
Optimizing FPGA-based Streaming Applications for
Throughput Using Pipelining

Ali Asghar, Rick van Loo, Timon Kruiper, Daniel Ziener
Computer Architecture for Embedded Systems, University of Twente

{ali.asghar, d.m.ziener}@utwente.nl
{r.vanloo, t.r.kruiper}@student.utwente.nl

Abstract—In this paper, we present an automated flow for
insertion of pipeline stages in FPGA-based streaming applications
in order to increase the throughput. The proposed approach
involves the utilization of Xilinx’s Automated Pipeline Analysis
tool to estimate the number of pipeline stages, while the Rapid-
Wright framework incorporate these stages into a synthesized
design. The Vivado Design Suite is then used to place and route
the modified netlist. Furthermore, a recycling approach has also
been proposed to reduce excess registers. The results show a
significant improvement in the maximum operating frequency
for designs without any sequential loops (~51%) with a moderate
resource overhead, while slight gains (~12%) were also observed
for designs containing feedback loops.

Index Terms—FPGA Architecture, FPGA CAD, Pipelining

I. INTRODUCTION

Low clock frequencies are one of the drawbacks of the
FPGA technology. According to [1], the clock frequency of
FPGA designs increased only by 3.8× between 1999 and
2009. In the same time period, the CPU frequencies increased
more than 9× from around 400 MHz to 3.6 GHz. For the
90 nm technology, compared to an ASIC, FPGA designs
operate at 3 to 4× lower clock frequency [2]. With current
technologies (CPU clock frequencies up to 4 – 5 GHz)
and current FPGA series, the factor is much higher. This
inefficiency results from the excessive flexibility of FPGAs,
which requires a lot of reconfigurable multiplexers in the
combinational logic.

On the other hand, the logic density inside the FPGAs has
increased tremendously, owing to the progressive decrease in
transistor size. Since the invention of the FPGA, the logic
density has grown by a factor 10,000, whereas the maxi-
mum clock frequency has only increased by 100x [3]. This
development has prompted researchers to explore the area-
delay tradeoffs in FPGAs. Since, logical resources are usually
not the limiting factor in the implementation of designs,
there is always a possibility to compromise area in favor of
higher clock frequencies. The migration of commercial FPGA
architectures from 4 input LUT to 6 input LUT was prompted
by the better performance of 6 input LUT in terms of higher
frequencies [4], despite they introduce a heavy penalty in
terms of area efficiency. Furthermore, increase in the number
of heterogeneous blocks in commercial architectures, clearly
suggests that designers are willing to compromise area in favor
of more speed.

The efficiency of FPGA resources (lookup tables) can be
increased by using designs with many pipeline stages com-
bined with a very high clock frequency. Pipelining increases
the throughput, at the cost of increased register utilization. To

achieve better pipelining, Xilinx, e.g., increased the number
of flip flops in the FPGA fabric by a factor of two during the
introduction the 6 input LUTs [5].

Since, a higher throughput means more processed data per
unit time, pipelining is beneficial especially for streaming
applications, where the output is independent of the incoming
data stream. However, for applications which do not process
data continuously, pipelining the design may have an adverse
effect of increased latency. Therefore, for efficient pipelining,
latency vs. performance trade-off is of critical importance.

In this paper, we introduce a novel automated design flow
to increase the throughput of streaming application by auto-
matically inserting pipeline stages after synthesis in the netlist
at the logic level. The changes on the design are done without
touching the HDL sources. Compared to manual pipelining
which involves modifications at the RTL level and a re-run
of the flow after every modification, our approach saves a
significant amount of time and effort.

Our approach utilizes the Pipeline Analysis Tool [6] from
Xilinx, to explore the possibility of pipelining designs. In
contrast to the Xilinx tool, we optimize the results by merging
the newly inserted registers, for the paths which share the same
start and end points. This so called register recycling reduces
significantly the amount of inserted registers. The optimized
results are then implemented by inserting the pipeline registers
using RapidWright [7]. RapidWright is an open-source, Java-
based framework from Xilinx, which allows user to access
lower level architecture details and make netlist level manip-
ulations, using high-level Java programming.

The remainder of this paper is organized as follows: In
Section 2, we provide background details and some prior
research work related to pipelining in FPGAs. In Section 3,
we introduce our concept. The implementation details are
presented in Section 4, and Section 5 provide a discussion
of results. Section 6, concludes the paper along with some
proposed future work.

