
Shrink It or Shed It! Minimize the Use of
LSQs in Dataflow Designs

Lana Josipović, Atri Bhattacharyya, Andrea Guerrieri, and Paolo Ienne
Ecole Polytechnique Fédérale de Lausanne (EPFL)

Abstract—When applications have unpredictable memory ac-
cesses or irregular control flow, dataflow circuits overcome the
limitations of statically scheduled high-level synthesis (HLS). If
memory dependences cannot be determined at compile time,
dataflow circuits rely on load-store queues (LSQs) to resolve
the dependences dynamically, as the circuit runs. However,
when employed on reconfigurable platforms, these LSQs are
resource-expensive, slow, and power-consuming. In this work, we
explore techniques for reducing the cost of the memory interface
in dataflow designs. Apart from exploiting standard memory
analysis techniques, we present a novel approach which relies
on the topology of the control and dataflow graphs to infer
memory order with the purpose of minimizing the LSQ size and
complexity. On benchmarks obtained automatically from C code,
we show that our approach results in significant area reductions,
as well as increased performance, compared to naive solutions.

I. INTRODUCTION

High-level synthesis tools, both commercial and academic,
typically rely on static scheduling to produce high-throughput
pipelines [27], [5]. However, in applications where memory
accesses cannot be disambiguated at compile time, these tools
make pessimistic assumptions on potential read-after-write and
write-after-write dependences, therefore producing suboptimal
schedules and resulting in lower performance. In contrast,
dataflow or latency-insensitive protocols [6], [9], [25], [11]
implement dynamically scheduled circuits, in which compo-
nents communicate locally using a handshake mechanism
and exchange data as soon as all conditions for execution
are satisfied (i.e., when all data and control dependences are
resolved). Due to their ability to adapt the schedule during
runtime when a data hazard is detected, dataflow circuits have
recently been explored as an efficient HLS approach to handle
applications with irregular memory accesses [18].

Any HLS compiler must assure that memory accesses by
the generated circuit to the same address happen in the same
order as specified in the original program. A violation of this
condition results in a data race and may lead to incorrect
execution. To correctly handle memory accesses which may
arrive at the memory interface out of order, dataflow designs
rely on load-store queues (LSQs) to dynamically resolve
memory dependences by appropriately reordering dependent
accesses [3], [17], [26]. While issuing every load and store
request to memory through an LSQ guarantees correctness,
this solution is unattractive: LSQs have been shown to incur
significant resource overheads as well as power and clock
degradation with queue size, and especially on FPGAs [26].
Although standard HLS optimizations can, in certain cases,
help in reducing this cost, analyzing memory access patterns of
a dataflow circuit in order to decide where an LSQ is redundant

remains a challenge—there is no predetermined, static schedule
to provide information of the temporal ordering of memory
accesses, so any two accesses targeting the same memory
location may potentially conflict and, therefore, may require
an LSQ. In this work, we explore a novel memory analysis
technique which, based on the flow of data through the circuit,
determines the activation ordering of certain memory accesses.
This information allows us to rule out specific dependences
and simplify the memory interface accordingly, leading to
significant area savings and a tangible timing advantage.

II. MOTIVATION

The code in Figure 1 shows a loop with multiple memory
accesses. Above the code is a section of the dataflow circuit
which represents the loop kernel. One should notice that the
dataflow circuit has no central controller and all dataflow
units are connected to their neighbors with handshake signals
to indicate the validity of new data and readiness to accept
operands; each operation takes place as soon as the operands
are available and the unit to execute it is ready. Load and store
memory operators are connected to the memory system to get
and put data, respectively. As illustrated in Figure 1, there are
several possibilities for connecting the loads and stores of the
dataflow circuit to memory. All design points in the figure are
semantically correct for this particular example; they represent
different optimization degrees of the memory interface.

In Figure 1a, all memory accesses are connected to memory
using a single LSQ. For maximum parallelism, the LSQ
executes requests out of order but ensures that no load is
executed before an outstanding store to the same address—or
forwards the corresponding value if and when available. This
solution guarantees correctness without requiring any memory
analysis, yet it is extremely resource-expensive, as it requires
a large queue to maintain high parallelism and to consume all
incoming requests at a high rate.

By exploiting methods such as alias analysis, one can
disambiguate memory accesses when possible and connect
them to independent memory ports using multiple, smaller
LSQs (Figure 1b). Analyzing memory access patterns using
techniques such as polyhedral analysis would allow us to
simplify the design even further by removing LSQs in cases
where the loads and stores targeting the same memory provably
never access the same memory locations (Figure 1c). However,
whenever this is not the case (i.e., the loads and stores might
access the same locations at some point in time), standard
techniques do not allow us to optimize our design any further—
in a dataflow circuit, accesses may arrive at the memory
interface out of order and an LSQ is needed to prevent a

197

2019 International Conference on Field-Programmable Technology (ICFPT)

978-1-7281-2943-3/19/$31.00 ©2019 IEEE
DOI 10.1109/ICFPT47387.2019.00031

load x[i]

store x[i]

+

*

load y[i]

load x[0]

load y[i]

load x[i]

load x[0]

store x[i]

LSQ Memory

load y[i]

load x[i]

load x[0]

store x[i]

LSQ
Memory

load y[i]

load x[i]

load x[0]

store x[i]

LSQ

Memory

load y[i]

load x[0]

store x[i]

Memory
load x[i]

for (i = 1; i < N; i++)
x[i] = x[0] + x[i]*y[i]; a. No optimization b. Alias analysis c. Alias + polyhedral analysis d. Alias + polyhedral

+ this work

LSQ

Fig. 1: Connecting a dataflow circuit to memory. The dataflow circuit on the left, which represents the loop kernel datapath of the code below,
can be naively connected to memory using a single, large LSQ to reorder memory accesses (Figure 1a). Standard memory optimizations allow
us to disambiguate memory accesses targeting different memories (Figure 1b) as well as to simplify the interface in cases where a memory
access provably does not collide with any other access (Figure 1c). The optimal configuration (Figure 1d) is obtained using a specialized
analysis for dataflow circuits which we present in this work. In this particular case, our analysis concludes that, since the load must occur
before the store to the same memory location (i.e., the load is a certain producer of data for the store), the two accesses naturally occur in
order and the LSQ can be omitted.

hazard. The main contribution of our work is an analysis
which particularly targets dataflow circuits and, based on the
flow of data through the dataflow graph, makes it possible
for us to rule out specific data hazards through memory. In
our example, it proves that a violation of the write-after-read
dependence is impossible—the load of x[i] is the data producer
for the store of x[i] and the two accesses can therefore never
occur out of order. This information enables us to completely
remove the LSQ, as given in Figure 1d.

