
Automatic Generation of Multi-precision
Multi-arithmetic CNN Accelerators for FPGAs

Yiren Zhao∗1 Xitong Gao†1, Xuan Guo∗1, Junyi Liu‡, Erwei Wang§,
Robert Mullins∗, Peter Y. K. Cheung§, George Constantinides§, Cheng-Zhong Xu¶

∗University of Cambridge {yiren.zhao, gary.guo, robert.mullins}@cl.cam.ac.uk
† Shenzhen Institutes of Advanced Technology xt.gao@siat.ac.cn
‡Microsoft Research Cambridge junyi.liu@microsoft.com

§Imperial College London {erwei.wang13, p.cheung, g.constantinides}@imperial.ac.uk
¶ University of Macau czxu@um.edu.mo

Abstract—Modern deep Convolutional Neural Networks
(CNNs) are computationally demanding, yet real applications
often require high throughput and low latency. To help tackle
these problems, we propose Tomato, a framework designed to
automate the process of generating efficient CNN accelerators.
The generated design is pipelined and each convolution layer
uses different arithmetics at various precisions. Using Tomato,
we showcase state-of-the-art multi-precision multi-arithmetic net-
works, including MobileNet-V1, running on FPGAs. To our
knowledge, this is the first multi-precision multi-arithmetic auto-
generation framework for CNNs. In software, Tomato fine-tunes
pretrained networks to use a mixture of short powers-of-2 and
fixed-point weights with a minimal loss in classification accuracy.
The fine-tuned parameters are combined with the templated
hardware designs to automatically produce efficient inference
circuits in FPGAs. We demonstrate how our approach signifi-
cantly reduces model sizes and computation complexities, and
permits us to pack a complete ImageNet network onto a single
FPGA without accessing off-chip memories for the first time.
Furthermore, we show how Tomato produces implementations of
networks with various sizes running on single or multiple FPGAs.
To the best of our knowledge, our automatically generated
accelerators outperform closest FPGA-based competitors by at
least 2-4× for lantency and throughput; the generated accelerator
runs ImageNet classification at a rate of more than 3000 frames
per second.

Index Terms—Auto-generation, CNN hardware accelerator

I. INTRODUCTION

Large-scale Convolution Neural Networks (CNNs) have de-
livered revolutionary performance gains to vision applications
such as image classification [18], object detection [21], and
emotion recognition [22]. To support such workloads, both
edge and cloud environments already employ the parallelism
offered by GPUs and have more recently sought to optimize
latency, throughput and energy with the use of FPGAs [7],
[23], [34], [25], [31], [41], [2], [32], [35] and ASICs [28],
[36].

As CNN models are inherently redundant, model com-
pression is popular in making CNN inference more efficient.
Methods such as low precision quantization [45], [43] and
channel-wise structural pruning [10], [8] directly shrink the
compute and memory requirements. These techniques have

1Equal contribution.

become essential for state-of-the-art CNN accelerators, as they
directly translate to high throughput and low latency [9].
Unlike previous attempts [28] that unify all layers in a single
arithmetic at a unified precision, we propose hybrid quanti-
zation that allows a mixture of arithmetics and precisions to
minimize the effect of quantization on CNNs task accuracies.
Each layer of the CNN can have different arithmetics at
different precisions. In software, we implement hybrid quan-
tization in Tomato and automate the selection of arithmetics
and precisions for different layers of the CNN. Tomato then
retrains the selected quantized model.

Hardware that uses a homogenous large systolic array cur-
rently dominates the design of CNN accelerators; a great num-
ber of parallel multiplication-adds are used as a large compute
core and both weights and activations are buffered in on-chip
memory [41], [4] (left of Figure 1). The large systolic array
is time-shared as a number of different convolutions reuse
the same hardware, however, various input data sizes, channel
counts, kernel sizes and ever-emerging new convolutions [40]
make the design of a single efficient compute core increasingly
difficult. Alternatively, the computation of a CNN can also
be divided and pipelined into a number of smaller compute
cores (so-called Flattened Streaming). Each computation core,
streamed by activations, is only responsible for the calculations
of individual layers [7], [39] (right of Figure 1) to maximize
efficiency. In this paper, we approach the CNN acceleration
problem by exploiting the reconfigurability of FPGAs in the
flattened streaming design. Tomato directly produces small
layer-wise compute cores, maximizing the available logic of
FPGAs for each target network. We further make the obser-
vation that flattened streaming accelerators isolate layer-wise
computations, offering the chance to use different arithmetics
and precisions for each layer’s computation. In addition, the
throughputs can be matched across various compute cores in
the flattened streaming architecture – the compute throughput
of a particular layer only needs to match its preceding layer’s
output generation rate. Forcing the layers to match throughputs
further reduces the logic size of the auto-generated hardware.

The combination of hybrid quantization, a streaming-based
architecture and ever larger FPGAs, enable us to map all
the layers of our CNN onto a single or even multiple

ar
X

iv
:1

91
0.

10
07

5v
1

 [
ee

ss
.S

P]
 2

1
O

ct
 2

01
9

Compute	
Cores

Compute	Core

Homogenous	Core:
Uniform	compute	and	buffer	
resources	for	all	layers

Weight	Buffer

Ac
t	B

uf
fe
r

Flattened	Streaming:
Non-uniform	compute	and	buffer	
resources	for	different	layers

Compute	
Cores

Ac
tiv
at
io
n	

Bu
ffe

r

Ac
t	B

uf
fe
r

Output	Buffer

DE
M
U
X

DR
AM

DRAM

W	Buffer W	Buffer

…

On-chip	RAM
Off-chip	RAM

Logic

Individual	block	
for	each	layer

Fig. 1: An illustration of a homogenous core (left) and
flattened streaming cores (right).

FPGAs. In this paper, we present an automated software-
hardware co-design workflow that produces multi-arithmetic
multi-precision CNN accelerators. The resulting hardware
accelerator is streaming-based and fully pipelined. We make
the following contributions in this paper:
• We demonstrate the effectiveness of hybrid quantization on

modern efficient CNNs (like MobileNet-V1).
• We present a novel streaming architecture for CNNs that

is pipelined and uses minimal intra-layer buffering. Each
layer’s compute is matched on throughputs and is isolated
and applied with various quatnizations.

• We show a full-stack automated workflow. The workflow
packs entire networks into FPGAs. To the best of our
knowledge, the resulting design outperforms all state-of-the-
art FPGA-based CNN accelerators in terms of latency and
throughput.

