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Abstract—Memory throughput is one of the major bottlenecks
for accelerator performance. Now that Zynq UltraScale+ sys-
tems are being deployed at exascale to edge, it is important
to understand its limitations and optimizations possible for
developers. In this paper, we extensively evaluate the memory
performance and behaviour for various AXI ports combinations,
burst sizes, access patterns, and the number of accelerators per
AXI port. Our results on ZCU102 and Ultra 96 boards show
that 1) effective throughput of these systems is only 75% and
92.5% of theoretical maximum respectively, 2) 128 and 192 byte
burst size is often optimal, 3) AXI ports of the same type may
not always exhibit similar behaviour, 4) multiplexing accelerators
in PL can provide better throughput distribution compared to
multiplexing in PS, and 5) using all AXI ports does not lead to
the highest performance.

I. INTRODUCTION

Multicore and Multiprocessor SoC (MPSoC) systems like
Zynq UltraScale+ are being deployed for exascale systems [1]
to edge hubs [2] and other embedded systems due to their
performance and energy benefits in the post-Moore era. The
adoption can be largely attributed to the combination of an
ARM CPU core for control-oriented tasks and an FPGA
fabric for application acceleration, allowing rapid development
and performance optimisation while keeping the energy con-
sumption minimal. However, one common problem for high-
performance systems is the memory wall, i.e. accelerators
often starve due to the lack of memory throughput and high
latency [3]–[5]. With systems moving towards edge hubs and
cloud environments, multiple applications will be required to
run concurrently in these systems [6], further worsening the
memory contention problems.

Hence, developers for these systems must understand the
nature of the memory sub-system of these MPSoCs and design
accelerators which capitalise on it for high performance. The
main system design parameters which dictate the memory
throughput for such systems are:

• AXI ports: Different AXI ports can potentially provide
different memory behaviours based on internal priorities
of the memory subsystems.

• AXI data widths: The data width dictates how many
bits can be transferred per clock cycle and is directly
proportional to the memory throughput.

• Burst sizes: Depending on the memory controller, the
burst size may allow bulk read/write operations faster
than by using fine-grained memory accesses.

• Memory organisation: Depending on the internal structure
of a memory controller (e.g., row-bank or bank-row), the
level of row reuse may change leading to low or high
throughput.

• Access patterns: Depending on the memory controller’s
ability to reorder and analyse the trends in transactions,

Programmable Logic

APU 
MP core

CCI 
Coherency 
and Bypass

Х

Х Х Х

TBU TBU TBU

TB
U

SMMU TCU

ACP
ACE

H
P

C
0

H
P

C
1

Х

FP
D

 D
M

A

DisplayPort

Q
oS

Q
oS

Q
oS

H
P

0

H
P

1

H
P

2

H
P

3

QoS QoS QoSQoSQoS

Q
oS

M S
128-bit

DDR Memory Controller

Fig. 1: AXI interconnect map for memory on Zynq UltraScale+ devices [7].

it may perform large read/write accesses for higher per-
formance.

• Transaction frequency: This directly corresponds to how
many transactions can be transferred between memory
and the accelerators per second.

• Number of accelerators per AXI port: This corresponds
to the amount of multiplexing overhead in the pro-
grammable logic as well as to the pollution in memory
controllers at the level of row and bank accesses.

In this paper, we thoroughly analyse these parameters for
the Zynq UltraScale+ FPGAs on ZCU102 and Ultra-96 boards
and highlight trends and provide insights into memory systems
for accelerator and system developers. Additionally, to the
best of our knowledge, this study presents one of the first
memory bandwidth analysis for FPGA accelerators on Zynq
UltraScale+ boards. Further, the complete set of results (4800
data points of 50 seconds runtime each) are publicly available1.
Our key contributions in this paper are:

• Design of a testing harness for memory performance
evaluation with varying parameters (Section III).

• Quantitative assessment of memory behaviour in various
configurations (Section IV).

• Design guidelines for system design and application
performance tuning (Section IV, V, and VI).