In the rest of the paper, we discuss our methodology
for optimizing the memory interface of dataflow circuits. In
Section III, we provide the necessary background on dataflow
circuits and discuss existing memory optimization techniques
which more conventional forms of HLS regularly exploit. In
Section IV, we detail the particularity of our circuits which
prevents us from fully relying on existing methods and we
introduce our new technique for analyzing memory accesses in
an out-of-order dataflow circuit. We evaluate the effectiveness
of our technique to simplify the memory interface in Section V.

III. BACKGROUND

In this section, we describe dataflow circuits and their
properties which are relevant for this work. We then review
memory analysis techniques employed by standard HLS
approaches. We will later discuss their usage in the context of
dataflow circuits and illustrate that, on their own, they are not
always sufficient to create an optimal memory interface.

A. Dataflow circuits

Latency-insensitive protocols implement dynamically sched-
uled dataflow circuits. These circuits are built out of dataflow
components which use a handshake mechanism to exchange
pieces of data (i.e., tokens). A description of how arbitrary
functionality specified in imperative code can be implemented
as a pipelined dataflow circuit has been presented recently [18]
and we largely follow this methodology in our work. Although
the exact circuit topology is irrelevant for this paper, it is
important to note that the circuits we consider are organized
into sections corresponding to basic blocks (BBs), i.e., pieces
of code with no conditionals. All control flow statements are

implemented between the BBs and each BB contains a data-
flow graph (DFG) of program instructions.

The dataflow circuits we consider respect the property that,
on any acyclic path, pieces of data arrive to each operator
strictly in order [19]. In the example in Figure 1, the data of
each loop iteration will arrive to each load and store component
in the order specified by the original program (e.g., the load
of y[1] must occur before the load of y[2]). However, different
dataflow operations may be executed out of order (e.g., the
load of x[2] may occur before the store to x[1], which is why,
in general, the memory interface requires a load-store queue
to ensure correct read-write ordering.

B. Alias Analysis

The memory interface illustrated in Figure 1a corresponds
to that of a compiler which does not perform any analysis
of the memory accesses. Such a compiler must assume that
each access in the code can point to any addressable value in
memory [24] and therefore conservatively connects all accesses
of the circuit to memory using a single monolithic LSQ.

Alias analysis groups pointers into sets such that different
groups never access the same memory locations [24], [1]. HLS
tools typically rely on alias analysis to simplify the memory
interface by connecting different alias groups to different
memories or independent memory ports. In our case, alias
groups would connect to independent LSQs (see Figure 1b)
which either insist on a single memory system (e.g., in cloud
FPGA applications) or on different memories (e.g., separate
block RAMs, like standard HLS tools employ [27]). Without
loss of generality, we indicate in Figure 1 a single monolithic
memory system with appropriate arbitration between ports.

C. Polyhedral Analysis

The polyhedral model is a linear-algebraic representation of
a program which provides strong static analysis capabilities
for Static Control Parts (SCoPs). SCoPs are side-effect free
regions of a program in which all control flow decisions and
memory accesses are known at compile time [13].

The loop from Figure 1 is an example of a SCoP in which the
iterator i is bound by the constraints 1 ≤ i < n and increased

198

Access
ld (2)
ld (3)
ld (5)
st (3)
ld (6)
ld (7)
st (6)
st (3)
ld (1)
st (6)

Access
ld (2)
ld (3)
ld (5)
st (3)
ld (6)
ld (7)
st (6)
st (3)
ld (1)
st (6)

WAR

WARWAW

WAW

WAW

WAR

WAR

WAW

All dependences enforced by access
ordering: an LSQ is not required

(a)

Access
st (5)
ld (3)
ld (5)
st (3)
ld (6)
ld (7)
st (6)
st (3)
ld (1)
ld (6)

Access
st (5)
ld (3)
ld (5)
st (3)
ld (6)
ld (7)
st (6)
st (3)
ld (1)
ld (6)

WAR

WARWAW

RAW

RAW RAW
???

RAW
???

WAW WAR

WAR

Some dependences not enforced by
access ordering: an LSQ is required

(b)

Access
ld (2)
ld (3)
ld (4)
st (3)
ld (6)
ld (7)
st (6)

WAR

WAR

x = 0;
for (i=0; i<7; i++)

if (cond[i])
x = a[i+2];

else
a[i] = x;

Access
ld (2)
st (1)
st (2)
ld (5)
ld (6)
st (5)
st (6)

WAR

WAR

WAR

In-order accesses of a single instruction

Data dependence between different
instructions

(c)

Fig. 2: Figures 2a and 2b show memory traces of two programs with a single load and a single store instruction, which contain RAW, WAR,
and WAW dependences. The figures on the right show how we can exploit the ordering information between accesses to conclude that certain
dependences will always be honored. Our analysis identifies data dependences between instructions (dashed arrows) which exclude access
reordering and eliminate the need to use an LSQ. Figure 2c shows two (out of many) possible memory traces of the code in the figure.
Because a data dependence will always occur between a load access and its subsequent store access, the circuit does not require an LSQ.

by 1 in each iteration. Polyhedral analysis can generate the
sequence of array indices (i.e., memory addresses) that each
memory instruction will access, which gives us information on
all read-after-write (RAW), write-after-write (WAW), and write-
after-read (WAR) dependences. In the example in Figure 1,
there is a WAR dependence between the load and the store
access of the same iteration. Because the load of x[0] only
accesses the disjoint set {0}, we can simplify the memory
interface to achieve the configuration from Figure 1c.