II. RELATED WORK

Traditional CNNs running on GPUs typically use single-
precision floating-point arithmetic, which is infeasible for
FPGAs with limited logic resources. Yet CNNs are, in general,
often over-provisioned and inherently redundant; this makes
low-precision quantization an essential technique to drastically
reduce the memory consumed by the network’s parameters,
and even allows CNN inference to be computed entirely with
low-cost arithmetic operations, rather than floating-point ones.
Many works [5], [13] train CNNs to use low-precision weights
and activations with minimal accuracy loss, while others
pushed the limit by using ternarized weights {0,±1} [14],
[19], [46], and even constraining both weights and activations
to binary values {±1} [12], [26]. However, binarized and
ternarized CNNs struggle to achieve state-of-the-art accu-
racies on large datasets. FPGA-based accelerators generally
uniformly apply one of the above quantization methods This
specialisation provides efficiency and performance gains when
compared to GPUs with fixed set of data types. Bit-serial
accelerators [29], [30] are also of interest as they provide scope
to optimise away superfluous computation at the bit-level when
computing with fixed-point numbers. In contrast, the proposed
hybrid quantization focuses on mixing convolution layers with
not only various precisions but also different arithmetics in

a bit-parallel manner. Leveraging the fact that various layers
are sensitive to different quantizations, hybrid quantization
minimizes the impact of quantization loss on the model task
accuracy.

Many existing frameworks [9], [25], [31], [23], [33], [39],
that map CNN models to FPGAs generate a large homo-
geneous processing core that is temporally shared among
layers. This common design is flexible, as by sequentially
carrying out convolutions, it is less constrained by the amount
of resources available on FPGAs. A homogeneous core has
fixed computation dimensions which closely follows the ASIC
design concept that a given architecture is optimized for a set
of chosen benchmarks [32]. This approach is then challenged
by the varying size of convolutions and the emergence of
new types of convolutions. To cope with the fact that a
homogeneous core is rarely optimal for all convolution sizes
and to be flexible for new convolutions, Venieris et al. [34]
proposed to partition a CNN model into parts that can be
separately reconfigured, however the reconfiguration overhead
penalizes performance greatly. Many works seek to squeeze
CNN models fully onto FPGAs, so that they require no off-
chip memory accesses for weights and intermediate results.
Unfortunately, they are limited to either small models [27], bi-
narized networks [20], or only a few layers of a large CNN [1],
which are unsuitable for the speed and task performance on
large datasets. This paper therefore presents both the software
and hardware techniques for shrinking the resource consump-
tion of mapping a CNN as a flattened architecture on FPGAs.
Using the proposed framework Tomato, we demonstrate a fully
pipelined MobileNet-V1 — a larger model with over 4 million
parameters — entirely on an FPGA, which outperforms all
previous designs examined in this paper. Furthermore, the
proposed streaming-based accelerator decouples computations
in different layers. Our design, to our knowledge, is the first
multi-arithmetic and multi-precision CNN accelerator.

III. HYBRID QUANTIZATION

Hybrid quantization mixes fixed-point quantization and shift
quantization on at a per-convolution granularity, and all activa-
tion values between convolutions are quantized to 8-bit fixed-
point numbers.

A. Shift and Fixed-point Quantizations

Using shift quantization on weights, i.e. quantizing weights
to powers-of-2 values and zeros, avoids the costs of expensive
hardware multipliers, as they can be replaced by barrel shifters,
which results in significant savings in terms of logic, power
and latency when compared to multipliers. Moreover, in the
most direct hardwired implementation, weights simply become
wiring and can be implemented with virtually no costs. Shift
quantization results in the following representable values,
where s ∈ {−1, 0, 1} indicates the sign of the value, b is a
constant integer shared among weights within the same layer
which ensures no values overflow, and e is a variable exponent:

x̂ = s× 2e−b. (1)

The framework also allows fixed-point quantization. An n-
bit fixed-point number with a binary point position p can
represent a value x̂ with:

x̂ = 2−p ×mnmn−1 . . .m1, (2)

Both quantizations happen only in the feed-forward steps
of the CNN. We quantize floating-point weight values x to
the representations above, while backpropagation bypasses the
quantizations [24]. The pros and cons between whether to use
shift or fixed-point quantizations depend heavily on the given
precision, weights distribution and the number of values we
wish to allow to saturate. In Section III-C, we show how to
use a greedy search to select between different quantizations
using model accuracy as the only metric.

In addition, all ReLU activation values are constrained to
8-bit fixed-point numbers with 3-bit integers, as previously
MobileNet indicated that this does not cause a large impact
on model accuracy [16].

B. Batch Normalization

Batch normalization (BN) is commonly used in CNNs to
accelerate training [15]. As shown in Equation (3), during in-
ference, BN normalizes convolutional outputs x in a channel-
wise fashion with a moving mean µ and a moving standard
deviation σ, then applies affine transformation on them with
the learned γ and β:

y = γ
x− µ

σ
+ β (3)

It is notable that Equation (3) can be re-arranged into a
channel-wise affine transformation. In the CNN feed-forward
stages, we respectively quantize the scaling and offset factors
of this affine transformation to fixed-point numbers:

y = quantize8.8

(γ

σ

)
x + quantize8.8

(
β − γµ

σ

)
, (4)

where quantize8.8(z) quantizes z into 16-bit fixed-point val-
ues with a binary point at 8.

C. Search Algorithm

As both the bitwidth of weights and their representation
(i.e. either shift or fixed-width) may vary on a layer-by-layer
basis, it is intractable to explore all possible combinations
exhaustively. For this reason, we introduce an algorithm which
minimizes the hardware complexity under a given accuracy
constraint. Algorithm 1 provides an overview of our search
algorithm, which accepts as inputs a CNN model with weight
parameters θ and N layers {l1, l2, . . . , lN}, the accuracy
constraint αbudget, the hardware resource constraint hbudget,
and an initial state of quantization hyperparameters q0 which
uses 8-bit fixed-point quantization for all layers. Here, θ′, α←
finetune(θ, q, E) fine-tunes the model parameters θ under
hyperparameters q for E epochs and returns the validation
accuracy of fine-tuned model. We found empirically E = 3 is
sufficient to recover most accuracy loss due to quantization.
To traverse the search space efficiently, we introduce a relation
R(L), where L is a set of modifiable layers. Each transition

(q, q′) ∈ R(L) finds a one step change to the configuration q,
i.e. decreasing the bit-width by 1 or changing the arithmetic
used by a layer layer changed(q, q′) ∈ L. In each step, the
algorithm is designed to greedily find a new configuration q′

from q which results in the steepest reduction in hardware
resources hwcost(q) − hwcost(q′) until all layers cannot be
modified further without violating the accuracy constraint.
Additionally, if the hardware resource constraint hwcost(q) ≤
hbudget is already satisfied then we exit early to minimize
accuracy loss. In our experiments, we chose αbudget to be
0.95α, where α is the original accuracy, to generate a fully
quantized model with efficient hardware usage. The resulting
model is then fine-tuned to further increase accuracy.