II. ZYNQ ULTRASCALE+ MEMORY SYSTEM

According to the Zynq UltraScale+ Device Technical Ref-
erence Manual from the vendor (Xilinx [7]) the ARM system-
on-chip which consists of processors, AXI interconnects and
the memory controller is identical for all Zynq UltraScale+
devices. Fig. 1 shows a simplified view of the the connections
between programmable logic (PL), ARM Cortex-A53 (refer

1All the graphs and data can be found at https://bit.ly/2yQp3O5



TABLE I: Platform specification for ZCU102 and Ultra 96 board.
ZCU102 Ultra96

FPGA XCZU9EG-2 XCZU3EG-1
BlockRAM36K 912 216
DSP 2,520 360
Logic Slices 34,260 8,820
Processing System Cortex-A53 + R5 Cortex-A53 + R5
APU Frequency up to 1.5GHz up to 1.5GHz
Level 1 Cache 32 KiB 32 KiB
Level 2 Cache 1 MiB 1 MiB
Bank Organisation 4 Bank Groups × 4 Banks each 2 Ranks × 8 Banks each
DDR Capacity 4GB 2GB
DDR throughput 2400 MT/s × 64-bit 1066 MT/s × 32-bit

to as APU), and the memory controller. The interconnect
provides four types of AXI ports to programmable logic which
are used for communication with the CPUs and memory:

• High-Performance (HP) port: Four 128-bit wide instances
without any coherency support.

• High-performance Coherent (HPC) port: Two 128-bit
wide instances with one way I/O coherency support.

• Accelerator Coherency Port (ACP): One 128-bit wide
instance with coherency support for I/O and CPU’s L2
cache.

• AXI Coherency Extension (ACE): One 128-bit wide
instance with full coherency support.

There are three types of memories available in Zynq Ultra-
scale+ systems: i) On-chip memory (which consists of block
RAMs and distributed memory), ii) level 1 and level 2 caches
inside the CPUs, and iii) off-chip DDR memory. This means
that depending on the memory used, state information is
located inside the CPU, inside the programmable logic or in
external RAM. Table I shows details of these memories for
some popular boards.

There also exist other components between PL and the DDR
memory controller (see Fig 1): Translation Buffer Unit (TBU),
Multiplexers, a Display-port, a Full Power Domain DMA
engine (FPD DMA), and Quality of Service (QoS) buffers.
These can potentially affect the behaviour and achievable
memory throughput of hardware accelerators. However, these
are often not considered by the developer as they exist inside
the ARM SoC and Vivado does not provide direct control over
these components.

Overall, an accelerator developer usually expects the fol-
lowing behaviour from the memory system:

1) Same type of AXI ports should show same performance
behaviour.

2) Increasing burst size should improve both read and write
performance until it saturates (i.e. a logarithmic relation).

3) Increasing the number of AXI ports to memory should in-
crease memory throughput either linearly or sub-linearly.

4) Memory behaviour should be similar across different
boards with the same memory controller except for
the highest throughput achievable from the memory
SODIMM available on a particular board.

5) Multiplexing in the PL and PS should provide similar
throughput behaviour except for the higher overhead
(latency and logic) posed by the soft-logic AXI multi-
plexing.

6) Sequential memory access patterns should provide con-
siderably higher performance than random access pattern.

Our memory evaluation results reveal that 4 out of these 6
assumptions (1-4) do not hold and the remaining 2 (5 and 6)
do only in certain circumstances as detailed in Section IV.
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Fig. 2: Experiment setup in the programmable logic for memory test patterns.

III. EXPERIMENT SETUP

In our experiments, we consider two widely available Zynq
UltraScale+ boards - a ZCU102 Evaluation Board and an
Ultra96. Details of these boards are shown in Table I.

Our prime objective for evaluation is the DDR memory
alone as in most cases caches are useful only for the CPUs
due to their small size. This is because using on-chip memory
as a scratchpad memory in the programmable logic (PL)
commonly provides better control, throughput and latency for
accelerators than caches. Further, the memory performance
can become more unpredictable due to the interference caused
by applications running on CPUs and the accelerators in PL.
The goal of this paper is to examine memory effects that
preliminary relate to accelerators located in the PL part of
the system but that operate on DDR memory connected to the
ARM SoC. We therefore do not examine any caching effects
in this paper. For the analysis of available bandwidth from the
Cortex-A53 and Cortex-R5 cores, we refer the readers to [8].

