Manuscript version: Author’s Accepted Manuscript
The version presented in WRAP is the author’s accepted manuscript and may differ from the
published version or Version of Record.

Persistent WRAP URL:
http://wrap.warwick.ac.uk/128883

How to cite:

Please refer to published version for the most recent bibliographic citation information.
If a published version is known of, the repository item page linked to above, will contain
details on accessing it.

Copyright and reuse:
The Warwick Research Archive Portal (WRAP) makes this work by researchers of the
University of Warwick available open access under the following conditions.

Copyright © and all moral rights to the version of the paper presented here belong to the
individual author(s) and/or other copyright owners. To the extent reasonable and
practicable the material made available in WRAP has been checked for eligibility before
being made available.

Copies of full items can be used for personal research or study, educational, or not-for-profit
purposes without prior permission or charge. Provided that the authors, title and full
bibliographic details are credited, a hyperlink and/or URL is given for the original metadata
page and the content is not changed in any way.

Publisher’s statement:
Please refer to the repository item page, publisher’s statement section, for further

information.

For more information, please contact the WRAP Team at: wrap@warwick.ac.uk.

warwick.ac.uk/lib-publications

http://go.warwick.ac.uk/lib-publications
http://go.warwick.ac.uk/lib-publications
http://wrap.warwick.ac.uk/128883
mailto:wrap@warwick.ac.uk

Network Enabled Partial Reconfiguration
for Distributed FPGA Edge Acceleration

Alex R. Bucknall*, Shanker Shreejithf, Suhaib A. Fahmy*
*School of Engineering, University of Warwick, Coventry, UK
TDepartment of Electronic and Electrical Engineering, Trinity College Dublin, Ireland

Abstract—Partial reconfiguration supports virtualisation of
applications on FPGAs, enabling compute to dynamically adapt
to workloads in distributed infrastructure and datecenters. While
the latter often makes use of the PCle interface and supporting
infrastructure to allocate and load compute kernels via a host
CPU, FPGAs are becoming increasingly popular as standalone
resources in edge-computing, requiring them to manage ac-
celerators autonomously. This paper presents a platform that
supports the managing of accelerator bitstreams over the network
interface on a Xilinx Zynq device without intervention by the
Arm processor. We compare against traditional vendor provided
PR management for both library accelerators and custom acceler-
ators and show that we achieve a 29% decrease in reconfiguration
trigger latency using this approach.

I. INTRODUCTION

The use of FPGAs within data centres, has enabled efficient
acceleration of operations such as data/feature extraction, data-
flow management and information analysis [1], for a range
of applications including image recognition [2], in-network
security [3] and machine learning [4], among others. However
this virtualisation introduces considerable overheads in latency,
bandwidth and resource consumption with respect to the
volume of data being processed [5]. Non-traditional edge
architectures such as distributed reconfigurable heterogeneous
system-on-chip (SoC) platforms can be deployed to provide
high throughput parallel processing nearer to data sources.
The benefits of these SoCs stem from the tight coupling of
Arm-based processing systems (PS) for general compute and
programmable logic (PL) for custom accelerators, as well as
allowing the PS to manage tasks such as networking, while
data processing can be offloaded to the PL.

Software managing the networking stack can lead to control
prioritisation issues and non-deterministic packet latency, due
to the nature of task driven processing seen within typical
scheduler systems. Higher priority tasks may override con-
trol events and lead the PS to miss critical tasks such as
reconfiguration. Hence for connected systems, there is a desire
to move functionality into the network interface to enable a
more predictable and lower latency response to networking
events [6]. In previous work, we demonstrated the benefits of
direct processing of network data in the PL on the Xilinx Zynq
without the involvement of the PS [7].

In this paper we propose a novel approach to managing
partial reconfiguration (PR) via the network interface on the
Xilinx Zynq SoC platform to enable low latency network
controlled accelerator management. We compare performance

between traditional methods of initiating PR to a method of
loading control packets for reconfiguration in the PL directly,
bypassing the PS Ethernet driver, reducing latency and non-
determinism. We explore decoding incoming Ethernet frames
within the FPGA, directing them into the PL to process custom
frame headers for PR commands.

II. BACKGROUND AND RELATED WORK

In addition to compute parallelisation, FPGA-based accel-
eration provides the ability to dynamically reconfigure the
parts of the hardware for the task at hand. This technique,
called partial reconfiguration (PR), enables the FPGA to retain
functionality in the static fabric logic, whilst configuring pre-
defined partially reconfigurable regions [8], [9]. PR has several
advantages over standard reconfiguration, including use of the
static regions whilst reconfiguring, power savings [10], and
the ability to retain logical state whilst under reconfiguration.