IV. MEMORY INTERFACE OPTIMIZATIONS

It should be clear from the previous section that standard
analysis techniques allow us to group memory instructions into
a maximal number of memory sets such that the address of an
instruction in one given set can never collide with the address of
an instruction in another set (i.e., an LSQ is not needed across
sets). Yet, without further analysis, each memory set with more
than a single instruction must employ an LSQ to handle all
RAW, WAW, and WAR dependences between the instructions.
This is the very situation shown in Figure 1c and we will detail
in Section V our choice of standard analysis techniques to
achieve this result. In the rest of this section, we will describe
our original effort to simplify the memory interfaces of dataflow
circuits past this design point, as suggested by Figure 1d.

A. The Ordering Problem

Let us assume that, using standard analysis techniques, we
have clustered all memory instructions into a maximal number
of mutually independent memory sets, as indicated above. We
will focus here on a program with only two instructions in
a single set; we will generalize our approach to sets with
multiple instructions in Section IV-D. The same reasoning
we here describe applies to programs with multiple sets by
considering each set independently from the others.

We consider a program with a single load and a single store
instruction in a memory set. In fact, the ordering relations
between load and store instructions will be the main focus
of our analysis; although the ordering of colliding memory
accesses of two store instructions matters as well, our analysis

will not achieve any memory interface simplification in this
case, as we will later observe. On the other hand, the ordering
of a pair of load instructions does not impact correctness as
none of the load accesses modifies the memory state.

Figures 2a and 2b show examples of sequential memory
traces of two independent programs, which both contain a
load and a store instruction. The purpose of a dynamically
scheduled dataflow circuit is to execute each instruction as soon
as its arguments are known, exactly as in a superscalar out-of-
order processor [15]. Therefore, we generally need to assume
that the circuit might try to reorder the shown sequences in
any possible way. Some of these reorderings might result in
semantically incorrect execution, as indicated in the figure. For
instance, both sequences feature WAR dependences (i.e., there
is a store access which writes into the same memory address
that some load which precedes it in program order reads) and
WAW dependences (i.e., there is a store access which writes
into the same memory address as some store which precedes
it in program order). The second sequence also contains RAW
dependences (i.e., there is a load access which reads from the
same memory address into which some preceding store writes).
Although all other accesses can be reordered in the interest of
execution speed, dynamically scheduled processors [15] and
circuits [17] need an LSQ to enforce correct ordering across
the accesses with dependences. If we could otherwise ensure
the correct ordering of these accesses, we would be able to
omit the LSQ.

B. Exploiting Data Dependences

To remove the LSQ from the memory interface of a pair of
load-store instructions, we need to reason about the ordering
of their accesses in the execution of a dataflow circuit. There
are two sources of information on which we can rely.

Firstly, each instruction performs its accesses strictly in
program order—this property is guaranteed by the construction
strategy of the dataflow circuit, as indicated in Section III-A.
Secondly, there might be a data dependence between a load
access and the following store access which would guarantee
their correct ordering—if the load produces the data necessary

199

Phi

Store a[1]

+

2
Load a[1]

e4

e2

e3

Phi

Store a[1]

Load a[1]

e3

e1

w1: BB0-BB1-BB2
DFG_ind (w1):

w2: BB0-BB2
DFG_ind (w2):

Phi

BB0

BB1

Store a[1]

BB2

+

2

Load a[1]

e4

e2

e1

e3

y = a[1]; (I_N)
if (x)

y = y + 2; (I_O)
a[1] = y; (I_M)

(a)

Phi

Store a[1]

0

Load a[1]

e2

e3

Phi

Store a[1]

Load a[1]

e3

e1

w1: BB0-BB1-BB2
DFG_ind (w1):

w2: BB0-BB2
DFG_ind (w2):

Phi

Load a[1]

BB0

BB1

Store a[1]

BB2

e2

e1

e3

0

y = a[1]; (I_N)
if (x)

y = 0; (I_O)
a[1] = y; (I_M)

(b)

Phi

BB1

BB3

Store a[i]

BB4

Load a[i + 2]

BB2

BB0 (start)

BB5 (end)

x = 0

(c)

Fig. 3: Code snippets and their control/data flow graphs which we use to illustrate the global instruction dependence property in Section IV-C.

In the circuit in Figure 3a, the dependence property IN
GID−−→ IM holds. This is not the case for the two instructions in Figure 3b because the

load is not a predecessor of the store along both control-flow paths. Figure 3c corresponds to the example of Figure 2c.

to compute the store value, there is no way for the store to
run ahead in program execution.

The first property directly guarantees that WAW dependences
are never a concern among write accesses of a single store
instruction. The combination of the first and the second property
ensures that any WAR dependence of a store access with
any prior load access is maintained: if the store access has a
data dependence with the preceding load access, and the load
accesses execute in order, all previous load accesses will have
completed before the store access, thus honoring any WAR.

However, the properties above do not help us reason about
RAWs: there is no data dependence to rely on because the
store is not a data producer for any other instruction, including
the load. A store access may be arbitrarily ordered with respect
to some subsequent load access and an LSQ is required to
ensure correctness if their addresses collide.

In summary, a pair of load-store instructions does not require
an LSQ among themselves if (1) all WAR dependences of the
original program are enforced by a data dependence between
each store access and its preceding load access in the sequence
and (2) there are no RAW dependences between the load and
the store instruction. As determining the presence and absence
of RAW dependences, among others, is often possible using
standard analysis (as discussed in Section III), we will here
focus on the first property which is original for this work.

The right sequences of Figures 2a and 2b illustrate visually
how the two properties above enable us to exclude certain
dependences, assuming that a data dependence exists. In
Figure 2a, both properties hold and guarantee that all dependent
accesses are correctly ordered, so an LSQ is not needed.
However, in Figure 2b, the second property does not hold
and an LSQ is required.

