilization pattern (section IV-B).

A. Clustering using K-means Algorithm (KM)

The first clustering algorithm, shown in Algorithm 1, is
essentially K-means clustering. The algorithm inputs are the
data set V' and the number of clusters K. Computation starts
by initializing a special vector called cluster center. Then, the
next three steps are repeated in a loop: emptying the clusters
and, for every object in the data set, assigning it to the closest
cluster and updating that cluster center. The loop repeats as

A switch matrix is in use if at least one of its multiplexers is in use.

Algorithm 1: Power gating using K-means clustering.
Input: Data set: V = {v;},i=1.N
Input: Total number of clusters: K
Output: Clusters C = {Cy,Co, ...,Ck }
Variables: Cluster centers: p1, fio, ..., i
InitCenters(V, K)
while Cluster members change do
foreach C; € C do
L Ci — @
foreach v; € V do
k + FindClosestCluster(v;, C)
Cr + CrUu;
pr  UpdateCenter(ug, v;)

long as the output (cluster set C') is changing (and a threshold
in the number of executions is not reached).

To find initial cluster centers we employ a well known
K-means++ initialization method [31] (Section III-C). Al-
gorithm 2 details the implementation of initCenters
function. The center of the first cluster is chosen randomly
from the data set V. Then, for every object v; in V, we
call computeDistance function to find the distance d; ;
between v; and an already initialized cluster center 1;. Next,
we compute the probglbility that v; may become the next

cluster center as #, where N is the cardinality of
the set V. The vector that maximizes this probability finally
becomes the initial center of the next cluster.

To compute the distance between two objects or an object
and a cluster center (in FindClosestCenter function),
we call the ComputeDistance function, which returns the

squared Euclidean distance between two vectors v; and v;:
_ 2
dij = ||vi = vj]] )

At the end of every clustering iteration, cluster centers are
recomputed in UpdateCenter function as the mean of all
the objects in the cluster.

B. Clustering using Utilization Similarity Metric (SiM)

A power gating cluster C; is defined by the switch matrix
multiplexers it groups together, where every multiplexer is
represented by a vector v;, defined in (1). In vectors v, an
element (dimension) corresponds to a switch matrix and the
element value corresponds to the usage of the multiplexer in
that switch matrix: 1, if in use; O, otherwise. Therefore, two
multiplexers M, and M, having the same utilization pattern
are represented by two identical vectors v; and v;. Such two
multiplexers should, ideally, belong to the same cluster.

Let us define the similarity metric s; ; between two vectors
v; and v; as the number of dimensions m in which they are

equal:
1, if v;lm] =wv;m
o= 3 b il <o .

otherwise.
m=1..|v;|



Algorithm 2: Function InitCenters for computing the

initial cluster centers.

Input: Data set: V = {v;},i=1..N

Input: Total number of clusters: K

Output: Cluster centers: i1, fo, ..., b

Variables: Distance between v; and p;: d; j; sum of
distances squared: dssgq; next cluster ID: k;
probabilistic distance metric: p

w1 < randomly chosen from V

k+2

while £ < K do

dssq < 0

foreach v; € V do

foreach 1;, 1 < j <k do

d; j + ComputeDistance(v;, ;)
L dssq < dssq + d?’j

p+0

foreach v; € V do
d? .

Pij $ Tusg

if p; ; > p then

L P < Dij
Ui < U;

| k+k+1

As a consequence, instead of assigning an object v; to the
cluster that is the closest in squared Euclidean distance (2),
we should rather assign it to the cluster that maximizes the
similarity between v; and the cluster members. The cluster
center, defined in Section IV-A, is not a good indication of
similarity between the entire cluster and an object. Instead,
we could define the mode of a cluster—commonly done in
clustering categorical data—as the vector in which an element
in dimension m takes the value of the most frequent element in
the same dimension across all vectors in the cluster. However,
given that there are many more unused than used multiplexers
in switch matrices, this approach skews all cluster modes
toward zero. Hence, instead of the cluster center and the cluster
mode, we introduce here the concept of the cluster pattern p.
In clusters containing a single member, those members are the
cluster patterns. However, in clusters with two members and
more, the cluster pattern is progressively constructed from the
current cluster pattern and the newly added member v as

1, if p[m] =v[m] and v[m] =1
plm] =40, if pm] = v[m] and v[m] =0 4)
X if p[m] # v[m].