As FPGA acceleration within data centres has increased in
popularity, various strategies have been proposed to simplify
both individual and cluster addressing of attached accelerators.
The Microsoft SIRC platform presents a PCle interface API
for managing synchronisation of an attached reconfigurable
accelerator [11]. Approaches like DyRACT [12] extended this
approach by utilising custom PR controllers and drivers to
deliver PR bitstreams at high throughput. [13] demonstrated
virtualization of FPGA accelerators initiated via the network
interface using full configuration. For time critical applications
the software networking stack adds additional non determin-
istic latency to the existing delay from network propagation.
With increasing demand to distribute the compute capability
closer to the source, the task of reconfiguration must be
shifted away from centralised servers in traditional acceler-
ators, requiring the FPGA to manage its own reconfiguration
autonomously.

FPGA vendors have developed proprietary reconfiguration
managers for in-device reconfiguration. The Xilinx Internal
Configuration Access Port (ICAP) is exposed to software
through the Processor Configuration Access Port (PCAP).
PCAP uses a blocking PS driver to handle reconfiguration,
restricting the processor from executing other compute tasks
during reconfiguration, while the standalone ICAP interface
requires users to design controller infrastructure around it. A
variety of high-speed PR controllers such as RT_ICAP [14]
provide the advantage of a real time PR manager but do not
support a PS interface for hybrid FPGA platforms. ZyCAP

[15] offers near peak throughput for PR, by utilising the PS
direct memory access (DMA) controller to pre-load a target
bitstream for transfer into the ICAP and can be controlled
through software. We extend ZyCAP as the PR manager in
our custom architecture. Despite the developments in PR,
deterministically triggering PR from the network is non-trivial,
especially on SoCs that rely on the PS for network/packet
management whilst scheduling other processes. Our approach
to enabling network PR, utilises a strategy for remapping the
network path from the PS into the PL.

III. ARCHITECTURE

Traditional Approach: Off-the-shelf FPGA SoC boards
integrating the Xilinx Zynq, typically attach the Ethernet
PHY directly to the PS-EMAC cores, allowing for complete
TCP/IP networking stacks within the OS on the Arm cores. To
communicate with the Ethernet controller, a PS driver must be
initialised at setup; this allocates a continuous range of n 64-
bit memory locations, for the RX/TX buffer queue, mapped
to the addresses on the controller.

The driver looks up the location of the RX buffer descrip-
tors, transfers the frame to memory and sets the queue status.
The PS Ethernet driver will then alert the application that a
frame has arrived via interrupt or polling. The Ethernet Direct
Memory Access (DMA) then copies the frame to a buffer and
resets the status. Using the Ethernet PS driver requires that the
PS is involved in all RX and TX transactions. Traditionally,
an arriving PR request packet triggers the PS to begin the
decoding/extracting the bitstream information required for PR.

DMA Proxying: Initiating PR from a network packet,
requires the PS to decode and extract the PR command from
an incoming frame. This may result in PR taking place under
non-deterministic latency if the PS is occupied handling high
priority tasks. An alternative to this flow control would be
to perform frame decoding/encoding in hardware. The archi-
tecture presented in this paper utilises a method of indirectly
forwarding packets into the PL known as DMA proxying [16].
This maps Ethernet buffer locations, stored within DRAM, to
alternative locations such as in the PL BRAM. This enables the
DMA to move data in/out of the mapped locations as well as
to the PS, if required. While this strategy reduces the latency
introduced by the PS waiting to receiving an incoming frame,
it blocks the PS while unpacking, processing and decision
making. It is possible to implement a complete Ethernet stack
into the PL and perform the features of the Ethernet PS Driver
within hardware, however this increases design complexity
significantly.

Network Partial Reconfiguration: In our proposed ar-
chitecture, received Ethernet frames are proxied (DMA) into
an Ethernet bridge within the PL, as shown in fig. 1. The
Ethernet bridge implements the packet handling and decoding
logic that is usually performed by a driver on the PS. The
bridge is initialised from the PS at system start, by writing
into an internal configuration stack; post-initialisation, the
bridge can monitor, analyse and redirect incoming packets
based on sniffed frame header content and/or data segments,

reducing the latency and non-determinism associated with
packet reception and decoding within the software stack.

ETH Frame
=) ETH Port @ @ ey
Driver
HP Port ‘ GP Port PS

DMA Proxy

AXI-Lite
DMA
: |
AXI-Stream
g&?{:; DMA ICAP
Controller ICAP Manager
ETH Bridge T‘

AXIS A f | |
T i ' i = Mux
Mux || siot1 | | siot.. | | SlotN
‘ AXIS TX Arbiter
RX Arbiter 1 } \

I S—
PL

DMA Proxy

Fig. 1. Network enabled PR architecture.