II. BACKGROUND AND PREVIOUS WORK

The idea of automatic pipelining was first introduced by
Leiserson et al. [8] with an approach called retiming. The
retiming is an optimization technique, which attempts to re-
place the existing registers in a design to achieve certain op-
timization goals (e.g., reducing the delay of the critical path).
This optimization can thus improve the throughput of a system
while keeping the initial latency constant (as the number of
registers around every cycle remains constant). However, if
target is to reach a certain frequency, then simply retiming

351

2019 International Conference on Field-Programmable Technology (ICFPT)

978-1-7281-2943-3/19/$31.00 ©2019 IEEE
DOI 10.1109/ICFPT47387.2019.00065

Authorized licensed use limited to: UNIVERSITY OF TWENTE.. Downloaded on July 03,2020 at 13:54:19 UTC from IEEE Xplore. Restrictions apply.

the design may prove insufficient, as the improvements are
capped by the number of pipeline stages already present.
To address this issue, two modifications have been proposed
in [9], Repipelining and C-slow retiming. The Repipelining
technique adds additional pipeline stages to the design at the
cost of added latency. The modified design is then retimed
to achieve the desired operating frequency. However, lack of
accuracy in the delay model used in [9] deteriorates the quality
of results.

A. Pipeline Analysis Tool
The Vivado Pipeline Analysis Tool [6] builds upon the

ideas presented in [8] and [9]. By using the timing models
implemented in Vivado, an existing design is analyzed for
critical paths, extra pipeline stages are suggested, and a report
is generated. However, at the time of writing this document,
the automatic pipelining tool included in Vivado can only
generate a report, listing the registers which can be added
for pipelining the design. For the implementation of pipeline
stages, two methods have been proposed in [6]:

1) Using the generated report to implement all the calculated
pipeline stages in one step, followed by place and route.
The authors note that the approach gives a reasonable
estimation, but there is no information on the effect of
individual pipeline stages and their placement on timing.

2) An iterative approach, which inserts a specified number
of pipeline stages at a time, performs placement, updates
timing, and generates a new pipeline report. The proce-
dure repeats till there is no further improvement, after
which the design in routed.

The algorithm presented in [6] can only pipeline feed-
forward paths. Since, inserting pipeline stages into a sequential
loop introduces errors in the functionality, all paths which
contain loops are not considered for pipelining. However,
designs with feedback loops can also be optimized (to a
certain degree) by pipelining the feed-forward path till the
loop performance limit is reached.
Unlike Xilinx, other automatic pipeline tools such as [10] and
[11], perform pipeline estimations during synthesis which offer
less precision at a lower computational cost.

B. RapidWright
As mentioned in the previous section, the registers specified

in the pipeline report have to be added manually into the
netlist by the designer. To automate this process, we make
use of RapidWright, an open-source Java-based programming
environment, which enables users to make fine grained opti-
mizations to their designs. With RapidWright, designers can
import a Design Checkpoint (.dcp) file from Vivado and make
the desired changes, after which the modified design can be
exported back to Vivado. RapidWright also allows users to
implement their own custom place and route tools [12] [13],
augmenting/bypassing the place and route stages of Vivado.

III. CONCEPT

Our technique for automatic pipelining is an iterative ap-
proach (see Figure 1). For every iteration, we a) place the
design using Vivado and b) parse a pipeline analysis report
generated by the Vivado built-in Pipeline Analysis Tool [6].

We c) optimize the results by using our register recycling
approach implemented in RapidWright, d) insert the remaining
pipeline registers with RapidWright, and e) invoke the Vivado
place and route. The iteration loop breaks if either the achieved
clock frequency Fmax,act is equal or higher than the ideal clock
frequency Fmax,ideal from the pipelining report from b) or the
maximum number of iterations Niter is reached.

netlist from synthesis

a) Vivado Placement

b) Pipeline Analysis Tool

c) Register Recycling

d) Register Insertion

e) Vivado Place & Route

Fmax,act >= Fmax,ideal

or iterations == Niter

Exit

no

yes

Fig. 1: Iterative approach for automatic insertion of pipeline
registers. The loop breaks if the current clock frequency
Fmax,act is equal or more Fmax,ideal or if maximum number of
iterations Niter is reached.