Both conditions for omitting the LSQ hold for the example
from Figure 1: each iteration has a WAR dependence between
the load and the store access of the same iteration which is
always honored because the load produces the data for the store.
Furthermore, there are no RAW dependences in the program.
Of course, this is a trivial case where the load and the store
instruction are directly connected through the very datapath

of the loop. A more interesting example is given in Figure 2c.
This code exhibits many possible memory traces (depending
on the if-condition) which contain WARs across different (and
not necessarily consecutive) loop iterations. To make sure that
WARs are honored, we need to make sure that all possible
traces have a data dependence between any load access and
the store access that immediately follows. We will formalize
this property in the following section.

C. Global Instruction Dependence
In this section, we describe the property of two instructions

which guarantees that their order in the dataflow execution is
equivalent to their order in the sequential program execution.
As described in Section III-A, we consider a control flow graph
(CFG) of a program which is organized into BBs such that
each BB contains a DFG of instructions (we denote the BB
that instruction I belongs to as BBI).

The dependence property that we will introduce applies
to the induced DFG of a walk through the program CFG,
where, as customarily, a walk is any sequence of BBs directly
connected by control edges in the CFG (contrary to a path,
a walk admits to visit every BB and traverse any edge an
arbitrary number of times).

Definition 1. An induced DFG of a CFG walk w, denoted as
DFGind(w), is a DFG composed of a succession of the DFGs
of the BBs traversed in w, repeated as many times as each BB
is visited; the live-ins of each DFG are connected exclusively
to the live-outs of the predecessor DFG.

Our analysis aims to determine Global Instruction Depen-
dence of a pair of instructions.

Definition 2. Instructions N and M are globally dependent
(written as N

GID−−→ M) if, for every CFG walk w starting with
BBN , ending with BBM , and containing BBN and BBM

only once, N is the predecessor of M in DFGind(w).

This property implies that, for every possible control flow
sequence in which N and M execute, there is always a data
dependence between N and M which enforces their in-order
execution.

200

To illustrate, consider the examples in Figure 3. The memory
instructions IN and IM belong to BB0 and BB2, respectively.
The CFG objects and edges are given in dashed in the figure.
To determine whether a dependence relation exists between
IN and IM , we need to consider all walks from BB0 to
BB2, which are equivalent for both examples in the figure:
w1 = [BB0,BB1,BB2] and w2 = [BB0,BB2]. The DFGind

of each walk is given in the figures. In both DFGind(w1)
and DFGind(w2) of Figure 3a, IN is the predecessor of IM
(i.e., the value to be written by IM has a data dependence
on the load IN). Regardless of which CFG path is taken, the
execution of IM implies that IN must have executed already,

so IN
GID−−→ IM and the WAR dependence between the two

instructions is always honored. The same relation does not
hold for the same instructions in Figure 3b, because IN is
not the predecessor of IM in DFGind(w1). If walk w1 is
executed, there is no way to guarantee the ordering of these
two instructions—the store may execute before the load which
would result in a data hazard.

To summarize, instruction dependence (L
GID−−→ S) ensures

that any WAR dependence between a load instruction L and a
store instruction S is honored for every possible execution of
the program. As mentioned earlier, we cannot exploit the same
property to reason about RAW and WAW dependences, i.e.,

it will never hold that S
GID−−→ L or S

GID−−→ S because a store
instruction never produces data and cannot be a predecessor
of any instruction.

D. From Two Memory Instructions to Many
The properties from Section IV-B with the original one

formalized in Section IV-C provide us with the knowledge
about the activation order of a certain load-store pair and
enable us to guarantee correct execution between them. Our
algorithm exploits this information to reduce the number of
instructions (i.e., the number of connections to an LSQ) of
memory sets with more than two instructions as well.

Concretely, a load instruction L can be removed from
memory set M if the two properties introduced in Section IV-B
hold for each store instruction S of M :

1) L
GID−−→ S, i.e., any WAR dependence between L and S

is enforced by a data dependence.
2) There are no RAW dependences between any of the

accesses of L with any of the accesses of S.

If all WAR dependences between the load L and every store
of the memory set are provably maintained in order and there
are no RAW dependences with any store of the set, L does
not need an LSQ and can be removed from the set.

After certain load instructions have been removed from a
memory set using the properties above, it is trivial to re-evaluate
the set to remove all store instructions which no longer have
conflicting accesses with any of the remaining instructions in
the set.

E. Why Not CFG Dominance?
If one is familiar with classic compiler analysis, it may

appear that our Global Instruction Dependence should, in fact,
be the classic notion of CFG dominance and post-dominance.

These notions describe the relations between BBs in a CFG as
follows: (1) A basic block BBN dominates basic block BBM

if every path from the entry of the graph to BBM must go
through BBN . (2) A basic block BBM post-dominates basic
block BBN if all paths to the exit of the graph starting at
BBN must go through BBM [24].

It might seem that we could use these properties to describe
a relationship between a load and a store instruction. However,
they would not suffice, as the examples in Figure 3 clearly
illustrate: the CFGs of the two programs are the same (i.e.,
in both cases, BB0 dominates BB1 and BB2, BB2 post-
dominates BB0 and BB1), yet the memory instructions exhibit
different dependence relations, as discussed in Section IV-C.
Therefore, determining instruction dependence using these CFG
properties might lead to incorrect results.

One could consider formulating properties similar to dom-
inance at the instruction level: informally, one could check
whether, on each path from program entry to a store, one passes
through the load, or whether every path from the load to the exit
passes through the store. While not incorrect, this formulation
would be restrictive. Consider the example from Figures 2c
and 3c: in this case, neither of these properties would hold
(e.g., there is a path from the start of the program to the store
which does not pass through the load); one would conclude that
dominance does not exist and would conservatively place an
LSQ. Our formulation is more general and captures situations
when there is effectively a load before the store.