The configuration stack is a memory mapped bank of
registers that can be configured to match OSI layer 2/3
addresses, specific data segment patterns, byte offsets, packet
types and etc. Based on the match, the bridge configures the
egress path for the packet by configuring the RX arbiter’s
multiplexer, such as directing it into accelerator slots, the
PS, the ZyCAP manager for PR or to be ignored/dropped.
The incoming packet is buffered into the ping-pong RX
FIFO within the bridge, allowing packets to be received and
processed simultaneously. During the packet buffering, inline
sniffing logic extracts data from packet headers and compares
it against the register stack. A matched packet header, redirects
the packet into an accelerator slot or back to the PS DRAM
via P DMA. The entire packet is moved to the address/offset
stored in the PS register stack, mimicking a ring-buffer DMA
seen in typical PS Ethernet stacks.

When a PR request is decoded, the inline logic extracts
the bitstream name and raises an interrupt on the PS. The PS
reads the bitstream name from the bridge register and uses the
ZyCAP driver to decode, locate and transfer the bitstream to
the PL. Upon DMA set up, the driver releases control to the
PS, enabling the PR event while PS continues scheduling.

Our framework also supports remote-PR, allowing for a
incoming bitstream to be loaded over the network. Such
a request is decoded by matching the frame header and
remote-PR keyword within the payload. Upon receiving this
command, the bridge records the information about the re-
quest, such as the number of packets and bitstream size. The
bridge configures the RX arbiter to forward the packet to the
PR controller, while also initialising the ICAP manager to
receive packets from the arbiter instead of the DMA. At each
subsequent remote packet, the bridge monitors and updates the
frame and byte count; upon completion, the bridge interrupts
the PS.

On a match of a data only packet, the bridge instructs the
RX arbiter to set the destination to the target accelerator slot.
The bridge may also be configured to direct the packet into
accelerator slots via the arbiter, which sets multiple write paths
in response. The arbiter follows a strict first-in-first-out (FIFO)

TABLE I
NETWORK PR EXPERIMENT RESULTS.

Experiment RX (ns) Decode (ns) PR (ns) Tot. T’put (MB/s)
PCAP (PS) 53238 297 6303840 122
ZyCAP (PS) 53246 294 1955382 368
ZyCAP (PL) 37605 N/A 1953795 391

system to ensure that incoming packets are correctly ordered
and limits stalling by implementing a time-out mechanism that
allows a packet to be dropped if the destination is unable to
accept it. An interrupt is then raised and the PS can issue a
retransmission request, using the stored packet information.
For transmission, the TX arbiter manages output data paths
and packs/delivers frames onto the network via reverse proxy.

IV. EXPERIMENTS

To evaluate PR over the network, we simulate delivering
Ethernet frames that request a cryptographic scheme to be
loaded into an accelerator slot to process a subsequent stream
of encrypted data. We implement the case study utilising
PRESENT [17] and AES-256 [18] accelerators on the PYNQ-
Z1 platform. This mimics an IoT system where a sensor
array with limited compute capability and/or power budget
for onboard encryption, offloads the computation to an edge
accelerator [19]. We compare our architecture against PS
decoding using locally cached bitstreams. A single accelerator
slot is considered for simplicity; a PR bitstream size of
799,584 bytes was generated for both cores.

An Ethernet frame was crafted, composing of payload
segments to denote the packet type, e.g. PR command, data,
etc. We compare a PS driven PR command using Xilinx’s
PCAP PR flow, a PS driven PR command flow using ZyCAP in
PL and our custom network PR architecture which implements
packet handling within the PL. In the case of a PR command
frame, the frame has a specific layer-2 format and a data
segment that denotes the frame as a PR command and the
name of the bitstream. The generated Ethernet frame is looped
back at the PHY for precise event timing. For remote-PR
request, the data header specifies the request command, size
of the bitstream and a counter denoting the sequence number.
Table I highlights results for bitstreams cached in the DRAM.

Frame Decoding in PS (PCAP): This case presents the
typical scenario with vendor tools, where the PS handles all
aspects of networking, decoding and PR. The PS RX buffers
were configured to DMA transfer the received frames into set
locations in DRAM and subsequently interrupt the PS when
a frame has been received. The interrupt handler decodes the
frame and if found to be a PR request, triggers a software task
that decodes the requested mode name, looks up its location in
DRAM and initialises the PR event via PCAP. We observed the
total time taken for the task to complete from the RX interrupt
was 6.357ms with 53.54 us to trigger PR and 6.304ms for
PR itself. This meets expected PCAP performance of approx.
145 MB/s [20].