A. Pipeline Analysis Tool

The results reported in [6] are from the iterative approach,
which according to authors produces better results due to the
availability of accurate timing data. Therefore, we have also
adopted the idea of iterations for the insertion of pipeline
stages. The input to the tool is the currently placed netlist,
which could either be coming from the synthesis for the first
iteration, or the result of previous iteration. The tool then
generates a report which indicates the theoretical maximum
clock frequency Fmax,ideal and a list with suggestions on how
much and where to add additional pipeline registers. Fmax,ideal

is determined by the lowest maximum frequency of either the
loops within the design or DSP slices [6].

B. Recycling

A closer examination of the pipeline report reveals that
multiple paths could have the same start and different end
points, although such paths are different, the net connecting
them would be the same. As a consequence, excess register
would be inserted in the design. This situation is depicted in
Figure 2b. Two registers would be added before the end point
O1 and four before point O3, resulting in six added flip flops.
An alternative would be to recycle the registers as shown in
Figure 2b. The resulting design has same functionality and
timing as the one in Figure 2b, but requires lesser registers.

352

Authorized licensed use limited to: UNIVERSITY OF TWENTE.. Downloaded on July 03,2020 at 13:54:19 UTC from IEEE Xplore. Restrictions apply.

I1

D D D D O3

D D O1

O2

(a) Net with added delaysI1

D D D D O3

O2

O1

(b) Net with recycled delays

Fig. 2: Recycling to reduce excess registers

IV. IMPLEMENTATION

Our proposed approach is implemented with a tcl script
which processes the different steps in Figure 1 by invoking Vi-
vado tcl commands and our Java program using RapidWright.
After generating the checkpoint, Vivado runs this script which
takes three arguments as input parameters: design checkpoint,
number of iterations (Niter), and maximum latency per loop
(L). The number of iterations specify the times the iterative
approach will be run, while the maximum latency per loop
specifies the number of pipeline stages inserted per iteration.
The pipeline report for a design can be generated in Vivado
using the tcl command: report pipeline analysis, the report
contains all the relevant information to add pipeline stages.
The report and a synthesized design checkpoint (.dcp) are
then exported to RapidWright. RapidWright uses a simple API
to import the checkpoint file, named Design.ReadCheckpoint
and the pipeline report is parsed using the classes: Intra-
ClockSummary, PipelineSummary and CriticalLoops, which
corresponds to report sections Intra-Clock Summary and Paths
to Pipeline.

The Intra-Clock Summary indicates the changes in Fmax,ideal

after the insertion of each pipeline stage. For implementation
purpose, only the first and the last rows are of interest as shown
in Table I. The first row showing the actual Fmax,ideal, while
the last row depicting the theoretical Fmax,ideal after pipelining.
The Paths to Pipeline section (shown in Table II) contains
instructions to pipeline the design. For every flip flop there is
a start and an end point, corresponding to the path in which
the flip flops have to be inserted.
Once all the data is parsed, the Java program executes the
following steps:

1) Searches the netlist for the VCC, GND and CLK nets
which are used to connect to the flip flop.

2) Checks whether the design contains any loops:

a) If there are no loops, keep on adding registers.
b) If there are loops, check whether the maximum fre-

quency is reached and quit the program if the maxi-
mum frequency is reached.

3) Insert the registers from the pipeline report into a
HashMap, where the key is the StartPoint, and the value
is a list of EndPoints and then sort the list on the highest
amount of delay.

4) Loop through the HashMap and do the following for
every entry:

a) Take the output port of the StartPoint and loop through
the EndPoints list.

b) Add a flip flop before every EndPoint and connect the
input to the StartPoint.

5) Export the design as a Vivado checkpoint.

V. EXPERIMENTATION SETUP AND RESULTS

To evaluate the performance of our automated pipeline
insertion flow, we have performed experimentation on five
benchmark circuits, namely, SHA1, DES, AES (pipelined),
and FIR which were obtained from [15], [16], [17], and
[18] respectively. For AES (sequential), we used our own
round-based implementation. The designs AES (pipelined)
and FIR filter are without any feedback loops, while, AES
(sequential), DES, and SHA1 are all sequential. According
to [6], highly pipelined designs map well on UltraScale and
UltraScale+ architectures [14]. Therefore, all the designs have
been implemented on a ZCU102 board, featuring a Zynq
UltraScale+ device. The synthesized design checkpoint files
for RapidWright have been generated using Vivado 2018.3.