F. Another Ordering Guarantee
Our definition is quantified on all walks through the CFG

which have a single passage through the BB of the load and the
store. This constraint provides us with the ordering of the last
execution of the load before the execution of the store—if the
dependence relation holds for these two accesses, all previous
load accesses and all successive store accesses can be ordered
with respect to this load-store pair. Yet, if the CFG has a cycle
which does not contain the load or the store BB, the absence of
a load-store dependence may be detectable only after multiple
traversals the cycle, as illustrated in Figure 4—the lack of data
dependence is present only after two cycle traversals (i.e., in
walk w2) and, based on Section IV-D, would require an LSQ
between the load and the store. But there is more.

As discussed in Section III-A, accesses of the same in-
struction always execute in order—we have already used this
property to order load and store accesses, but it applies to other
instructions as well. This particularity adds implicit dependence
edges between multiple instances (corresponding to multiple
accesses) of the same instruction in induced DFGs and provides
us with additional dependence relations.

Property. Each instruction instance in a DFGind(w) has an
ordering dependence on any preceding instance of the same
instruction.

In Figure 4a, this property holds for the phi and add
instructions which repeat (we indicate all ordering dependences
with red dotted edges in Figure 4b); the ordering between the
instances of the leftmost phi implies a dependence between
the load and the store along every walk—in w2, the load is

201

Phi

BB0

BB1

Store a[1]

BB2

+

x = a[1]; y = 0;
for (i=0, i<N, i++) {

z = x + y;
y = x;
x = 0;

}
a[1] = z;

0

Load a[1]

Phi

0

(a)

Load a[1]

Phi

+

Store a[1]

y = 0

Phi

Phi

w1: BB0-BB1-BB1-BB2
DFG_ind (w1):

0

Load a[1]

Phi

y = 0

w2: BB0-BB1-BB1
-BB1-BB2
DFG_ind (w2):

+

Phi

+

Phi

0

+

Phi

0

Store a[1]

+

Phi

Phi

Phi

(b)

Fig. 4: The circuit in Figure 4a exhibits an absence of load-store
dependence only after two traversals of the CFG cycle through BB1,
as illustrated in Figure 4b (path w2). However, multiple instances
of the same instruction are guaranteed by construction to execute in
order. These ordering dependences are indicated with dotted arrows;
they provide additional dependences between instructions (in this case,
a dependence between the load and the store in path w2).

not a data predecessor of the store, but the new ordering edges
enforce their ordering and allow us to disconnect them from
the LSQ. In the following section, we will formalize how this
property enables us to further simplify the memory interfaces
by simplifying the assessment of dependences.

G. How Long a Walk Does One Need?

Our current definition requires checking all CFG walks to
determine load-store dependences; in certain cyclic CFGs, it
requires checking an infinite number of walks, which is not
quite feasible. In the rest of this section, we discuss how to
use the property described in the previous section to restrict
our search to a finite subset of walks, making the test practical.

Theorem. If instructions N and M are dependent on the
DFGind(p) of a path p from BBN to BBM , they are also
dependent on DFGind(w) of any walk w from BBN to BBM

which contains p (i.e., which includes all BBs and CFG edges
belonging to path p).

We here consider a path to be a walk in which all vertices
are distinct, except possibly the first and the last [4].

Proof. Given a path p from BBN to BBM through any BBP ,
p = [BBN , ...,BBP , ...,BBM], a dependence between N and
M (denoted as N −→ M) on DFGind(p) implies that there
exists at least one instruction P in BBP such that N −→ P
and P −→ M . Let us consider now a walk w which covers a
single CFG cycle and contains p; the cycle has a CFG edge
which connects into p in BBP ; w visits BBP multiple times,
that is, w = [BBN , ...,BBPfirst

, ...,BBPlast
, ...,BBM], where

BBPfirst
is the first visit to BBP in the walk and BBPlast

is the last one. The dependence over the path p ensures that
N −→ Pfirst and Plast −→ M . The property of Section IV-F also
guarantees Pfirst −→ Plast. Thus, transitively, N −→ M also on
DFGind(w). The same reasoning applies for all walks with

whatever cycles or control-flow merges into p: a dependence
holds across each BB where w connects into p and transitively
holds across all of them. �

This theorem restricts Definition 2 Section IV-C to paths
instead of generic walks–we hence refine it to formulate Global
Instruction In-order Dependence (GIID):

Definition 3. Instructions N and M are globally in-order
dependent (written as N

GIID−−−→ M) if, for every CFG path
p starting with BBN , ending with BBM , and containing BBN

and BBM only once, N is the predecessor of M in DFGind(p).

The decision to remove a load instruction L from a memory
set can accordingly account for GIID instead of GID (see

the first property of Section IV-D): if L
GIID−−−→ S, any WAR

dependence between L and S is enforced by a data dependence.
We rely on this formulation in our experiments in Section V.

V. EVALUATION

In this section, we demonstrate the ability of our optimization
approach to reduce the area and performance cost of the
memory interface of dataflow circuits.

A. Memory Analysis Implementation

We implement our memory optimization, detailed in Sec-
tion IV, as an LLVM pass which determines the appropriate
memory interface of a dataflow circuit. We exploit the alias
analysis pass of LLVM (i.e., BasicAA [22]) to determine
whether two pointers alias and to disambiguate arrays that
target different memory regions. To extract the information
about the memory access patterns, we rely on the ScopInfo
pass of the Polly framework [14]. This pass detects SCoP
regions within a program and creates a polyhedral description
of the memory accesses it contains. We use this information
to determine whether two instructions have RAW, WAW, and
WAR dependences. Whenever an instruction is not part of any
SCoP (i.e., Polly does not provide us with the memory access
patterns), we connect it to an LSQ to ensure correctness.

To determine whether a dependence relationship holds
between a load-store pair, we employ depth-first search (DFS)
to find all CFG paths from the load to the store BB. We
extract the DFGind of each path and perform a DFG traversal
across it to determine whether the load precedes the store.
The information on the memory access patterns and the GIID
relation determined in this step (see Section IV-G) enable us to
simplify the memory interfaces, as described in Section IV-D.