A. Hardware Setup
We have implemented and placed RTL modules in the

Programmable Logic (PL). These modules independently use
the read and write ports of the 4 High-Performance AXI
ports. Our modules can simulate the placement of up to eight
accelerators — four write memory intensive (e.g., mandelbrot
frame rendering) and four read memory intensive (e.g., a
MapReduce accelerator) or combinations of these. Fig. 2
depicts the connection of these modules with the PS. Each test
module is fully programmable from the host CPU, allowing
us to change its state at runtime for adjusting the number
of operations, memory address spaces and burst lengths. To
ensure there are no conflicts between accelerators, we reserve a
unique address space in the DDR memory for each accelerator.
All modules are instrumented with an integrated Performance
Monitoring Unit (PMU), which allows us to obtain real-
time information about read/write operations executed, active
runtime, as well as average and maximum read latencies. The
PMU registers are memory-mapped and are controlled using
the AXI Slave as shown in Fig. 2.

B. Test Case Generation
The base experimental setup consists of all AXI combi-

nations configured to measure read-only, write-only, and read-
write performance for each setup. The test modules are directly
connected to the PS HP AXI ports without any additional
interconnect as an intermediary. Further, these modules are



controlled from the CPU in bare-metal mode to minimize
memory overhead and interference caused by running appli-
cations and an operating system. Moreover, our tests are long
and free-running, i.e. each configuration runs for 5 seconds
before being stopped to capture the results (which include
many refresh cycles). Every configuration is tested 10 times
to minimize and quantify errors.

The system runs with a global clock of either 100MHz
or 300MHz in different test scenarios. The read-only and
write-only tests are executed for both ZCU102 and Ultra96
at 300MHz to achieve maximum available single-AXI perfor-
mances, while our base read-write tests run at 300MHz and
100MHz on the ZCU102 and Ultra96 respectively because
many systems may not be able to run their accelerators at
300MHz.

The ARM CPU cache line size is 64 bytes in Zynq Ultra-
scale+ devices. Given that the DDR memory controller is also
supplied by ARM, someone would anticipate that it is largely
optimised to operate on memory accesses of this burst size.
Moreover, cache lines are always aligned in memory, which
should also be considered when using the DDR controller. In
our experiments, small bursts (up to 512 Bytes) are multiple
of 16 and large burst sizes are always the multiple of the
ARM cache line size to ensure optimal operation of the
DDR controller. Additionally, all of our accesses are memory
aligned to the burst size for the test (16 Byte bursts will
have data aligned to 16 byte boundaries). Data alignment
and positioning is a common technique that can overcome
DDR controller alignment issues as well as optimal cache line
utilization from the software [9]. The maximum achievable
AXI burst size for 128-bit AXI configuration is 4 KiB, thus we
evaluate AXI performance with configurations of up to 4 KiB.
Note that the DDR memory controller is capable of executing
memory requests out of order and has QoS modules that can
define the order of requests to the memory [7]. In situations
where the controller can not select more optimal execution
ordering, read requests are prioritised over write requests [7].

We use a DDR controller configuration to map the DDR
address space in Row-Bank-Column fashion for our base
case, which is the default and widely used configuration in
computing systems, as it results in bank interleaving when
accessing large sequential arrays of data. Additionally, we set
the System Memory Management Unit (SMMU) into by-pass
mode for the accelerators to minimize the throughput overhead
caused by the Translation Buffer Units (TBU).

With these base settings, we exhaustively test every AXI
and frequency combination for multiple different burst sizes
to characterise memory performance under various scenarios.
Individual changes are made in the base setup to evaluate the
impact of access patterns, multiplexing in PL and Quality of
Service (QoS) in isolation (i.e. keeping all other parameters
constant).

IV. EVALUATION

In the following subsections we evaluate eight primary
areas: 1) peak performance, 2) performance of AXI ports,
3) frequency, 4) access patterns, 5) memory organisation,
6) multiplexing overhead in PL, 7) quality of service and
8) performance distribution impact. Based on our experiments
we found that throughput scales linearly with AXI width size

and, hence, to quantify the maximum throughput achievable
all the experiments from here on use 128-bit AXI connections.