Algorithm 1 Search Algorithm
1: function SEARCH(θ, q0, αbudget, hbudget, E)
2: q ← q0; L← {l1, l2, . . . , lN}
3: while L 6= ∅ do
4: q′ ← argmax(q,q′)∈R(L)(hwcost(q)− hwcost(q′))
5: θ′, α← finetune (θ, q′, E)
6: if α ≥ αbudget then
7: q ← q′

8: θ ← θ′

9: if hwcost(q′) ≤ hbudget then
10: break
11: end if
12: else
13: L← L− layer changed(q, q′)
14: end if
15: end while
16: return q, θ
17: end function

IV. THE AUTO-GENERATION FRAMEWORK

The auto-generation framework, Tomato, applies to all
CNNs. For ease of presentation, in this section, we use
the MobileNet-V1 network to showcase our results when
compared to other published FPGA accelerators.

Model	Config

Hardware	
Constraints

Meeting	HW	
Constraints?

Pretrained
Weights

Greedy	Search Resource	Estimator

Throughput	
Matching

Retraining

Accuracy
Constraints

Hardware	
GenerationVerilog	Template Synthesis	&	Routing

No

Throughput	
MatchingModel	Config

Scaling	factors

Verilog	
files

Scaling	factors

Trained	Weights

Yes

Searched	
Arith Info

Estimated	
Hardware	Info

Bitstream

Software	Stack

Hardware	Stack

Fig. 2: Framework overview for generating the accelerator for
a targeting network on a particular dataset.

A. Framework Overview

Figure 2 shows an overview of Tomato. The framework
starts with an automated design process in software which uses
the algorithm in Section III-C to explore the choices of fixed-
point and shift arithmetics with varying precisions on the pre-
trained CNN model. It then produces optimized models that
are fully quantized while satisfying the accuracy constraints.
In the exploration procedure, it iteratively uses an accurate
hardware resource estimator to provide fast statistics of the
hardware costs and minimize the costs for the searched mod-
els. The cost (latency, LUT and BRAM usage) is estimated
using analytical models generated from post synthesis results
for a wide range of module parameters The final optimized
CNN model is then fine-tuned on the original training dataset
to minimize accuracy degradation.

It is notable that from the optimized model, Tomato gener-
ates dedicated compute engines for each convolutional layer.
As we have mentioned earlier, the compute engines are
connected in a pipeline, each takes a stream of inputs and
produces a stream of outputs. The isolated compute engines
can thus have the freedom to use different quantizations
with individual bitwidths. To minimize hardware utilization,
layers that exceed throughput requirements can be folded
(i.e. only partially unrolled) to share individual processing
elements temporally. In Section IV-C we explain how each
layer can temporally share its resources, and how we design
the throughput matching block (Section IV-D) to automatically
compute the optimal unroll factors required to parallelize
each layer which minimizes stalls and idle circuits. Finally,
the framework generates SystemVerilog output describing the
hardware implementation of the input model, which is in turn
synthesized into circuits with fine-tuned weights.

B. Macro-Architecture

Figure 3 shows the architecture differences between a
normal homogeneous core style accelerator and our generated
flattened streaming cores. In the flattened streaming cores,
each convolution has its dedicated compute engine, slide buffer
and weight buffer. Since the hardware is generated solely for
the targeted CNN and each compute core is dedicated for a
particular layer, with a suitable strategy to parallelize compute,
the generated hardware can reach very high compute efficiency
and have minimal idle hardware. In fact, in our measurements,
compute unit utilization is constantly high at around 84%.

We employ barrel shifters or short fixed-point multipliers
in the convolution compute engines. The weights are packed
into BRAMs, and streamed into the convolution compute
engines. Since weights are quantized as low precision shift
or fixed-point values, the shorter bitwidths directly translates
into lower BRAM usage. Additionally, because memory ports
can be time-shared, this in turn reduces the number of BRAMs
required.

C. Micro-Architecture: Roll-Unrolled Convolutions

In this section, we introduce the roll-unrolled convolution
compute core, this is designed to minimize hardware costs

when input and output data rates permit. As an example, we
consider a convolution layer with a kernel size of K, which
takes as input feature maps x of shape H × W × C, and
produces output feature maps y of shape H ′ × W ′ × C ′

with H ′ and W ′ depending on the stride size and padding
length. In addition, it is noteworthy that a convolution with
a stride size of 1 can produce pixels in the output feature
maps at the same rate of it taking input pixels. A convolution
with a stride size of 2, however, produces an output pixel 4
times slower than it can consume an input pixel. Layers in a
convolutional network can therefore process their feature maps
at an exponentially slower rate as more proceeding layers are
strided, and in turn have greater opportunities to reuse data-
paths. By way of illustration, assuming the input image is fed
at a rate of 1 cycle per pixel, the input/output throughput rates
of each layer in a MobileNet-V1 can be found in the last
column of Table I.

In order to maximize a layer’s utilization and minimize
hardware costs, rather than introducing stall cycles, we in-
troduce two unroll factors, U and U ′, for input and output
channels respectively. We partially roll input channel dimen-
sion C into U -sized blocks to save hardware resource. We still
accumulate C ′ values in parallel for y. In other words, all C ′

channels of a pixel of the output feature maps are unrolled
and computed concurrently. Fully unrolling output channels
during multiplication and accumulation is essential to allow
stall-free computation. Finally, output channels are rolled
after accumulation to U ′-sized blocks for batch normalization.
Fused batch normalization and ReLU operations are time-
shared for U ′ output channels, as the next layer has an input
block size equal to U ′. As we process all input channels C in
blocks of size U , we use only U×C ′, instead of C×C ′ parallel
shift-accumulate or multiply-accumulate units, requiring

⌈
C
U

⌉
cycles to complete the computation of a single pixel of all
output channels, as shown in Figure 4.