B. Experimental Methodology

In the rest of this section, we compare three design points:
(1) designs without any optimization of the memory interface,
which qualitatively correspond to the interface of Figure 1a,
where all memory accesses of the circuit are connected to
memory using a single LSQ; (2) designs optimized using the
information provided by standard techniques (i.e., alias analysis
and polyhedral analysis), and (3) our designs which, in addition
to standard information, use the methodology from Section IV
to simplify the memory interface.

202

Benchmark Memory access pattern

Memory loop x[i] = func (x[0], x[i], y[i])

Scalar multiply x[i] = func (x[i])

Image revert x[i][j] = func (x[i][j])

Weighted sum x[i] = func (x[i], x[i-1], x[i+1], y[i], y[i-1], y[i+1])

Threshold {x[i], y[i], z[i]} = func (x[i], y[i], z[i])

Video filter x[i] = func (x[i]), y[i] = func (y[i]), z[i] = func (z[i])

Histogram x[y[i]] = func (x[y[i]], z[i])

Matrix power x[i][y[j]] = func (x[i][y[j]], x[i-1][w[j]], z[i])

TABLE I: Memory access patterns of the benchmarks we evaluate.
The loop iterators of each kernel are given as i and j. Function func
is application-specific.

The circuits we consider are synthesized automatically
from C code using the strategy by Josipović et al. [18]. Our
LSQ implementation is specialized for dataflow circuits [17].
Because optimally sizing the LSQs is out of the scope of
this paper, we manually choose the minimal power-of-2
size which allows for maximum achievable loop parallelism
(i.e., all designs are pipelined to achieve the optimal loop
initiation interval for the particular benchmark and memory
configuration). We connect disambiguated memory instructions
to separate dual-port BRAMs with a single-cycle read and
write latency, either directly or through an LSQ.

We functionally verify all designs using ModelSim. We
obtain the number of clock cycles from the simulation and the
clock period (CP) from the post-routing timing analysis with
Vivado to calculate the execution time. Vivado place-and-route
gives us the resource usage (i.e., the FPGA slices, LUT, FF,
and DSP count). All designs target a Xilinx Kintex-7 FPGA.

C. Benchmarks

The designs that we evaluate are simple but realistic kernels
from literature [12], [20], [10] which contain different memory
access patterns, summarized in Table I: (1) Memory loop
is the example from Figure 1 which we have discussed in
Section II. (2) Scalar multiply reads values of a vector and
rescales each value by a constant factor before storing it
back into the same memory location. (3) Image revert is a
nested loop in which the value of each image pixel (stored
in a 2-dimensional array) is reverted by subtracting it from a
constant. (4) Weighted sum updates each value of a vector to
the weighted sum of itself and its neighboring vector values.
The weights corresponding to each element are stored in a
separate vector. (5) Thresholding is an edge detection kernel
with a conditional statement inside a loop: if the pixel intensity
is less than some fixed constant, it is replaced it with a black
pixel. (6) Video filter is a simple video processing application
which, in a nested loop, applies a filtering function on each
video pixel. (7) Histogram calculates the weighted histogram of
an array of features. The same histogram bin may be updated
in consecutive loop iterations—this potential read-after-write
dependence cannot be determined at compile time. (8) Matrix
power computes a series of matrix-vector multiplications in a

nested loops. The row and column coordinates of the read and
written matrix elements are unknown at compile time.

D. Results

Table II summarizes our comparison results. All cases where
no memory optimization is applied (Naive) need a single, large
LSQ. The number of LSQ ports corresponds to the total number
of reads and writes within the kernel. The execution time suffers
due to two effects: (1) the large number of LSQ entries degrades
frequency [17] and (2) multiple ports simultaneously insist on
the same LSQ and, consequently, the same dual-port BRAM,
which causes memory port congestion and limits parallelism.

Standard memory analysis techniques (Standard) disam-
biguate memory accesses targeting different arrays. All applica-
tions with accesses to multiple arrays benefit from the reduced
port count and, in certain cases, reduced LSQ depth. Consider,
for instance, Video filter: the naive implementation had a large
LSQ with 6 ports which connected three arrays to memory
(i.e., x, y, and z, as indicated in Table I); this optimization step
splits the single LSQ into three smaller LSQs (one for each of
the arrays). Apart from disambiguating accesses of different
memories, standard analysis determines read-only accesses
which can be connected to memory separately from the LSQ.
This is the case, for instance, for x[0] in Memory loop and for
accesses to arrays y and z in Histogram and Matrix Power.
However, in all applications, all read and write instructions
which access the same memory locations still require an LSQ.

In all applications apart from Histogram and Matrix Power,
our technique (This Work) finds timing relations between
instructions which enable us to simplify or to completely
remove the LSQ from the memory interface, resulting in
significant area savings (although remarkable, note that the
area savings due to the removal of the complex LSQ circuitry
are probably exaggerated by the simplicity of the kernels we
consider). In Weighted sum, an LSQ is still required to handle
the loop-carried RAW dependence between the load of x[i+1]
and store to x[i] (see Table I), yet even a queue of minimal
depth sustains maximal throughput. Histogram and Matrix
Power always require an LSQ to handle memory dependences
which cannot be determined at compile time (i.e., the kernels are
not SCoPs and polyhedral analysis cannot extract the accessed
indices). These examples are representative of cases where
dynamic scheduling of dataflow circuits is superior to static
HLS and an LSQ is essential—in any static approach, the
loops cannot be pipelined due to the possible read-after-write
dependences; in contrast, dataflow circuits exploit the LSQ to
maximize parallelism, as others have noticed before us [18].