A. Peak Performance
We evaluate the peak memory performance provided by

the boards using read-only and write-only test scenarios.
The normalised results are presented in Fig. 3. Since the
DDR theoretical performance for ZCU102 is larger than the
available throughput of a single AXI port, we also include the
test case using multiple AXI configuration that achieves the
largest throughput (using HP0, HP1 and HP3 simultaneously).
We observed that:

• The write-only throughput is larger than the read-only
throughput with on average by 11-13%.

• At a burst size of 128 Bytes, the throughput reaches (near)
maximum for all configuration.

• Burst sizes using a multiple of 64 Bytes yield local peak
performances except for the burst sizes which are also
multiple of 256 Bytes as they show decreased throughput
for various AXI ZCU102 read-only configurations (see
the strong oscillating behaviour in Fig. 3).

The Ultra96 configuration uses a single AXI that issues
sequential bursts on either read or write port. This avoids
request multiplexing or changing between read and write
mode in the DDR controller, thus achieving a high maximum
throughput of 92.5% of the theoretical DDR memory peak on
the Ultra96. In contrast, the ZCU102 needs to utilise multiple
AXI ports to achieve the highest throughput, which leads to
some multiplexing in the DDR controller between the requests
and does not scale linearly with the number of ports. The peak
performance in ZCU102 was found at 128 Byte bursts, which
is 75% of the theoretical peak for the DDR memory.

Note, contrary to the common assumption, of using all AXI
ports does not lead to the highest throughput in either of the
boards as HP1 and HP2 are multiplexed in the PS (see Fig. 1).

B. Performance of AXI Ports
We execute read/write base tests utilising all AXI combina-

tions and burst sizes, to observe their respective behaviours.
The tests are executed at 100MHz and 300MHz respectively
for both Ultra96 and ZCU102.

1) Standalone: When a single AXI is performing memory
accesses, both of its read and write ports typically utilise
different memory regions, which can essentially lead to row
pollution of each other. We find that all AXIs in ZCU102
behave similarly, while HP0 in Ultra96 behaves differently
than HP1-3 (see Fig. 4). In particular, Fig. 5 shows that the
read/write distribution of Ultra96 HP1-3 ports are balanced
near 50% each, whereas, Ultra96 HP0 and all ZCU102 AXI
ports tend to majorly prioritise read operations over write
operations.

We can rationalise the behaviour discrepancy between the
ports on Ultra96 by the fact that HP0 shares its DDR connec-
tion with the DisplayPort that uses DDR for frame buffering.
However, the same behaviour discrepancy is not observed
for ZCU102 which objects our explanation. We therefore
examined the differences we found in Quality of Service (QoS)
module configurations for an answer in Section IV-G. How-
ever, this is highly unexpected since according to technical
documentation [7], the QoS module of HP0 does not influence
the behaviour of the memory accesses of the DisplayPort.
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Overall, we can conclude that 1) same type of AXI ports may
not necessarily show same performance behaviour and 2) after
a point, increase in burst size may backfire depending on port’s
QoS settings.

The average read latency in all single AXI configurations on
both boards was found between 250 and 10,000 clock cycles
and scales linearly with respect to burst size.

2) Combinations: When multiple AXIs perform memory
requests on the same memory region, significant row pollution
might occur. Fig. 6 and Fig. 7 show the effective memory
throughput in this scenario with different AXI combinations.

The trends on Ultra96 are similar for all configurations
with at most about 20% difference between best and worst-
performing configurations. We found that the best performing
configuration is the one including HP1-3. This configuration
also has balanced read/write distribution, but due to the
multiplexing of HP1 and HP2 in PS, HP3 receives 50% of
the available throughput, leaving HP1 and HP2 with only a
25% share for each (see Fig. 14). In all configurations with
HP0 enabled, HP0 obtains a significantly larger portion of
the available throughput and read requests deliver at least
20% more throughput than write requests. The ZCU102 in

contrast always has a balanced distribution between different
AXIs (except HP1 and HP2, which share an AXI port to
DDR). Configurations HP0,1,3 and HP0,2,3 show oscillating
throughput behaviour with respect to the burst size (see Fig. 7)
and achieve the highest measured throughput of 13,721 MB/s
at 192-byte bursts. Whereas all two-AXI configurations except
HP1-2 achieve a more stable throughput trend, peaking at 128-
byte bursts to 11,600 MB/s and 320-byte bursts to 12,640
MB/s. Notably, the more AXIs in a configuration, the higher
the imbalance between read and write throughput, with 4 AXI
combinations and burst sizes of more than 128 Bytes, the write
throughput reaches only 1% of the total.