Tomato does not use roll-unrolled in depthwise convolu-
tions. Figure 5 shows the computation pattern for depthwise
convolutions. In contrast to normal convolutions, depthwise
convolutions are channel-wise operations, i.e. they do not ex-
change information across channels. By rolling input channels
in depthwise layers, the generated outputs are also rolled,
different from the normal roll-unrolled compute pattern. In
this way, we exactly match the throughput of incoming and
upcoming computations while minimizing resource utilization.
Each parallel adder tree sums up K2 values and is fully
pipelined, where K is the kernel size.

Roll-unrolled should not be confused with loop tiling. Loop
tiling reorders the access pattern so that it is more friendly
to CPU caches and DRAM bandwidth utilization in systolic
array based CNN accelerators. As Tomato pipelines multiple
frames instead of batching them, we did not change the access
pattern. The purpose of rolling and unrolling in Tomato’s
streaming cores are to minimize hardware and provides a stall-
free computation dataflow, a fundamentally different objective.

C

C2 C3C1

Homogeneous	Time-shared	
Compute	Core

Flattened	Streaming	Cores

L1 L2 L3

L2L1

L2

L2L1 L3L3

1st cycle 2nd cycle

1st cycle 2nd cycle 3rd cycle 4th cycle

Idle	Circuits

Inactive	Compute

Active	Compute

L1

L2

L3

3-layer	CNN

Execute Compute	Flow

k2×ic

w×h×oc

Fig. 3: An illustration of computation flows on executing three layers of convolutions (L1, L2, L3) at different clock cycles. C
represent a large homogeneous compute core and C1, C2, C3 are smaller compute cores in a flattened streaming architecture.
The rectangle block of each convolution layer represents input dimensions of a convolution flattened in 2D. k, ic, oc, w, h are
kernel size, input/output channels, width and height of input feature feature maps respectively.

⋮

≪ or *
ACC

⋮

Weights Output Feature Maps

⋮

ACC

ACC

Shift or Mult

Input Feature Maps
(After Slide Buffer)

Fig. 4: An illustration of roll-unrolled computation for normal
convolution (including pointwise convolution): blue indicates
data elements computed in a single cycle.

Input Feature Maps
(After Slide Buffer)

Weights Output Feature Maps

≪ or *
Shift or Mult

Fig. 5: An illustration of depthwise convolution: blue indicates
data elements computed in a single cycle.

D. Striding and Rolling: Matching the Throughput

By adjusting the unroll factors U and U ′, the framework
smartly matches the throughput between convolution layers
with different channel counts and stridings for higher effi-
ciency. The only free parameter now is the input pixel rate
at the very first layer of the CNN. The input pixel rate
determines how many pixels of an input image are fed into the
accelerator at each clock cycle. For instance, an input rate of
1
32 means we consume 1 input pixel in 32 clock cycles. The
choice of the input pixel rate directly impacts the trade-off

between performance and the hardware resources required. If
this input pixel rate is 1, the generated hardware is optimized
for performance, fully-pipelined, and never stalls the input
pixel steam. When the input pixel rate decreases, because
of the automatic matching, unroll factors of all subsequent
convolution layers decrease and the generated hardware thus
utilizes fewer resources but has an increased latency.

TABLE I: Unrolling factors U and U ′ are generated by
the throughput matcher for MobileNet-V1, depending on the
input and output channel counts (C, C ′), and the stride of
each convolution. dw and pw are depthwise and pointwise
convolution. s1 and s2 represents strides are 1 and 2.

Types C / C′ U / U′ C
U

/ C′

U′

Conv / s2 3 / 32 3 / 8 1 / 4
Conv dw / s1 32 / 32 8 / 8 4 / 4
Conv pw / s1 32 / 64 8 / 16 4 / 4
Conv dw / s2 64 / 64 16 / 4 4 / 16
Conv pw / s1 64 / 128 4 / 8 16 / 16
Conv dw / s1 128 / 128 8 / 8 16 / 16
Conv pw / s1 128 / 128 8 / 8 16 / 16
Conv dw / s2 128 / 128 8 / 2 16 / 64
Conv pw / s1 128 / 256 2 / 4 64 / 64
Conv dw / s1 256 / 256 4 / 4 64 / 64
Conv pw / s1 256 / 256 4 / 4 64 / 64
Conv dw / s2 256 / 256 4 / 1 64 / 256
Conv pw / s1 256 / 512 1 / 2 256 / 256
Conv dw / s1 512 / 512 2 / 2 256 / 256
Conv pw / s1 512 / 512 2 / 2 256 / 256
Conv dw / s2 512 / 512 2 / 1 256 / 512
Conv pw / s1 512 / 1024 1 / 1 512 / 1024
Conv dw / s1 1024 / 1024 1 / 1 1024 / 1024
Conv pw / s1 1024 / 1024 1 / 1 1024 / 1024
Avg Pool / s1 1024 / 1024 1 / 1 1024 / 1024
FC / s1 1024 / 1000 1 / 1 1024 / 1000

We now explain how the automated throughput matching
works. The framework utilizes the classic sliding window
design — one pixel of a output feature map is produced once
all pixels of the sliding window on input feature maps have
arrived [2]. The input stream and output stream of strided
convolutions, however, can have different input and output

rates. For instance, when the stride size is 2, the output stream
is then 4 times slower than the input stream (striding occurs in
the two spatial dimensions). Table I shows the unrolling factors
U and U ′ that the framework picked for each convolution in
MobileNet-V1 when choosing the input pixel rate to be 1.
Here, for each pixel, C

U represents the number of clock cycles
required to iterate over all input channel values, and C′

U ′ is
the number of cycles required to finish generating all output
channel values. Taking the second depthwise convolution layer
as an example, this layer has a stride size of 2 and the
framework rolls computations on the output channel side by
a factor of C′

U ′ = 16 so that U ′ = 4 values of each output
channel are computed concurrently. Finally, all of the unrolling
information is provided to the hardware templates in order to
instantiate the appropriate hardware.

E. Batch Normalization and Rounding

Each convolved output has an inflated precision as men-
tioned in Section IV-C, and we subsequently apply BN on
these values. As mentioned in Section III, BN is fused and
quantized to become a channel-wise affine transformation
with fixed-point arithmetic. We therefore use the on-chip DSP
elements to perform fixed-point multiplications and rounding
after BN. Since we roll computations in output channel
dimensions, the number of multiplications required by BN is
also significantly reduced by sharing. It is notable that weights
share a layer-wise bias value (Equation (1), Equation (2)). The
weights bias is included in the rounding after BN, as it simply
moves the binary point. The final results are then rounded to
8-bit fixed-point values with a 5-bit fractional width.