To explore the effect of pipelining on the benchmark cir-
cuits, we set the number of iterations Niter = 10 and L = 1.
From our observations, setting Niter = 10, results in designs
with Fmax,ideal very close to the theoretical value. Furthermore,
with a lower value of Niter, the runtime overhead is also
reasonable.
Table III, shows the effect of pipelining on the throughput
of the benchmark circuits. As expected, the designs with
feedback loops (AES and DES) showed little improvement
(~2%) in throughput, with the exception of SHA1, which
showed a significant increase of ~12%. The run-time penalty
for all the designs was modest, with the highest value recorded
for DES (292 seconds). However, an interesting observation
was made for the designs without feedback loops. The re-
port generated by the pipeline tool, showed that both AES
(pipelined) and FIR filter are already operating at or very
close to Fmax,ideal. Since, Fmax,act >= Fmax,ideal results in
the iterative approach to terminate, no pipeline stages were
inserted in the AES (pipelined) design, while, for FIR filter
throughput was improved by only ~11%. This effect could
be attributed to the size mismatch between the benchmarks
and the target architecture. The abundance of resources in
UltraScale+ devices makes it easier to achieve Fmax,ideal for
designs like AES or FIR filter with a relatively low (~4.24%,
and ~0.04% respectively) utilization of resources. This idea
was validated by mapping the same designs on a smaller
Zedboard device [19]. When mapped on a Zedboard, the
throughput for AES (pipelined) and FIR filter improved by
(~28%) and (~51%) respectively.
The results for the impact of pipelining on the resource
utilization are also depicted in Table III. The terms ’original’
and ’pipe’ refer to the resource usage before and after the

353

Authorized licensed use limited to: UNIVERSITY OF TWENTE.. Downloaded on July 03,2020 at 13:54:19 UTC from IEEE Xplore. Restrictions apply.

Clock
Added

Latency
Ideal
Fmax

Ideal
Delay Requirement WNS

Added
Pipeline

Reg
Total

Pipeline Reg

Pipeline
Insertion

Startpoint

Pipeline
Insertion
Endpoint

CLK 0 325.99 MHz 3.068 ns 10 ns 6.932 ns n/a 0 state out[0] i 1/O r1/state out reg[0]/D
CLK 13 651.98 MHz 1.534 ns 10 ns 8.133 ns 958 15060 out 1[0] i 1/O state out[0] i 1/I3

TABLE I: Example first and last line of the Intra-Clock Summary

Clock/PathGroup Path Cut Added Pipeline Startpoint Endpoint
Registers

CLK/CLK 0 4 out 1[88] i 1 3/O state out[88] i 1 3/I4
CLK/CLK 1 6 out 1[88] i 1 4/O state out[88] i 1 4/I4

TABLE II: Example of two ’instructions’ of ’Paths to pipeline’

Design
Fmax,ideal

(MHz)
Fmax,act
(MHz)

Fmax,ideal,pipe
(MHz)

Improvement
(%)

Runtime
(sec)

#CLBs
(original)

#CLBs
(pipe)

#Registers
(original)

#Registers
(pipe)

#Recycled
Registers

SHA1 475.66 416.26 466.12 11.97 290 172 205 1001 1453 6422
AES (seq) 686.17 675.51 686.17 1.57 170 51 58 261 294 1103

DES 787.8 770.21 787.8 2.28 292 1156 1350 6008 7221 964
AES (pipe) 795.32 795.32 N/A N/A N/A 2184 2184 7882 7882 0
FIR Filter 594.05 534.09 594.05 11.22 281 24 28 42 79 154

TABLE III: Runtime and Percentage Improvement in Fmax,ideal after pipelining

pipelining. The highest increase in the register utilization was
observed for DES (~20.2%), with an extra 1213 registers
used for pipelining. However due to the increased flip-flop
to LUT ratio of newer FPGA families, the increase of used
CLBs is only marginal. Also, from the results in Table 2,
the benefits of the recycling approach can be clearly seen
with a considerable amount of registers saved. For SHA1,
the pipeline report suggests inserting 6874 registers, however,
with recycling only 452 registers were required to pipeline the
design. The recycling technique shows a lot of improvement
in terms of resource usage. While the throughput stays the
same, the recycled version uses fewe registers and slices.