VI. RELATED WORK

Although LSQs are routinely exploited in out-of-order pro-
cessors [23], they are useless for standard, statically scheduled
HLS, as the produced circuits exhibit solely in-order behavior.
Techniques for analyzing memory access patterns, such as
alias analysis and memory dependence analysis [2], [8], as
well as optimizations to improve memory bandwidth, such as
array partitioning and memory reuse [7], have been extensively
studied in the context of static HLS. Dataflow circuits can

203

Benchmark Optimization Interface CP (ns) Execution
Time (μs) Speedup Slices LUTs FFs DSPs

Memory
loop

No opt. LSQ (d8, p4) 6.7 13.6 − 1390 4755 1751 3
Standard LSQ (d8, p2) 6.3 9.5 1.4× 1213 (-13%) 3892 (-18%) 1475 (-16%) 3

This Work − 4.3 4.4 3.1× 107 (-92%) 316 (-93%) 282 (-84%) 3

Scalar
multiply

No opt. LSQ (d8, p2) 5.8 8.8 − 1092 3506 1512 3
Standard LSQ (d8, p2) 5.8 8.8 1.0× 1092 (-0%) 3506 (-0%) 1512 (-0%) 3

This Work − 4.0 4.0 2.2× 100 (-91%) 262 (-93%) 317 (-79%) 3

Image
revert

No opt. LSQ (d8, p2) 6.3 5.7 − 1013 3425 1455 0
Standard LSQ (d8, p2) 6.3 5.7 1.0× 1013 (-0%) 3425 (0%) 1455 (-0%) 0

This Work − 6.3 5.7 1.0× 123 (-88%) 392 (-89%) 287 (-80%) 0

Weighted
sum

No opt. LSQ (d8, p7) 6.5 71.5 − 1640 5272 2312 9
Standard LSQ (d4, p4) 5.4 48.6 1.5× 628 (-62%) 1776 (-66%) 1442 (-38%) 9

This Work LSQ (d2, p2) 4.0 36.0 2.0× 313 (-81%) 772 (-85%) 1013 (-56%) 9

Threshold
No opt. LSQ (d4, p6) 13.6 136.5 − 440 1356 831 0
Standard 3 LSQ (d2, p2) 11.1 88.9 1.5× 350 (-20%) 917 (-32%) 847 (+2%) 0

This Work − 11.1 33.4 4.1× 183 (-58%) 587 (-57%) 425 (-49%) 0

Video
filter

No opt. LSQ (d16, p6) 8.8 23.9 − 4356 15546 3596 9
Standard 3 LSQ (d8, p2) 7.6 10.4 2.3× 3408 (-22%) 11282 (-27%) 4366 (+21%) 9

This Work − 6.6 6.2 3.9× 385 (-91%) 1073 (-93%) 933 (-74%) 9

Histogram
No opt. LSQ (d16, p4) 8.6 60.5 − 3925 13677 3292 2
Standard LSQ (d16, p2) 7.8 15.1 4.0× 3512 (-11%) 12043 (-12%) 3125 (-5%) 2

This Work LSQ (d16, p2) 7.8 15.1 4.0× 3512 (-11%) 12043 (-12%) 3125 (-5%) 2

Matrix
power

No opt. LSQ (d16, p5) 8.7 32.9 − 4364 14697 3617 7
Standard LSQ (d16, p3) 7.7 15.1 2.2× 3808 (-13%) 12792 (-13%) 3225 (-11%) 7

This Work LSQ (d16, p3) 7.7 15.1 2.2× 3808 (-13%) 12792 (-13%) 3225 (-11%) 7

TABLE II: Timing and resources of dataflow circuits which exploit our memory interface optimization (This Work), compared to circuits with
naively built memory interfaces (No opt.) as well as memory interfaces created using standard optimizations (Standard). The LSQs employed
by each design are listed under Interface, together with the queue depth (e.g., d8 indicates an LSQ of depth 8) and the number of connected
ports (e.g., p2 indicates that two memory accesses of the circuit connect to the LSQ). All LSQs are connected to a dual-port block RAM.

benefit from these techniques as well and we exploit some of
them (e.g., alias analysis) in this work.

The conservatism of static scheduling damages performance
when applications exhibit irregular memory access patterns.
Many HLS approaches based on static scheduling have in-
corporated some dynamic behavior to handle certain classes
of irregular applications. Dai et al. create application-specific
data hazard detection logic [10] to resolve dependences during
execution, whereas Liu et al. [21] generate multiple schedules
which are interchanged dynamically, based on the actual depen-
dences. On the other hand, latency-insensitive protocols have
been explored as a way to create truly dynamically scheduled
circuits [6], [9], [11]. Such circuits have no predetermined
schedule and operations may execute in any order. To handle
potentially dependent memory accesses, some approaches resort
to serializing memory accesses at a performance penalty [16].
Others use LSQs to maximize parallelism [3], [17], but the
conservative LSQ placement and sizing cause a significant
resource overhead. We address this issue in this work by
providing an analysis technique which simplifies the memory
interface of dataflow circuits and reduces resource consumption.

VII. CONCLUSIONS

In HLS, producing dataflow circuits is the key to unleash
the performance that, in the world of programmable systems
and on generic control-dominated applications, only out-of-
order dynamically scheduled processors can achieve. On the

memory side, aggressively reordering accesses in dataflow
circuits implies the use of LSQs, qualitatively similar to
those used in processors. The problem is that spatial dataflow
circuits essentially need an LSQ port for every access, quickly
making LSQs prohibitive in cost and terrible in performance,
especially on FPGAs; the risk of negating any advantage
dynamic scheduling is extremely concrete. It seems intuitive
that in the case of spatial circuits one should be able to use
information from the source code to disambiguate accesses and
partition monolithic LSQs into smaller ones as well as bypass
some of the LSQs. This paper has shown how to build such a
network of LSQs for arbitrary applications. In particular, we
exploit the fact that data dependences in the original code imply
sequential execution of some accesses in the corresponding
dataflow circuit; this guaranteed sequencing may remove the
need for some LSQs or ports thereof. On average, we have
shown that a careful design can reduce by 66% the design
area and improve performance by a factor 2.8× compared to a
naive approach. Although dataflow circuits have been an object
of research in various communities, from computer architecture
to asynchronous circuit design, we believe that little has been
done yet to understand the challenges of building appropriate
memory interfaces for dataflow designs and minimizing their
cost. This paper strives to make some progress in this direction.

ACKNOWLEDGMENTS

Lana Josipović is supported by a Google PhD Fellowship
in Systems and Networking.