V. RESULTS

A. Implementation Setup

In this paper, we report results for automatically generated
hardware implementations for three distinct networks, each
optimized for a different dataset. We use CifarNet [44], an
8-layer CNN with 1.30 M parameters and 174 M multiply-
accumulates on the CIFAR-10 dataset [17], MobileNet-V1
[11] on the ImageNet dataset [6] and a customized 5-layer
CNN (FashionNet) for the Fashion MNIST dataset [37]. The
first two networks are relatively large, but the last network
is small. We use MobileNet-V1 design as a comparison to
showcase the performance achieved from this hardware and
software co-design workflow in comparison to other pub-
lished accelerators. The hardware part (SystemVerilog output)
is generated automatically using templates by the Tomato
framework. We use Synplify Premier DP for synthesis and
post-synthesis timing analysis. We verified that our designs
are actually implementable on FPGA by using Xilinx Vivado
to place and route the full-size MobileNet design.

B. Resource Utilization

For MobileNet, our design is fully-pipelined and never stalls
the input stream (#OPs

#OPs/cycle = 224×224). Note that 224×224 is
the input image size and this means the accelerator consumes
an entire image in exactly 224× 224 clock cycles. We utilise

84% of our 13479 compute units (shift-and-add or multiply-
and-add) on every clock cycle. The high utilization rate of the
hardware translates to high activity ratio in the circuits since
most components are active all the time. This fully quantized
MobileNet found by Algorithm 1 uses 3-bit shift weights in
its pointwise layers, and fixed-point weights in its depthwise
layers with precisions ranging from 3 to 7.

Table II shows the total amount of hardware utilized for the
generated accelerators for all networks on different devices.
We generate a MobileNet design with the input pixel rate
set to 1 for best performance (achieving 3109 FPS on an
Intel Stratix 10). The proposed workflow is a scalable one
since we can adjust the input pixel rate to control a trade-
off between performance and hardware utilization. CifarNet
results in Table II show how it is possible to target a small
FPGA device (Cyclone V) by adjusting this factor to 1

288 . The
results suggest a 3× reduction in LUT usage compared to the
design when the input pixel rate is set to 1

32 . We also observe
an increase in latency, but part of the increase attributes to
the frequency differences running on various devices. On the
other hand, if provided with a small network (FashionNet),
the proposed framework generates hardware that classifies at a
latency of 0.14ms on a very small FPGA device. The quantized
FashionNet uses 3-bit shift quantization in the most resource-
intensive third layer, and the remaining layers use fixed-point
weights with bit-widths from 5 to 7. Although FashionNet is
small, it is a good example of a specialized network produced
for resource constrained edge devices; other examples include
emotion recognition [3].

We explore in Figure 6 the optimized CifarNets obtained
with Algorithm 1 (denoted by the “hybrid” points) and com-
pare the results against shift (“shift”) and fixed-point (“fixed”)
models with all layers sharing the same bit-widths ranging
from 3 to 8. To explore the trade-off between top-1 error rates
and resources, we ran Algorithm 1 20 times by respectively
taking as inputs the accuracy budget values αbudget ranging
from 80% to 100% at 1% increments. Here hbudget is set
to 0 as we always minimize the resource utilization. We
constrain each layer to use either shift or fixed-point quan-
tized weights and choose a bit-width ranging from 3 to 8.
Additionally, E = 0 meaning that we skip the fine-tuning
process; without fine-tuning the accuracies are sub-optimal but
the search process above can complete within 1 hour. Figure 6a
shows the trade-off between resource utilization and top-1
errors under the same throughput constraints. Figure 6b further
varies the throughput scaling of the optimized results, and
shows that when synthesized into circuits, the the optimized
models (“hybrid”) consistently outperforms models (“shift”
and “hybrid”) with either shift or fixed-point quantization
under the same bit-width applied across all layer weights.
Finally, Figure 6c illustrates all results found by the three
methods and the trade-off relationship between top-1 error
rates and resource-latency products.

Hybrid quantization reduces accuracy degradations but im-
proves model compression rates by utilizing multi-precision
multi-arithmetic convolutions. Importantly, we consider the

TABLE II: Summary of tested networks on the Tomato. IPP stands for input pixel rate.

Network IPP Platform Perf Metrics LUTs Registers BRAMs DSPs Top-1 Top-5 Size

MobileNet-V1 1 Intel Stratix 10
Frequency 156 MHz Used 926 k 583 k 1430 297 Orig. 70.71 89.53 33.92 MB
Latency 358 µs Total 1866 k 3732 k 11721 5760 Quant. 68.02 88.02 16.1 MB
Throughput 3109 fps Ratio 49% 15% 12% 5% ∆ -2.69 -1.51 2.11×

CifarNet 1
32

Intel Stratix V
Frequency 207 MHz Used 304 k 280 k 771 84 Orig. 91.37 99.68 4.94 MB
Latency 261 µs Total 469 k 939 k 2.56 k 256 Quant. 91.06 99.58 520 kB
Throughput 6317 fps Ratio 64% 29% 30% 32% ∆ -0.31 -0.10 9.73×

CifarNet 1
288

Intel Cyclone V
Frequency 116 MHz Used 102 k 84.7 k 715 82 Orig. 91.37 99.68 4.94 MB
Latency 4.01 ms Total 227 k 454 k 1.22 k 342 Quant. 91.06 99.58 520 kB
Throughput 393 fps Ratio 44% 18% 58% 24% ∆ -0.31 -0.10 9.73×

FashionNet 1
9

Xilinx Artix 7
Frequency 98 MHz Used 49.3 k 32.7 k 40 240 Orig. 91.79 99.67 443 kB
Latency 138 µs Total 63.4 k 127 k 135 240 Quant. 91.57 99.56 65.3 kB
Throughput 13.9 kfps Ratio 77% 25% 29% 100% ∆ -0.22 -0.11 6.78×

ImageNet [6] classification task for MobileNet. This challeng-
ing dataset leaves less headroom for compression techniques.
The classification results achieved on this large dataset using
a relatively compact network proves that the workflow is also
robust on other cases where the model is over-provisioned on
the target dataset.