On the Ultra96, the average read latency of HP0 in all AXI
combinations is the same as standalone HP0. In configurations
including HP0, all other AXI ports experience an average
latency increase of up to an order of magnitude higher than
their standalone cases (see Fig. 10). This is because the read
port of HP0 is configured to a higher priority by default, which
pollutes the read (and write) requests from the other AXIs.
On the ZCU102, the average read latency in multiple AXI
configurations increases to about 2× for 3-AXI and 4-AXI
configurations (see Fig. 11). In both devices, HP1 and HP2
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Fig. 6: Measured throughput in multiple AXI configurations on the Ultra96
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Fig. 7: Measured throughput in multiple AXI configurations on the ZCU102

observe up to a 2× latency increase over the other AXI ports
if they are simultaneously used in a configuration.

We do not observe any large periods of AXI read un-
responsiveness, that might be caused by long DDR refresh
procedures. The DDR controller manages to hide the refresh
cycles as (other than HP0 which is polluting the other AXIs
in Ultra96) we observe maximal AXI read inactivity of about
200-300 cycles in our tests.

C. Frequency

As both boards feature the same ARM SoC, the theoretical
aggregated throughput between PS and PL is 12.8 GB/s (4 AXI
ports at 2x1.6 GB/s each) when running the PL at 100MHz.
When we test the ZCU102 at 100MHz, we observe a peak
performance of 8,800 MB/s when operating all AXI ports at
bursts of 384 Bytes. This is only 14% lower than the same
configuration running at 300MHz but is 36% lower than the
HP0,1,3 and HP0,2,3 configurations running at 300MHz (see
Fig. 9). Additionally, the read requests take all the available
AXI read ports throughput and the mentioned configuration
achieves 6.4 GB/s read throughput but only 2.4 GB/s write
throughput. Since all 4 AXI read ports achieve their theo-
retical maximum of 1.6 GB/s, this reveals that the HP1-HP2
multiplexing in PS is happening after clock domain crossing
at a higher PS frequency.

Whereas, running Ultra96 at 300MHz results in a major
increase of throughput in configurations including the use of
HP0 except burst lengths of 64B and 128B (see Fig. 8). The
distribution between throughput to the different AXIs is much
more spread, as HP0 reaches peak performance of ≈3GB/s,
while other AXIs in the configuration achieve peaks of up to
200-600 MB/s only (see Fig. 14).

Overall, the higher frequency can translate to higher mem-
ory throughput depending on the AXI combinations and
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memory SODIMM available on the board. However, even a
300MHz PL clock speed in the best case only gains 55.6% over
the best case of 100MHz PL configuration in our experiments.

D. Access Pattern: Sequential vs Random

We also run the experiments using a random access patterns
to identify and measure the loss of performance caused by
the rapidly changing memory sections in multi-tenant environ-
ment. Note, here the access pattern implies address differences
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between separate burst requests and that the memory accesses
inside a burst request is always sequential.

For Ultra96 we observe a decreased throughput of up to
70% for burst sizes of only 16 Bytes and up to 2-10% decrease
for large burst sizes compared to the best performing config-
urations from the base case (see Fig. 12). This is expected,
since large burst sizes compensate the associated overhead of
switching rows in the DDR memory, while for small bursts,
the overhead is too large relative to the work performed.
Overall, the effective throughput peaks at bursts multiple of
64B, achieving 3.1GB/s for 128B and about 3.2GB/s for 192B
and longer bursts (see Fig. 8).

For the same experiment performed on the ZCU102, we
observe less predictable behaviour than Ultra96. Some config-
urations achieve larger throughput than the same configuration
in the base case (see Fig. 9). These points however are local
peaks for a particular configuration and all configurations in
our random test provide at least 6% less throughput than the
peak configuration from the base case.