VI. CONCLUSIONS

This work presents a novel automated pipeline insertion
flow for streaming-based applications. The run time of several
seconds to few minutes of our approach is negligible compared
to manual pipelining. Furthermore, the HDL sources do not
have to be modified. Our technique builds upon the work
presented in [6], extended with a sophisticated recycling ap-
proach and using RapidWright to implement the design mod-
ifications. The use of RapidWright provides access to lower-
level architecture details, making it possible to add pipeline
stages. The results show slight improvement in throughput
(upto ~12%) only for sequential designs on an UltraScale+
device, while significant gains (upto ~51%) were observed
for designs without feedback loop, when mapped to a low-
end Zedboard device. Hence, to validate our approach, a
comprehensive experimentation needs to be performed with
large scale designs without any feedback loops, exhibiting
greater potential for pipelining. Furthermore, compared to [6],
the introduced recycling approach significantly reduces the
number of registers required to pipeline the designs.

VII. ACKNOWLEDGEMENT

This work has been supported by the German Federal
Ministry for Eduction and Research (BMBF) within the col-
laborative research project SecRec (16KIS0609).

REFERENCES

[1] P. Sundararajan, High performance computing using fpgas, Xilinx white
paper: FPGAs, pp. 115, 2010.

[2] I. Kuon and J. Rose, Measuring the gap between fpgas and asics,
IEEE Transactions on computer-aided design of integrated circuits and
systems, vol. 26, no. 2, pp. 203215, 2007.

[3] Steven Trimberger, ”Three Ages of FPGAs: A Retrospective on the
First Thirty Years of FPGA Technology,” Proceedings of the IEEE 103
(2015): 318-331.

[4] Elias Ahmed, and Jonathan Rose, ”The effect of LUT and cluster size
on deep-submicron FPGA performance and density,” FPGA (2000).

[5] Xilinx Inc., Virtex-5 Family Overview, August, 2001.
[6] Ilya Ganusov, et al. ”Automated extra pipeline analysis of applications

mapped to Xilinx UltraScale+ FPGAs,” 2016 26th International Con-
ference on Field Programmable Logic and Applications (FPL) (2016):
1-10.

[7] Chris Lavin, and Alireza Kaviani. ”RapidWright: Enabling Custom
Crafted Implementations for FPGAs,” 2018 IEEE 26th Annual Inter-
national Symposium on Field-Programmable Custom Computing Ma-
chines (FCCM) (2018): 133-140.

[8] Charles E Leiserson and James B Saxe. ”Retiming synchronous cir-
cuitry,” Algorithmica, 6(1-6):535, 1991.

[9] Nicholas Weaver. ”Retiming, repipelining and c-slow retiming,” In
Reconfigurable Computing, pages 383399. Elsevier, 2008.

[10] A. J. Chung K. Cobden M. Jervis M. Langhammer B. Pasca ”Tools
and techniques for efficient high-level system design on FPGAs,” First
International Workshop on FPGAs for Software Programmers 2014.

[11] Matei Istoan, and Florent De Dinechin. Automating the pipeline of
arithmetic datapaths, Design, Automation and Test in Europe Conference
and Exhibition (DATE), 2017 (2017): 704-709.

[12] Leo Liu, Jay Weng, Nachiket Kapre, ”RapidRoute: Fast Assembly of
Communication Structures for FPGA Overlays,” Field-Programmable
Custom Computing Machines (FCCM) 2019 IEEE 27th Annual Inter-
national Symposium on, pp. 61-64, 2019.

[13] Matthew J. Cannon et al., ”Strategies for Removing Common Mode
Failures From TMR Designs Deployed on SRAM FPGAs,” Nuclear
Science IEEE Transactions on, vol. 66, no. 1, pp. 207-215, 2019.

[14] Xilinx. UltraScale Architecture and Product Overview. Xilinx, ds890
(v3.9) edition, June 27, 2019.

[15] Available Online at: https://opencores.org/projects/sha core
[16] Available Online at: https://github.com/freecores/des
[17] Subhasis Das. Fully pipelined AES core. Available Online at:

https://github.com/freecores/aes pipe,2009.
[18] Scott Larson. Digi-key: Fir filter (vhdl). Available Online at:

www.digikey.com/eewiki/pages/viewpage.action?pageId=78086825
[19] Avnet. ZedBoard Product Briefs, 2018.

354

Authorized licensed use limited to: UNIVERSITY OF TWENTE.. Downloaded on July 03,2020 at 13:54:19 UTC from IEEE Xplore. Restrictions apply.