Here, m is in the range 1 < m < |v| and X stands for a value
that is neither 1 nor 0%. As a result, we can assess the power
gating efficiency ¢ of cluster C; as the cluster size weighted

2In our implementation, X equals —1, but it can be any other value,
provided that it is neither O nor 1.

Algorithm 3: Our novel SiM clustering, which uses the
similarity metric defined in (3) and the concept of cluster
pattern from (4).
Input: Data set: V = {v;},i =1..N
Input: Total number of clusters: K
Output: Clusters C' = {C4,Cy,...,Ck }
Variables: Cluster patterns: py, pa, ..., Px
InitPatterns(V, K)
foreach v; € V do
k <+ FindTheMostSimilarCluster(v;, C)
Cr «+ Cp,Uu;
pr + UpdateClusterPattern(pg, v;)

by the number of the pattern elements different than X:
2(C) = |Gl - (loil = CountX () ) )

Here, CountX (p;) is the number of the pattern vector ele-
ments equal to X. The power gating efficiency of the entire
set C of K clusters then becomes:

€)= Y (Cil- (Il = CountX () (6)
i=1..K
From (5) and (6), it can be inferred that the optimal clustering
solution C is the one that maximizes the metric ¢(C).

1) SiM clustering: Algorithm 3 lists the steps of our
clustering algorithm that uses the similarity metric and the
notion of cluster pattern to cluster the multiplexers. We refer
to this algorithm as SiM. The function InitPatterns is
identical to the function InitCenters in Algorithm 2,
except that, instead of calling ComputeDistance and re-
turning the cluster centers, it computes the similarity using
the expression in (3) and returns the cluster patterns. The
function FindTheMostSimilarCluster (v;,C') returns
the cluster index k, such that the similarity metric for the
cluster pattern pj and the vector v; is maximized. Finally, the
function UpdateClusterPattern recomputes the pattern
following the expression in (4).

2) SiM-PR clustering: Starting new clustering iteration
without updating the cluster pattern at the end of the previous
clustering iteration is highly unlikely to result in a more effi-
cient clustering solution, because CountX (p;) either remains
the same or increases as the iterations advance. This is why
we let SiM clustering algorithm run a single iteration only.
To overcome this limitation, we design SiM-PR (SiM with
pattern reduction) clustering algorithm, shown in Algorithm 4.
Unlike SiM, SiM-PR runs in iterations and, at the end of
every iteration, replaces cluster patterns with randomly chosen
members of the corresponding clusters. Consequently, every
new iteration starts with patterns whose elements are reduced
to two values only: O and 1.

3) SiM-IPR clustering: SiM and SiM-PR result in two
extreme solutions. The former completes only one iteration,
while the latter allows for more iterations but, at the end
of every iteration, it reduces the cluster patterns to randomly



Algorithm 4: Our novel SiM-PR clustering. Unlike SiM,
this algorithm runs multiple iterations, at the end of every
iteration, replaces the cluster pattern with a randomly
chosen cluster member. As a consequence, at the end of
every iteration, the patterns elements are reduced back to
two values only: 0 and 1.

Input: Data set: V = {v;},i=1..N
Input: Total number of clusters: K
Output: Clusters C = {C1,Cs, ...,Ck }
Variables: Cluster patterns: p1, p2, ..., P
InitPatterns(V, K)
while Cluster members change do
foreach v; € V do
k < FindTheMostSimilarCluster(v;, C)
CL+ CLUw;
pk < UpdateClusterPattern(pg, v;)

foreach C; € C do
| pi = RandomMemberFromCluster(C;)

chosen elements from the corresponding clusters. The random-
ness in SiM-PR can help finding a more efficient clustering
solution compared to SiM, but it can also cause the algorithm
to remain in a locally-optimal solution. Therefore, we suggest
an alternative in which the patterns are reduced incrementally,
depending on the efficiency metric defined in (5). We name
this algorithm SiM with Incremental Pattern Reduction (SiM-
IPR) and show its implementation in Algorithm 5. Unlike SiM-
PR, this algorithm applies the pattern reduction only on R/K
of clusters that are the most inefficient (have the lowest power
gating efficiency metric computed as in (5)). The parameter
R (rate) represents the number of clusters whose patterns are
to be reduced in the current clustering iteration. The initial
value and rate of decay of R may influence the results. In
our implementation, we chose to set its initial value to K/2
and to reduce R by half in every subsequent iteration, without
comparing with other possibilities for the moment.