C. Performance Evaluation

We compare the MobileNet-V1 design generated by our
framework with existing FPGA accelerators in Table III. This
comparison only considers networks in the ImageNet dataset
that achieves greater than 70% top-1 accuracy when not quan-
tized. The computer vision community spends a significant
amount of effort in optimizing model architecture, we note
that it is important to generate results for the latest models as
they offer the best accuracy/cost trade offs. Results for older
models in terms of GOP/s can be misleading.

Our design is different from most existing designs examined
in Table III in the following ways. First, our framework
exploits hybrid quantization to minimize the impact of quan-
tization errors. Second, using the throughput scaling trick, the
amount of hardware required is reduced significantly. Most of
the examined designs rely on a high DRAM bandwidth with
a large monolithic compute core. As discussed previously, a
large compute core cannot explore multi-precision and multi-
arithmetic quantizations and struggles to fully utilize compute
units on convolutions with varying channel counts, kernel sizes
and input feature sizes. Tomato generated designs compute
various layers concurrently and quantize each layer differently,
thus achieving a very high utilization of our compute units
and to operate at around 3.5 TOPs/s on Stratix 10. Note
that, for accelerators that we compare against, the arithmetic
performance reported in Table III considers the peak per-
formance assuming unbounded DRAM bandwidth. In reality,
such designs can easily be limited by the available memory
bandwidth. In contrast, this is not a concern in our design as all
weights and activations are held on the FPGA. Additionally,
our design has a high throughput since operations rarely stall.
Designs proposed by Bai et al. [2] and Zhao et al. [41]
have to execute computations in a layer-wise fashion, and thus
operations in the next layer only executes when the current
layer finishes. In our framework, similar to Shen et al. [32],

computations in different layers happen concurrently in the
same pipeline stage while later layers never stall earlier layers.
Moreover, consecutive image inputs can be fully pipelined,
because we utilize streaming sliding windows. These features
help us to achieve high throughput compared to other designs
(Table III). The proposed workflow avoids complex and time-
consuming design space exploration as necessary in many
compared FPGA accelerators [2], [42].

In terms of performance, our design achieves a higher
throughput and a lower latency compared to all designs (as
listed in Table III). We notice that most CNN accelerators
report theoretical upper bounds for arithmetic performance
and throughput. In terms of latency, the numbers are reported
optimistically assuming DRAM accesses cause no stalls. In
our design, since we stream in pixels of the input image, the
computation pattern differs from most existing designs. The re-
ported values in Table III represents our true performance and
make no assumptions regarding DRAM bandwidth. Our sys-
tem automatically produces an implementation of MobileNet
for the Stratix 10 FPGA that outperforms Zhao et al. [41] by
2.44× in latency and 3.52× in throughput.

D. Multi-FPGA Acceleration

The flattened streaming style employed by Tomato makes it
easy to partition the generated design across multiple FPGAs
This feature makes Tomato highly scalable with respect to
network sizes and/or FPGA sizes. We demonstrate in this
section an example of partitioning MobileNet-V1 onto two
Stratix V FPGAs, connected through enhanced small form-
factor pluggable (SFP+) interfaces. We present the perfor-
mance results in comparison to Zhang et al. [38] in Table IV,
and the detailed hardware utilization information in Table V.
The latency is not penalised thanks to the low latency of SFP+,
which contributes only a 0.0013ms latency overhead.

The simple case study of partitioning the same MobileNet-
V1 design to two devices demonstrates that, first, Tomato gen-
erated designs are scalable from single to multi-FPGAs;
second, aiming accelerating new network architectures with
mixed quantizations bring significant improvements in accu-
racies, latency and throughput.

TABLE III: A comparison of CNN inference performance on FPGA and GPU platforms. The quantization of weights and
activations are on the left. Target platform, frequency, latency, throughput and arithmetic performance are on the right. Metrics
with ∗ are our best-case estimations as they are not mentioned in the original papers. Note VGG16 has a similar top-5 accuracy
to MobileNet-V1 when neither is quantized, many of the works below do not report ImageNet accuracies after quantization.

Quantisation(s)
Platform

Frequency
(MHz)

Latency
(ms)

Throughput
(FPS)

Arithmetic
perf. (GOP/s)Implementation Weights Acts

V
G

G
16

Throughput-Opt [33] FXP8 FXP16 Intel Stratix V 120 262.9 3.8∗ 117.8
fpgaConvNet [34] FXP16 FXP16 Xilinx Zynq XC7Z045 125 197∗ 5.07 156

Angel-Eye [9] BFP8 BFP8 Xilinx Zynq XC7Z045 150 163∗ 6.12∗ 188
Going Deeper [25] FXP16 FXP16 Xilinx Zynq XC7Z045 150 224∗ 4.45 137

Shen et al. [31] FXP16 FXP16 Xilinx Virtex US XCVU440 200 49.1 26.7 821
HARPv2 [23] BIN BIN Intel HARPv2 – 8.77∗ 114 3500

GPU [23] FP32 FP32 Nvidia Titan X – – 121 3590

M
ob

ile
N

et Ours Mixed FXP8 Intel Stratix 10 156 0.32 3109 3536
Ours Mixed FXP8 Xilinx Virtex US+ XCVU9P 125 0.40 2491 2833

Zhao et al. [41] FXP16 FXP16 Intel Stratix V 200 0.88 1131 1287
Zhao et al. [42] FXP8 FXP8 Intel Stratix V 150 4.33 231 264

GPU FP32 FP32 Nvidia GTX 1080Ti – 279.4 515 586

400 600 800 1000 1200
Resources (kLUTs)

8.0%

10.0%

12.0%

14.0%

16.0%

18.0%

20.0%

To
p-

1
Er

ro
r

shift
fixed
hybrid

(a) Number of LUTs vs. top-1 error under the
same 1

32
scaling and the same throughput.

103 104

Resources (kLUTs)

102

103

La
te

nc
y

(
s)

shift
fixed
hybrid

(b) Number of LUTs vs. latency for models
with ≤ 10% top-1 errors.

105 106

Resource-Latency Product (kLUTS s)

8.0%

10.0%

12.0%

14.0%

16.0%

18.0%

20.0%

To
p-

1
Er

ro
r

shift
fixed
hybrid

(c) Error vs. area-latency product for all op-
timized models.

Fig. 6: A case study of trade-off options among hardware utilization (LUTs), performance (latency) and model accuracy (top-1
error rate) before fine-tuning, targeting a clock frequency of 200 MHz. The LUTs and latency numbers are from the hardware
estimator. Here, “shift” and “fixed” respectively indicate using the same shift and fixed-point quantization method across all
layers with the same weight precisions. The “hybrid” points are optimized by Algorithm 1. The area shaded in red, green and
blue respectively denote the 2D Pareto frontier of “shift”, “fixed” and “hybrid” optimized results.