RX IRQ

Fig. 2. Sequence of events for PS frame decode and PCAP PR flow.

Frame Decoding in PS (ZyCAP): To evaluate perfor-
mance gains with custom PR controllers, we integrate the
ZyCAP PR manager and driver to manage reconfiguration. In
this experiment, the software tasks are still required to decode
the frame however once the mode name is known, control
is passed to the ZyCAP manager, releasing the PS from the
PR task. Fig. 2 shows the arrival of the PR packet at the
Ethernet PHY to the completion of PR. The PS is freed from
the bitstream transfer and allowed return to event processing;
the ZyCAP driver marks the completed task by raising an
interrupt, syncing the PS. We observed the total time consumed
for PR from the reception of frame in the PS to completion of
the PR task reduced to 2.01 ms. This is due to the improved PR
speed offered by the custom PR manager, completing PR in
1.955 ms with an overall throughput of 368 MB/s, in line with
reported results for ZyCAP [15]. Notably, the driver releases
PS control after PR set up; however, the time to trigger PR is
still limited at 53.54 ps.

Frame Decoding in PL (ZyCAP): To reduce the over-
head of PS frame decoding, we utilise the proposed PR
architecture to offload packet decoding to the PL. The frame
is redirected into the PL using DMA proxying, decoded inline
by the logic and triggers PR, allowing the PS to be bypassed.
Fig. 4 captures the events from PR frame arrival at the Ethernet
PHY. Decoding the packet within the PL allows the PR driver
to receive a PL interrupt, read the requested mode and initiate
a PR request via DMA, releasing the PS. This reduces the time
to trigger PR to 37.61 ps, performing the PR task in 1.992 ms.

Traditional PR —{ T 1+
Network PR |—|
0 100 200 300 400
Time (us)

Fig. 3. Variation in reconfiguration triggered over the network interface.

The benefit of offloading packet decoding to the Ethernet
bridge can be seen when the PS executes the decoding task

while also handling non-preemptive critical tasks. We emulate
the case where PS is periodically performing a compute task of
high priority during packet decoding. This task reads a register
set with variable execution time, while the packet decoding
event attempts to decode the frame, perform mode lookup
and trigger PR. We observe the variation in latency across
a varying number of simulated critical tasks (up to a max. of
10000), performed 25 times and repeated using our proposed
PL decoding, shown in fig. 3. The variation between the upper
and lower quartiles of the proposed network PR approach is
only lus compared to the 178us seen in the vendor flow; a
vast improvement over the PS only approach.

DMA Proxy
ETH Frame

PR IRQ

& success IRQ

Fig. 4. Sequence of events for PL frame decode and ZyCAP PR flow.
Bitstream Over Network: Bypassing the PS decoding
also enables receipt and loading of bitstreams over the network
into the PL, without PS oversight. Although cached bitstreams
offer fast turnaround, storing all modes locally results in huge
memory utilisation and overhead.

To demonstrate, we split the PR bitstream into frames
loaded over the network (Ethernet) instead of locally cached.
On receiving the PR request, the bridge verifies the frame,
extracts the mode and initialises the ZyCAP manager. PR
data frames are directed into the PR module until the last
frame is received and then loaded into an available slot. We
observed the network provisioning at 53.59 ms, measured from
the arrival of the PR request at the PL to the completion
of PR. We do not compare this to other experiments as PL
decoding time is only a fraction of the time taken to transfer
the bitstream across the network.

V. CONCLUSION

We have presented a strategy for managing partial reconfig-
uration over a network interface, bypassing the PS in FPGA
SoCs. This strategy enables high performance, low latency PR
for streaming applications that utilise custom PL accelerators
such as in-network cryptography. We demonstrate how this
approach significantly improves the time to reconfigure, com-
pared to traditional PR methods that require PS processing of
Ethernet frames. Our study demonstrates that the PS bypass
approach achieves a 29.76% decrease in PR latency over

traditional control flows, as well as freeing the PS and reducing
time variation for frame handling.

ACKNOWLEDGEMENT

This work was supported by the UK Engineering and
Physical Sciences Research Council, grant EP/N509796/1.

REFERENCES

[1] A. Putnam, A. M. Caulfield, E. S. Chung, D. Chiou, K. Constantinides,
J. Demme, H. Esmaeilzadeh, J. Fowers, G. P. Gopal, J. Gray et al., “A
reconfigurable fabric for accelerating large-scale datacenter services,’
ACM SIGARCH Computer Architecture News, vol. 42, no. 3, pp. 13—
24, 2014.