V. EXPERIMENTAL SETUP AND RESULTS

To find the power-gating clusters and to test their efficiency,
we use Titan benchmarks [10] (industrial-size FPGA circuits
covering a large range of application domains) and the Intel
Stratix-IV FPGA architecture, available as part of the latest
VTR package [11], [17]. This FPGA architecture faithfully il-
lustrates heterogeneous FPGA logic and routing architectures.
Section III explains it in detail. We ran two experiments (EXP1
and EXP2), both using benchmarks listed in Table IV. The
experiments differ in the set of circuits used to define power
gating clusters (to learn, hence the letter L in Table IV) and
those used to test the performance (marked with T). We used
VTR to place and route the benchmarks, as well as extract all
the data on multiplexer utilization; routing channel width was
set to 300, to allow the largest benchmark to route successfully.

Fig. 6 compares our algorithms to K-means clustering. It
shows, side by side, the number of multiplexers that can be

Algorithm 5: Our novel SiM-IPR clustering. Unlike SiM-
PR, this algorithm applies pattern reduction only on R/K
of clusters that are the most inefficient, according to (5).
The parameter R stands for rate. Its initial value is K/2.
In every subsequent iteration, it is reduced by half.
Input: Data set: V = {v;},i =1..N
Input: Total number of clusters: K
Output: Clusters C' = {C4,Cy,...,Ck }
Variables: Cluster efficiencies: £ = {E1, Fs, ..., Ex };
set of clusters whose patterns are to be
reduced: Cg; cluster reduction rate: R;
cluster patterns: pi, pa, ..., PK-
InitPatterns(V, K)
R+ K/2
while Cluster members change do

foreach v; € V do
k < FindTheMostSimilarCluster(v;, C)

Cr + CpUuv;
pr < UpdateClusterPattern(pg, v;)
foreach C; € C do
| E; < Efficiency (C;)
Cr=10
for 1 <r<Rdo
k = LeastEfficientIndex(F)
E «+ E\ Ey
Cr=CrUCk
foreach C; € Cg do
| p; = RandomMemberFromCluster(C;)

R <+ R/2
TABLE IV
BENCHMARK DETAILS.
No. | Name # Blocks | DSPs | FPGA Size | EXP1 | EXP2 | A
Bl sparcT1_chip2 814,799 24 279 x 207 L L Multi-coreplP
B2 LU_Network 630,212 896 221 x 164 L L Matrix Decomposition
B3 mes_noc 548,047 0 192 x 142 L L On-chip Network
B4 gsm_switch 487,454 0 255 x 189 L L Communication Switch
B5 denoise 343,263 192 150 x 111 L T Image Processing
B6 | sparcT2_core 287,839 0 152 x 113 L T P Core
B7 cholesky_bdti 257,750 1,027 169 x 125 L T Matrix Decomposition
B8 minres 252,600 614 224 x 166 L T Control Systems
B9 stap_qrd 237,193 579 158 x 117 L L Radar Processing
B10 | openCV 212,616 740 232 x 172 L T Computer Vision
B11 | dart 202,414 0 138 x 102 L L Network Simulator
B12 | bitonic_mesh 192,648 676 242 x 179 L L Sorting
B13 | des90 109,962 352 171 x 127 L L MultipP system
B14 | neuron 90,779 565 129 x 96 L L Neural Network
B15 | segmentation 174,072 104 136 x 101 T L Computer Vision
B16 | SLAM_spheric 124,648 296 124 x 92 T L Control Systems
B17 | cholesky_mc 108,239 452 125 x 93 T L Matrix Decomposition
B18 | stereo_vision 92,662 152 129 x 96 T L Image Processing
B19 | sparcT1_core 91,235 8 82 x 61 T L P Core

switched off for all benchmarks, when SiM, SiM-PR, and SiM-
IPR algorithms are applied and K is set to 4, 8, 16, 24, and
32. The results are normalized to those of K-means algorithm.
We can observe that for low number of clusters (4, 8, 16), K-
means clustering is superior, whereas for higher number of
clusters (24, 32) SiM-IPR takes over, often outperforming K-
means by 10-20%.

Then, we use COFFE [12], 22nm predictive technology
model [37], and HSPICE to estimate the area overhead of our
resulting FPGA architectures (Table V), as well as those ob-
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Fig. 6. Number of multiplexers that can be switched off for 4, 8, 16, 24, and 32 clusters per switch matrix, normalized to those of K-means algorithm. It
can be noticed that for low number of clusters (4, 8, 16), K-means is superior, whereas for higher number of clusters (24, 32) SiM-IPR takes over, often

outperforming K-means by 10-20%.
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Normalized static power consumption in FPGA routing witch matrices
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Fig. 7. Area overhead (in %) versus static power consumption in the FPGA routing network; latter is normalized to the static power consumption estimated
using an FPGA routing architecture that provides no power-gating mechanisms. One marker corresponds to one benchmark. The results of both experiments

(EXP1 and EXP2) are plotted here.