TABLE IV: Multi-FPGA acceleration of CNNs. MBNet repre-
sents MobileNet, VGG-D and VGG-E are both VGG16 based
networks but different configurations, one is latency oriented
and one is throughput oriented [38].

Network Acc (%) #Device Lat (ms) Tpt (GOPs)

MbNet-V1 (ours) 68.02 2 Stratix V 0.32 3536
VGG-D [38] 66.52 2 VX690t 200.9 203
VGG-E [38] 66.51 7 VX690t 151.8 1280

TABLE V: Multi-FPGA hardware utilization.
Device No Frequency LUTs Regs BRAM DSP

0 156MHz 362.7k 278.8k 828 256
1 156MHz 345.9k 303.6k 598 31

VI. CONCLUSION

In this paper, we presented a hardware-software co-design
workflow to automatically generate high-performance CNN

accelerators. The workflow is able to quantize weights to both
fixed-point and shift values at various precisions, and keeps
activations to fixed-point numbers. In addition, it transforms
batch normalization to simple affine operations with fixed-
point scaling and offset factors. In hardware, the framework
utilizes the Roll-Unrolled compute pattern and provides flexi-
bility in rolling computations in the channel dimension. As
a result, the guided rolling minimizes computation while
keeping the input stream stall-free. The results showed state-
of-the-art performance in terms of model accuracy, latency
and throughput. The implemented accelerator for MobileNet
is fully pipelined with sub-millisecond latency (0.32ms) and
is able to classify at around 3000 frames per second.

ACKNOWLEDGMENTS

We thank EPSRC for providing Yiren Zhao his doctoral
scholarship. Xitong Gao is supported by the National Natural
Science Foundation of China (No. 61806192).

REFERENCES

[1] M. Alwani, H. Chen, M. Ferdman, and P. Milder. Fused-layer CNN
accelerators. In The 49th Annual IEEE/ACM International Symposium
on Microarchitecture, 2016.

[2] L. Bai, Y. Zhao, and X. Huang. A CNN accelerator on FPGA using
depthwise separable convolution. IEEE Transactions on Circuits and
Systems II: Express Briefs, 2018.

[3] P.-L. Carrier, A. Courville, I. J. Goodfellow, M. Mirza, and Y. Bengio.
FER-2013 face database. Technical report, 2013.

[4] Y.-H. Chen, T. Krishna, J. S. Emer, and V. Sze. Eyeriss: An energy-
efficient reconfigurable accelerator for deep convolutional neural net-
works. IEEE Journal of Solid-State Circuits, 2016.

[5] M. Courbariaux, Y. Bengio, and J.-P. David. Training deep neural
networks with low precision multiplications. In International Conference
on Learning Representations, 2015.

[6] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. ImageNet:
A large-scale hierarchical image database. In IEEE Conference on
Computer Vision and Pattern Recognition, 2009.

[7] J. Fowers, K. Ovtcharov, M. Papamichael, T. Massengill, M. Liu, D. Lo,
S. Alkalay, M. Haselman, L. Adams, M. Ghandi, et al. A configurable
cloud-scale DNN processor for real-time ai. In 45th Annual International
Symposium on Computer Architecture, 2018.

[8] X. Gao, Y. Zhao, L. Dudziak, R. Mullins, and C.-z. Xu. Dynamic
channel pruning: Feature boosting and suppression. 2019.

[9] K. Guo, L. Sui, J. Qiu, S. Yao, S. Han, Y. Wang, and H. Yang.
Angel-Eye: A complete design flow for mapping CNN onto customized
hardware. In IEEE Computer Society Annual Symposium on VLSI, 2016.

[10] Y. He, X. Zhang, and J. Sun. Channel pruning for accelerating very
deep neural networks. In International Conference on Computer Vision
(ICCV), 2017.

[11] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand,
M. Andreetto, and H. Adam. MobileNets: Efficient convolutional neural
networks for mobile vision applications. 2017.

[12] I. Hubara, M. Courbariaux, D. Soudry, R. El-Yaniv, and Y. Bengio. Bi-
narized neural networks. In Advances in Neural Information Processing
Systems. 2016.

[13] I. Hubara, M. Courbariaux, D. Soudry, R. El-Yaniv, and Y. Bengio.
Quantized neural networks: Training neural networks with low precision
weights and activations. J. Mach. Learn. Res., 2017.

[14] K. Hwang and W. Sung. Fixed-point feedforward deep neural network
design using weights +1, 0, and −1. In Signal Processing Systems,
2014.

[15] S. Ioffe and C. Szegedy. Batch normalization: Accelerating deep
network training by reducing internal covariate shift. arXiv preprint
arXiv:1502.03167, 2015.

[16] R. Krishnamoorthi. Quantizing deep convolutional networks for efficient
inference: A whitepaper. arXiv preprint arXiv:1806.08342, 2018.

[17] A. Krizhevsky, V. Nair, and G. Hinton. The CIFAR-10 and CIFAR-100
datasets. http://www.cs.toronto.edu/ kriz/cifar.html, 2014.

[18] A. Krizhevsky, I. Sutskever, and G. E. Hinton. ImageNet classification
with deep convolutional neural networks. In Advances in Neural
Information Processing Systems 25. 2012.

[19] F. Li, B. Zhang, and B. Liu. Ternary weight networks. arXiv preprint
arXiv:1605.04711, 2016.

[20] S. Liang, S. Yin, L. Liu, W. Luk, and S. Wei. FP-BNN: Binarized neural
network on FPGA. Neurocomput., 2018.

[21] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-Y. Fu, and A. C.
Berg. SSD: Single shot multibox detector. In European conference on
computer vision, 2016.

[22] A. Mollahosseini, D. Chan, and M. H. Mahoor. Going deeper in facial
expression recognition using deep neural networks. In 2016 IEEE winter
conference on applications of computer vision (WACV), 2016.

[23] D. Moss, S. Krishnan, E. Nurvitadhi, P. Ratuszniak, C. Johnson, J. Sim,
A. Mishra, D. Marr, S. Subhaschandra, and P. H. W. Leong. A
customizable matrix multiplication framework for the Intel HARPv2
Xeon + FPGA platform. In ACM/SIGDA International Symposium on
Field-Programmable Gate Arrays, 2018.