204

REFERENCES

[1] A. W. Appel and M. Ginsburg. Modern Compiler Implementation in C.
Cambridge University Press, first edition, 1998.

[2] J. R. Appel and K. Kennedy. Optimizing Compilers for Modern
Architectures: A Dependence-Based Approach. Morgan Kaufmann, first
edition, 2001.

[3] M. Budiu, P. V. Artigas, and S. C. Goldstein. Dataflow: A complement
to superscalar. In Proceedings of the IEEE International Symposium on
Performance Analysis of Systems and Software, pages 177–86, Austin,
Tex., Mar. 2005.

[4] P. J. Cameron. Combinatorics: topics, techniques, algorithms. Cambridge
University Press, first edition, 1994.

[5] A. Canis, J. Choi, M. Aldham, V. Zhang, A. Kammoona, T. Czajkowski,
S. D. Brown, and J. H. Anderson. LegUp: An open-source high-level
synthesis tool for FPGA-based processor/accelerator systems. ACM
Transactions on Embedded Computing Systems (TECS), 13(2):24:1–24:27,
Sept. 2013.

[6] L. P. Carloni, K. L. McMillan, and A. L. Sangiovanni-Vincentelli. Theory
of latency-insensitive design. IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, CAD-20(9):1059–76, Sept.
2001.

[7] J. Cong, W. Jiang, B. Liu, and Y. Zou. Automatic memory partitioning
and scheduling for throughput and power optimization. In Proceedings of
the International Conference on Computer-Aided Design, pages 697–704,
San Jose, Calif., Nov. 2009.

[8] J. Cong, B. Liu, S. Neuendorffer, J. Noguera, K. Vissers, and Z. Zhang.
High-level synthesis for FPGAs: From prototyping to deployment. IEEE
Transactions on Computer-Aided Design of Integrated Circuits and
Systems, 30(4):473–491, Apr. 2011.

[9] J. Cortadella, M. Kishinevsky, and B. Grundmann. Synthesis of
synchronous elastic architectures. In Proceedings of the 43rd Design
Automation Conference, pages 657–62, San Francisco, Calif., July 2006.

[10] S. Dai, R. Zhao, G. Liu, S. Srinath, U. Gupta, C. Batten, and Z. Zhang.
Dynamic hazard resolution for pipelining irregular loops in high-level
synthesis. In Proceedings of the 25th ACM/SIGDA International
Symposium on Field Programmable Gate Arrays, pages 189–194,
Monterey, Calif., Feb. 2017.

[11] S. A. Edwards, R. Townsend, and M. A. Kim. Compositional dataflow
circuits. In Proceedings of the 15th ACM-IEEE International Conference
on Formal Methods and Models for System Design, pages 175–184,
Vienna, Sept. 2017.

[12] R. C. Gonzalez and R. E. Woods. Digital Image Processing. Pearson,
fourth edition, 2017.

[22] The LLVM Compiler Infrastructure. http://www.llvm.org.

[13] T. Grosser, H. Zheng, R. Aloor, A. Simbürger, A. Größlinger, and L.-N.
Pouchet. Polly-polyhedral optimization in LLVM. In Proceedings of
the First International Workshop on Polyhedral Compilation Techniques
(IMPACT), pages 1–6, Chamonix, Apr. 2011.

[14] T. C. Grosser. Enabling polyhedral optimizations in LLVM. PhD thesis,
2011.

[15] J. L. Hennessy and D. A. Patterson. Computer Architecture: A
Quantitative Approach. Morgan Kaufmann, fifth edition, 2011.

[16] Y. Huang, P. Ienne, O. Temam, Y. Chen, and C. Wu. Elastic CGRAs. In
Proceedings of the 21st ACM/SIGDA International Symposium on Field
Programmable Gate Arrays, pages 171–80, Monterey, Calif., Feb. 2013.

[17] L. Josipović, P. Brisk, and P. Ienne. An out-of-order load-store queue for
spatial computing. ACM Transactions on Embedded Computing Systems
(TECS), 16(5s):125:1–125:19, Sept. 2017.

[18] L. Josipović, R. Ghosal, and P. Ienne. Dynamically scheduled high-level
synthesis. In Proceedings of the 26th ACM/SIGDA International Sym-
posium on Field Programmable Gate Arrays, pages 127–36, Monterey,
Calif., Feb. 2018.

[19] L. Josipović, A. Guerrieri, and P. Ienne. Speculative dataflow circuits. In
Proceedings of the 27th ACM/SIGDA International Symposium on Field
Programmable Gate Arrays, pages 162–71, Seaside, Calif., Feb. 2019.

[20] R. Kastner, J. Matai, and S. Neuendorffer. Parallel programming for
FPGAs. ArXiv e-prints, arXiv:1805.03648, May 2018.

[21] J. Liu, S. Bayliss, and G. A. Constantinides. Offline synthesis of online
dependence testing: Parametric loop pipelining for HLS. In Proceedings
of the 23rd IEEE Symposium on Field-Programmable Custom Computing
Machines, pages 159–62, Vancouver, May 2015.

[23] I. Park, C. L. Ooi, and T. Vijaykumar. Reducing design complexity of the
load/store queue. In Proceedings of the 36th International Symposium
on Microarchitecture, San Diego, Calif., Dec. 2003.

[24] L. Torczon and K. Cooper. Engineering a Compiler. Morgan Kaufmann,
second edition, 2011.

[25] M. Vijayaraghavan and Arvind. Bounded dataflow networks and latency-
insensitive circuits. In Proceedings of the 9th International Conference
on Formal Methods and Models for Codesign, pages 171–80, Cambridge,
MA, July 2009.

[26] H. Wong, V. Betz, and J. Rose. Efficient methods for out-of-order
load/store execution for high-performance soft processors. In Proceedings
of the IEEE International Conference on Field Programmable Technology,
pages 442–445, Kyoto, Dec. 2013.

[27] Xilinx Inc. Vivado High-Level Synthesis.

205