TABLE V
AREA OVERHEAD IN THE FPGA ROUTING SWITCH MATRICES AFTER
ADDING POWER-GATING LOGIC. FOR A FIXED K, ALL OUR ALGORITHMS
REPORT VERY SIMILAR OVERHEADS.

Bsoul et al. || Hoo et al. Hoo et al. || Seifoori et al. Our Our Our Our Our
K=1[5] | K=4(6] | K=8[6] | K=32[7] || K=32 | K=24 || K=16 || K= K=
0.136% 0.55% 0.88% 6.16% 5.48% 4.12% 2.69% || 1.18% || 0.58%
TABLE VI

PERCENTAGE OF ALL MULTIPLEXERS THAT CAN BE TURNED OFF USING
THE POWER GATING SCHEMES PROPOSED IN RELATED WORKS [5]-[7]
VERSUS K-MEANS CLUSTERING (FOR K < 16) AND SiM-IPR CLUSTERING

(FOR K = 32).
Experiment- | Bsoul et al. Hoo et al. KM Hoo et al. KM Seifoori et al. | SiM-IPR
Benchmark K=1[5] K=4[6] | K= K=8[6] | K= K =32[7] K =32
EXP1-BI15 8.70% 14.41% 17.99% 16.76% 22.44% 31.09% 52.74%
EXPI-B16 15.28% 22.66% 28.37% 24.66% 32.18% 35.62% 46.63%
EXPI-B17 10.24% 17.31% 21.67% 19.50% 26.76% 36.41% 49.30%
EXPI1-BI18 19.17% 33.97% 42.59% 37.11% 49.75% 51.48% 71.54%
EXPI1-B19 0.35% 2.42% 2.95% 4.03% 5.26% 12.61% 17.07%
EXP2-B5 0.17% 1.73% 2.06% 3.81% 3.90% 13.03% 17.11%
EXP2-B6 0.13% 1.35% 1.62% 2.74% 2.81% 9.23% 12.59%
EXP2-B7 11.46% 15.99% 20.01% 18.14% 24.23% 33.39% 45.61%
EXP2-B8 6.54% 21.22% 26.46% 24.32% 33.93% 44.10% 61.34%
EXP2-B10 17.58% 28.55% 35.34% 31.37% 41.20% 43.44% 61.30%
Geomean 3.48% 10.05% 12.41% 13.31% 16.88% 26.94% 37.48%

tained using the power gating approaches proposed by Bsoul et
al. (K =1, as our focus is on the static power-gating strategy
and not the dynamic one), Hoo et al. [6] (two versions: K = 4
and K = 83), and Seifoori et al. [7] (K = 32, multiplexers

3K = 4 clusters all multiplexers in each side of the switch matrix into a
single power gating region. K = 8 clusters the multiplexers in each side of
a switch matrix in two power gating regions, where one region contains only
12:1 multiplexers and the other only 40:1 multiplexers.

driving the same track in each direction are clustered together).
It should be noted here that the area overhead is computed
with respect to the area of the FPGA switch matrix and that
we estimate the static power consumption of FPGA routing
resources and power-gating circuitry only.

Results are plotted in Fig. 7. The vertical axis shows area
overhead, while the horizontal axis shows static power con-
sumption, normalized to the static power consumption when
no power gating is used (baseline). Dashed line emphasizes
the best results achieved by our algorithms showing that
we do manage to outperform all other clustering strategies.
Our algorithms achieve the highest static power consumption
savings for K = 32, at an area overhead of less than 6%.
Finally, Table VI compares the ratios of multiplexers that can
be switched off using heuristics by other researchers vs. ours,
for the same K to enable fair comparison. In all cases, our
strategies report higher values.

VI. CONCLUSIONS

In this paper, we leverage machine learning to reduce
static power consumption of FPGA routing resources. The
experimental results show that our FPGA power-gated ar-
chitectures achieve better results at an even lower overhead
in area, compared to the power-gating heuristics published
so far. Future work will focus on formulating a metric that
would guide our clustering algorithms to consider the power
consumption of the power gating logic as well. Consequently,
even better results may be expected.
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