[24] D. C. Plaut and G. E. Hinton. Learning sets of filters using back-
propagation. Computer Speech & Language, 1987.

[25] J. Qiu, J. Wang, S. Yao, K. Guo, B. Li, E. Zhou, J. Yu, T. Tang,
N. Xu, and S. Song. Going deeper with embedded FPGA platform for
convolutional neural network. In ACM/SIGDA International Symposium
on Field-Programmable Gate Arrays, 2016.

[26] M. Rastegari, V. Ordonez, J. Redmon, and A. Farhadi. XNOR-Net:
ImageNet classification using binary convolutional neural networks. In
ECCV, 2016.

[27] M. Samragh, M. Ghasemzadeh, and F. Koushanfar. Customizing neural
networks for efficient FPGA implementation. In 2017 IEEE 25th Annual
International Symposium on Field-Programmable Custom Computing
Machines (FCCM), 2017.

[28] S. S. Sarwar, S. Venkataramani, A. Raghunathan, and K. Roy.
Multiplier-less artificial neurons exploiting error resiliency for energy-
efficient neural computing. In 2016 Design, Automation Test in Europe
Conference Exhibition (DATE), 2016.

[29] S. Sharify, A. D. Lascorz, M. Mahmoud, M. Nikolic, K. Siu, D. M.
Stuart, Z. Poulos, and A. Moshovos. Laconic deep learning inference
acceleration. In Proceedings of the 46th International Symposium on
Computer Architecture, ISCA ’19, 2019.

[30] H. Sharma, J. Park, N. Suda, L. Lai, B. Chau, V. Chandra, and H. Es-
maeilzadeh. Bit fusion: Bit-level dynamically composable architecture
for accelerating deep neural networks. In Proceedings of the 45th Annual
International Symposium on Computer Architecture, 2018.

[31] J. Shen, Y. Huang, Z. Wang, Y. Qiao, M. Wen, and C. Zhang. Towards
a uniform template-based architecture for accelerating 2D and 3D
CNNs on FPGA. In ACM/SIGDA International Symposium on Field-
Programmable Gate Arrays, 2018.

[32] Y. Shen, M. Ferdman, and P. Milder. Maximizing CNN accelerator
efficiency through resource partitioning. In 2017 ACM/IEEE 44th
Annual International Symposium on Computer Architecture (ISCA),
2017.

[33] N. Suda, V. Chandra, G. Dasika, A. Mohanty, Y. Ma, S. Vrudhula, J.-s.
Seo, and Y. Cao. Throughput-optimized OpenCL-based FPGA accel-
erator for large-scale convolutional neural networks. In Proceedings of
the 2016 ACM/SIGDA International Symposium on Field-Programmable
Gate Arrays, 2016.

[34] S. I. Venieris and C.-S. Bouganis. fpgaConvNet: A framework for map-
ping convolutional neural networks on FPGAs. In IEEE International
Symposium on Field-Programmable Custom Computing Machines, 2016.

[35] E. Wang, J. J. Davis, P. Y. Cheung, and G. A. Constantinides. LUTNet:
Rethinking Inference in FPGA Soft Logic. In IEEE International
Symposium on Field-programmable Custom Computing Machines, 2019.

[36] E. Wang, J. J. Davis, R. Zhao, H.-C. Ng, X. Niu, W. Luk, P. Y. K. Che-
ung, and G. A. Constantinides. Deep Neural Network Approximation
for Custom Hardware: Where We’ve Been, Where We’re Going. ACM
Computing Surveys, (2), 2019.

[37] H. Xiao, K. Rasul, and R. Vollgraf. Fashion-MNIST: a novel image
dataset for benchmarking machine learning algorithms. arXiv preprint,
2017.

[38] C. Zhang, D. Wu, J. Sun, G. Sun, G. Luo, and J. Cong. Energy-efficient
cnn implementation on a deeply pipelined fpga cluster. In Proceedings
of the 2016 International Symposium on Low Power Electronics and
Design, 2016.

[39] X. Zhang, J. Wang, C. Zhu, Y. Lin, J. Xiong, W.-m. Hwu, and D. Chen.
DNNBuilder: an automated tool for building high-performance dnn
hardware accelerators for fpgas. In Proceedings of the International
Conference on Computer-Aided Design, page 56. ACM, 2018.

[40] X. Zhang, X. Zhou, M. Lin, and J. Sun. Shufflenet: An extremely
efficient convolutional neural network for mobile devices. In IEEE
Conference on Computer Vision and Pattern Recognition, 2018.

[41] R. Zhao, H.-C. Ng, W. Luk, and X. Niu. Towards efficient convolutional
neural network for domain-specific applications on FPGA. arXiv
preprint, 2018.

[42] R. Zhao, X. Niu, and W. Luk. Automatic optimising CNN with depth-
wise separable convolution on FPGA: (abstact only). In ACM/SIGDA
International Symposium on Field-Programmable Gate Arrays, 2018.

[43] Y. Zhao, X. Gao, D. Bates, R. Mullins, and C.-Z. Xu. Focused
quantization for sparse CNNs. In Advances in Neural Information
Processing Systems, 2019.

[44] Y. Zhao, X. Gao, R. Mullins, and C. Xu. Mayo: A framework for
auto-generating hardware friendly deep neural networks. In Proceedings
of the 2Nd International Workshop on Embedded and Mobile Deep
Learning, EMDL’18, 2018.

[45] A. Zhou, A. Yao, Y. Guo, L. Xu, and Y. Chen. Incremental network
quantization: Towards lossless CNNs with low-precision weights. Inter-
national Conference on Learning Representations (ICLR), 2017.

[46] C. Zhu, S. Han, H. Mao, and W. J. Dally. Trained ternary quantization.
In International Conference on Learning Representations, 2017.

	I Introduction
	II Related Work
	III Hybrid Quantization
	III-A Shift and Fixed-point Quantizations
	III-B Batch Normalization
	III-C Search Algorithm

	IV The Auto-generation Framework
	IV-A Framework Overview
	IV-B Macro-Architecture
	IV-C Micro-Architecture: Roll-Unrolled Convolutions
	IV-D Striding and Rolling: Matching the Throughput
	IV-E Batch Normalization and Rounding

	V Results
	V-A Implementation Setup
	V-B Resource Utilization
	V-C Performance Evaluation
	V-D Multi-FPGA Acceleration

	VI Conclusion
	References