Overall, for multi-tenant systems, burst sizes of ≥ 512 Bytes
minimize the overhead of changing access pattern in the DDR
controller. When using small burst sizes it is recommended to
maintain sequential access patterns as much as possible for the
highest memory throughput. This also indicates that the DDR
controller attempts to perform bulk operations if possible.

E. Memory Organisation: Row-Bank vs Bank-Row
Since FPGAs provide a high degree of flexibility in how

we organise and use the hardware, customising the memory
architecture along with hardware needs is a possible optimiza-
tion avenue. Hence, we also ran experiments on Bank-Row-
Column address space organisation along with Row-Bank-
Column in our DDR memory.2 To try and utilise this into
our advantage, we place the work memory regions of our

2By configuring the address map inside DDR settings for Zynq IP core.
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Fig. 12: Throughput of random access pattern on Ultra96 normalised to best
results from base case.

testing accelerators into different banks, such that each of our
accelerators takes two reserved banks - one for read accesses
and one for write accesses.

In Bank-Row-Column DDR memory configurations on Ul-
tra96 with burst sizes of at least 128 Bytes, compared to Row-
Bank-Column configuration we observed a 3-8% increase in
throughput in all AXI configurations that exclude HP0 and up
to 7% decrease in throughput for the configurations including
HP0 (see Fig. 8). A more drastic increase in throughput is
observed for very small bursts, most notably 31% throughput
increase in all AXI configuration at burst sizes of only 16
Bytes. The latter is expected behaviour since in this configu-
ration, we do not have an overhead for changing loaded rows in
the DDR banks between the different small bursts. Otherwise,
for large burst sizes, the advantage of this address organisation
decreases as larger bursts can inherently overcome some of the
overheads associated with row loading in DDR memories.

On the contrary, on ZCU102, running same experiment
resulted in a very minor difference in throughput pattern com-
pared to the Row-Bank-Column. Most points in our results are
within statistical error of around 0.5% compared to our base
test results. The only notable difference in throughput is when
using both HP1 and HP2, which yields about 7% decrease in
throughput for some burst lengths. These unexpected results
on the ZCU102 might be explained by the DDR memory used,
which is organised into bank groups in which banks share pre-
charge components and our experiment setup used 8 banks that
are organised into only 2 bank groups. Read latency does not
change with respect to the base case (see Fig. 10 and Fig. 11).

Overall, changing the address space organisation mostly
affects performance at small burst sizes for selected ports (up
to 31% improvement) and depends on whether the memory is
organised in bank groups or not. For large burst sizes there is
no significant change in throughput behaviour.

F. Multiplexing in PL vs Multiplexing in PS
Xilinx provides an interconnect IP called SmartCon-

nect [10], as a default option to connect one or multiple
accelerators to the PS AXI port. It is also used as a system
interconnect in designs containing multiple IPs. However,
multiplexing in the PL can result in a limited throughput by the
PS AXI port: 9.6 GB/s at 300MHz and 3.2 GB/s at 100MHz
for a single PS AXI connection.

Given that performance distribution across PS AXI ports is
heterogeneous (as shown in Section IV-B) and that SmartCon-
nect is often used as interconnect between accelerators, it is
important to identify if there is any performance loss or gain
when using additional interconnect layer. To evaluate this, we
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Fig. 13: Measured throughput of 1-4 PL AXI ports connected through Xilinx SmartConnect to either HP0 or HP1 PS AXI connections.

placed the SmartConnect on the Ultra96 between test modules
and the physical AXI ports HP0 and HP3 at 100MHz.

The observed results show that using port HP3, we reach
maximum connection throughput of 3.2 GB/s at burst sizes
of more than 512 Bytes, while the HP0 connection peaks
to 2.8 GB/s at 384 Byte bursts and then oscillates to an
equilibrium of 2.25 GB/s for very large burst sizes (see
Fig. 13). We observed local peaks at burst sizes multiple of 64
bytes. The R/W distribution is the same pattern as standalone
HP0 and HP3 experiments, i.e. HP0 prioritises read operations,
while HP3 has mostly equal distribution.