[2] C. Farabet, C. Poulet, J. Y. Han, and Y. LeCun, “CNP: An FPGA-based
processor for convolutional networks,” in Int. Conf. Field Programmable
Logic and Applications, 2009, pp. 32-37.

[3] S. Soliman, M. A. Jaela, A. M. Abotaleb, Y. Hassan, M. A. Abdelghany,
A. T. Abdel-Hamid, K. N. Salama, and H. Mostafa, “FPGA implementa-
tion of dynamically reconfigurable IoT security module using algorithm
hopping,” Integration, vol. 68, pp. 108-121, 2019.

[4] A. Upegui, C. A. Pena-Reyes, and E. Sanchez, “An FPGA platform for
on-line topology exploration of spiking neural networks,” Microproces-
sors and microsystems, vol. 29, no. 5, pp. 211-223, 2005.

[5] B. Varghese and R. Buyya, “Next generation cloud computing: New
trends and research directions,” Future Generation Computer Systems,
vol. 79, pp. 849-861, 2018.

[6] S. Shreejith and S. A. Fahmy, “Smart network interfaces for advanced
automotive applications,” IEEE Micro, vol. 38, no. 2, pp. 72-80, 2018.

[71 S. Shreejith, R. A. Cooke, and S. A. Fahmy, “A smart network interface
approach for distributed applications on Xilinx Zynq SoCs,” in Int. Conf.
Field Programmable Logic and Applications, 2018, pp. 186—190.

[8] K. Vipin and S. A. Fahmy, “FPGA dynamic and partial reconfiguration:
A survey of architectures, methods, and applications,” ACM Computing
Surveys (CSUR), vol. 51, no. 4, pp. 72:1-72:39, 2018.

[91 UG909: Vivado Design Suite User Guide: Partial Reconfiguration,
Xilinx Inc., Jul. 2019, v2019.1.

[10] A. Nafkha and Y. Louet, “Accurate measurement of power consumption
overhead during FPGA dynamic partial reconfiguration,” in Int. Symp.
Wireless Communication Systems, 2016, pp. 586-591.

K. Eguro, “SIRC: An extensible reconfigurable computing commu-
nication APL)” in Int. Symp. Field-Programmable Custom Computing
Machines, 2010, pp. 135-138.

K. Vipin and S. A. Fahmy, “DyRACT: A partial reconfiguration enabled
accelerator and test platform,” in Int. Conf. on Field Programmable
Logic and Applications (FPL), 2014.

S. Byma, J. G. Steffan, H. Bannazadeh, A. L. Garcia, and P. Chow,
“FPGAs in the cloud: Booting virtualized hardware accelerators with
OpenStack,” in Int. Symp. Field-Programmable Custom Computing
Machines, 2014, pp. 109-116.

[14] L. Pezzarossa, M. Schoeberl, and J. Sparsg, “A controller for dynamic
partial reconfiguration in FPGA-based real-time systems,” in Int. Symp.
Real-Time Distributed Computing (ISORC), 2017, pp. 92-100.

K. Vipin and S. A. Fahmy, “ZyCAP: Efficient partial reconfiguration
management on the Xilinx Zynq,” IEEE Embedded Systems Letters,
vol. 6, no. 3, pp. 4144, 2014.

M. Geier, F. Pitzl, and S. Chakraborty, “GigE Vision data acquisition for
visual servoing using SG/DMA proxying,” in Symp. Embedded Systems
For Real-time Multimedia (ESTIMedia), 2016.

A. Bogdanov, L. R. Knudsen, G. Leander, C. Paar, A. Poschmann, M. J.
Robshaw, Y. Seurin, and C. Vikkelsoe, “PRESENT: An ultra-lightweight
block cipher,” in Int. Works. Cryptographic Hardware and Embedded
Systems, 2007, pp. 450-466.
Secworks, “secworks/aes256,”
https://github.com/secworks/aes
N. Samir, Y. Gamal, A. N. El-Zeiny, O. Mahmoud, A. Shawky, A. Saeed,
and H. Mostafa, “Energy-Adaptive Lightweight Hardware Security Mod-
ule using Partial Dynamic Reconfiguration for Energy Limited Internet
of Things Applications,” in Int. Symp. Circuits and Systems (ISCAS),
2019.

UG585: Zyng-7000 SoC All Programmable SoC Technical Reference-
Manual, Xilinx Inc., Jul. 2018, v1.12.2.

(11]

[12]

[13]

[15]

(16]

(17]

[18] Feb 2014. [Online]. Available:

[19]

[20]