In our experiments, SmartConnect distributes the throughput
equally between multiple PL AXI ports. We run additional
tests and observed that the behaviour of this interconnect
module is to interleave operations separately at each read and
write ports in a round-robin fashion. This results in an equal
distribution if the accelerators use the same burst sizes, but in
cases where the burst sizes of two accelerators are different,
the resulting throughput is distributed linearly with respect to
the burst length. Note that the 128-bit SmartConnect instance
with 4 PL AXI ports to 1 PS AXI port from our experiments
utilises 13,257 LUTs, 18,044 FFs implemented in 2,514 CLBs.
This is a rather small amount of logic for most modern FPGAs,
but corresponds to 28.5% of the CLBs on the Ultra96.

Overall, an additional interconnect layer increases the la-
tency by up to 30% and does not impact the R/W performance
distribution and throughput if the burst sizes are equal. Note,
this latency is directly proportional to the burst size.

G. Quality of Service

Upon further examination of the AXI interconnect and DDR
subsystem to identify the cause of difference in behaviour
across different boards, we found that there are differences
in QoS buffer modes and R/W priorities. The mode for QoS
can be 1) High Priority (low latency), 2) Best Effort (bulk
transfers) and 3) Isochronous (regular, time sensitive, e.g.,
audio and video traffic) [7]. On ZCU102 all HP AXI ports
share same Isochronous mode and memory access priorities
on both read and write ports, whereas on Ultra96 AXI HP0
is in Isochronous mode while the other AXI ports (HP1-
3) are Best Effort and the write ports are assigned higher
priority than read ports. Changing the mode and priorities on
Ultra96’s AXI HP0 port to the same configuration as the other
Ultra96 HP ports, produced results where all AXI ports behave
similarly with slightly higher throughput, lowered average read
latency, and more fair AXI and R/W distributions (see Fig. 8,
Fig. 10 and Fig. 14). Note, despite having same priorities for
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read and write, in practice, we observed that ZCU102 AXIs
and Ultra96’s HP0 prioritises read operations, while Ultra96’s
HP1-3 have balanced R/W ratios. This is due to general DDR
memory controller prioritisation of read over write operations.
This default prioritisation in the controller can be explained
by the nature of most CPU applications, where applications
frequently stall for read operations before actual compute.
However, one must note that FPGA applications have varying
needs for access patterns and read-to-write ratios, as they can
utilize Block RAMs as internal buffers and operate in highly
parallel or streaming manner.

Hence, when optimising accelerators on Zynq Ultrascale+
boards, developers must select correct QoS mode and read-
write priorities for their application for best performance (see
also our case study in Section V).

H. Performance Distribution
To understand the performance distribution in multi-tenant

environments, we measure the AXI distribution ratio D as
Amax/Amin, where Amax is the throughput of highest per-
forming AXI port and Amin is the throughput of lowest-
performing AXI in a configuration. The results of the dis-
tribution are shown in Fig. 14. Most configurations have an
uneven distribution which implies that it is very easy to have
one accelerator steal all the bandwidth in a multi-tenant envi-
ronment. Two configurations standout as possible options for
multi-tenancy on Ultra96. 1) PL multiplexing which achieves
ideal distribution (D = 1) but is subjected to change if
accelerators use different burst lengths. 2) Multiplexing in PS
with same QoS mode for each AXI ports. This ensures that
the default high priority ports do not steal performance. Note
that for configurations involving both HP1 and HP2, the ideal
distribution is D = 2 as they are multiplexed in the PS and that



activating DisplayPort or FPD DMA components may affect
the performance correspondingly of HP0 and HP3.

V. APPLICATION CASE-STUDY

To evaluate the behaviour of a memory system under
real application workload, we use Ultra96 and replace the
test modules with matrix multiplication accelerators for 4x4
convolution filters. The application is highly memory intensive
and mostly read-bound problem due to its higher ratio of read
requests.

Our accelerator utilises 4 BRAM36Ks for each of the read
memory locations and the write port for minimizing stalling
hazards and enabling the use of large burst lengths. We used
two accelerators - one connected to HP0 and one connected
to HP3. Our first implementation operates by is using a single
read burst in round-robin fashion on the read arrays and
issues bursts of 128 Bytes. We observe a total of 13.767
Million Convolutions per second (MC/s) between the two
accelerators, while the HP0 accelerator achieves a 4.5× higher
performance than the HP3 accelerator. The achieved effective
throughput is 62% of the DDR peak, which limits accel-
eration throughput correspondingly. For the second version,
we change the accelerators to keep issuing read bursts until
they fill the corresponding read buffer before starting to fill
another buffer, i.e. more sequential accesses. Rerunning the
tests show a performance of 17 MC/s (23% improvement) with
76% effective memory throughput, but similar distribution
between HP0 and HP3 accelerators. Since this problem is read-
bound, we now change the R/W priority of HP3 to be the
same as HP0, thus prioritising read operations. Additionally,
we equalise the programmed priorities between HP0 and
HP3 within the PS interconnect and change QoS mode of
HP0 to Best Effort. This way, the DDR controller should
minimize the memory requests polluting each other. With the
resulting configuration, we observe an additional increase in
performance of 8.6% and a new effective DDR throughput of
83%. Additionally we observed a perfect distribution between
the achieved performance of the two accelerators. Moreover,
now that memory requests do not delay other ongoing memory
requests, we can increase the burst lengths to achieve a better
DDR row reusage. When we increase the burst sizes to 4 KiB
we observed an additional increase in performance by 9%,
reaching 20.1 MC/s. While keeping perfect distribution, our
accelerators now manage to reach 90.46% of peak DDR
throughput. Note, throughout these experiments we did not
change the main compute logic of the accelerator.

Overall, by only performing memory optimizations as dis-
covered in the Section IV, we achieved 46% more MC/s than
a standard implementation.

VI. CONCLUSION

In this paper, we presented a quantitative memory analysis
for Zynq UltraScale+ systems using Ultra96 and ZCU102
boards. Our evaluation was based on the synthetic and real
world applications with varying parameters such as the num-
ber of AXI ports, combinations of AXI ports, burst sizes,
frequency, access patterns, address space organisation, mul-
tiplexing in PL vs PS, and Quality of Service. Our findings
show that 1) 4 out of 6 common assumptions about memory
behaviours do not hold and the remaining 2 do only in
certain circumstances (see Section II and IV), 2) the achievable

peak throughput is 92.5% and 75% of the theoretical DDR
throughput for Ultra96 and ZCU102 respectively, and 3) the
default memory behaviour across boards as well as the AXI
ports of the same type on same board is highly diverse. Hence,
it is important for developers to perform the right memory op-
timizations not only in terms of how the access are performed
but also set the right QoS mode and priorities for optimal
application performance (as shown by an improvement of 46%
just by optimising the memory subsystem at identical cost in
Section V). In particular the following general conclusions can
be drawn for when working with Zynq UltraScale+ systems:

• Using all AXI HP ports does not always guarantee high-
est read and write throughput. Some AXI combinations
perform better than other.

• The same ARM DDR controller chip and AXI inter-
face on different boards can lead to different memory
behaviours based on the pre-programmed QoS and pri-
ority settings. It is recommend to set these parameters
explicitly for the applications.

• Read operations are prioritised heavily over write opera-
tions. While this does not necessarily hurt performance,
having read-bound accelerators with write-bound accel-
erators will put the latter at a major disadvantage.

• On average, 128 and 192 Byte bursts often provide
highest throughput.

• Multiplexing the AXI in programmable logic (PL) with
AXI SmartConnect IP provides better performance dis-
tribution than multiplexing in the ARM SoC at the cost
of higher latency and use of FPGA logic.

• Using large burst sizes reduces the throughput overhead
of multiplexing AXIs in PL to almost negligible.

• Using higher frequency in programmable logic allows
better utilisation of memory throughput but the benefits
depend on AXI combinations and memory SODIMM
characteristics.

• It is essential to use large burst sizes for accelerators in
multi-tenant environment for minimal throughput over-
head due to rapidly changing access pattern at the DDR
controller.

We released our benchmark suite with tutorial at
blinded.org3 in order to allow the research community to
exploit our observation for, in many cases, free (in terms of
FPGA logic) performance tuning.
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