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Abstract—The increasing computational and memory require-
ments of Deep Learning (DL) workloads has led to outstanding
innovations in hardware architectures. An archetype of such
architectures is the novel Versal AI Engine (AIE) by AMD/Xilinx.
The AIE comprises multiple programmable processors optimized
for vector-based algorithms. An AIE array consisting of 400
processor cores, operating at 1.25 GHz is able to deliver a peak
throughput of 8 TFLOPs for 32-bit floating-point (fp32), and
128 TOPs for 8-bit integer (int8) precision. In this work, we
propose MaxEVA: a novel framework to efficiently map Matrix
Multiplication (MatMul) workloads on Versal AIE devices. Our
framework maximizes the performance and energy efficiency
of MatMul applications by efficiently exploiting features of the
AIE architecture and resolving performance bottlenecks from
multiple angles. When demonstrating on the VC1902 device of the
VCK190 board, MaxEVA accomplishes up to 5.44 TFLOPs and
77.01 TOPs throughput for fp32 and int8 precisions, respectively.
In terms of energy efficiency, MaxEVA attains up to 124.16
GFLOPs/W for fp32, and 1.16 TOPs/W for int8. Our proposed
method substantially outperforms the state-of-the-art approach
by exhibiting up to 2.19× throughput gain and 20.4% higher
energy efficiency. The MaxEVA framework provides notable
insights to fill the knowledge gap in effectively designing MatMul-
based DL workloads on the new Versal AIE devices.

Index Terms—Versal, AI Engine, FPGA, Matrix Multiplica-
tion, Hardware Acceleration, System-on-Chip, Deep Learning

I. INTRODUCTION

Contemporary Deep Learning (DL) workloads present ex-
ceptionally high compute demands, with a rate of increase of
1.5× per year [1]. To keep pace with this explosion, several
hardware acceleration solutions have been proposed. These
solutions include GPUs [2]–[4], FPGAs [5]–[7] and ASICs
[8]–[10], while offering orders of magnitude higher perfor-
mance and energy efficiency compared to general-purpose
CPUs [11]–[13]. Among all solutions, FPGAs are an appealing
candidate for DL because of their reconfigurability. More
recently, to keep up with the demands of DL workloads, FPGA
architectures have become more DL-specialized [14]–[16]. To
this end, AMD/Xilinx released the Versal Adaptive Compute
Acceleration Platform (ACAP), which features the novel AI
Engine (AIE) processors. The Versal ACAP is a heterogeneous
system-on-chip (SoC), comprising the AIEs along with the re-
configurable logic (FPGA) and scalar processors (CPUs) [15],
[17]. The AIE consists of multiple software programmable
processors, specifically optimized for DL applications [18].

The Versal AIE signifies a new era in reconfigurable com-
puting, while achieving considerably higher performance and

energy efficiency in DL workloads compared to traditional
FPGA designs [18], [19]. However, the complex AIE architec-
ture poses several new design challenges as well. The efficient
design and mapping of DL applications on AIE is a non-
trivial task. To address these design challenges, we propose
the novel MaxEVA framework. MaxEVA constitutes a sys-
tematic methodology to maximize the performance and energy
efficiency of Matrix Multiplication (MatMul) applications on
Versal AIEs. MaxEVA efficiently utilizes attributes of the AIE
architecture (local memory sharing, static circuit-switching,
broadcasting), and effectively addresses design challenges that
lead to sub-optimal performance (limited I/O and switch band-
width, reduced AIE-FPGA interface tiles, routing congestion).

In this work, we conduct a comprehensive exploration of
using the AIE architecture to optimize MatMul-based DL
workloads. We focus on optimizing MatMul operations, be-
cause MatMul is the heaviest compute-bound kernel in many
DL workloads, occupying up to 90% of the execution time
[20]. All other memory-bound kernels used in DL, e.g., soft-
max, layernorm, can be effectively overlapped while MatMul
kernels are executing, showing minimal contribution to overall
throughput and power consumption [19]. Moreover, we target
both 8-bit integer (int8) and IEEE 32-bit floating-point (fp32)
data types, which are the most commonly used in DL [1]. In
summary, the main contributions of this work are:

• An optimization methodology based on analytical mod-
elling to maximize the performance of MatMul on Versal
AIE. Our methodology is generalizable to any Versal AIE
device and addresses various performance bottlenecks,
leading to maximal utilization of the AIE resources.

• A sophisticated AIE kernel placement strategy to effec-
tively leverage the most efficient data movement mecha-
nisms of the Versal AIE architecture.

• Demonstration of the MaxEVA framework on the
VC1902 device of the AMD/Xilinx VCK190 evaluation
board, showing up to 5.44 TFLOPs and 77.01 TOPs
throughput for fp32 and int8 precisions, respectively.
MaxEVA significantly outperforms the state-of-the-art
approach by presenting up to 2.19× higher performance
and 20.4% energy efficiency gain.

• Open-sourcing MaxEVA for users to exploit our code in
their designs, and contributing further to the knowledge of
Versal AIE (https://github.com/enyac-group/MaxEVA).
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II. RELATED WORK

The MatMul operation forms the core computation in many
FPGA-based Deep Neural Network (DNN) accelerators. For
example, Sextans [6] is a general purpose MatMul accelerator
evaluated on AMD/Xilinx U280 HBM FPGA. Another work
is [21], where the authors implement MatMul-based acceler-
ators for sparse, binary and ternary DNNs on Intel Arria 10
and Stratix 10 FPGAs. In [22] the authors present a multi-
precision acceleration framework targeting the Intel HARPv2
CPU+FPGA platform, while in [23] a MatMul accelerator is
designed utilizing Intel’s AI tensor blocks [14].

Other works present MatMul FPGA accelerators optimized
for specific DNN types, such as Convolutional Neural Net-
works (CNNs) [24]–[26], and Transformers [27]–[29]. Ad-
ditionally, some works include automated frameworks for
generating MatMul accelerators on FPGAs [5], [30]–[32],
while others propose OpenCL FPGA accelerators [7], [33].

Although Versal ACAP is a new architecture, there exist
several works that make use of AIEs in various application
domains. For instance, CHARM [19] proposes multiple di-
verse MatMul accelerators on AIEs utilizing the VCK190
and achieving up to 2.94 TFLOPs for DNN inference. In an
extension of their work [34], the authors propose a framework
to systematically generate MatMul accelerators on Versal AIE.
Their experiments on VCK190 device show higher energy
efficiency, up to 1.7×, compared to GPUs. Other works on
AIEs include CNN accelerators [35], [36], as well as Graph
Neural Network (GNN) acceleration [37]. Vyasa [38] is a
vectorizing compiler which extends the Halide DSL compiler
[39] to automatically generate code for Versal AIE. Finally,
some works target AIE acceleration in the application domain
of atmospheric simulations and weather predictions [40], [41].

Among all prior works, the frameworks presented in [19],
[34] are the closest to our work. Both works use the same ac-
celerator architecture to map MatMul workloads on VCK190.
In this work, we show the superiority of the MaxEVA frame-
work by comparing with the aforementioned state-of-the-
art implementations. In particular, MaxEVA achieves notable
performance gains of 2.19× and 20.8% for int8 and fp32, re-
spectively, as well as 20.4% higher energy efficiency for fp32,
over the state-of-the-art designs. The MaxEVA framework
optimizes the MatMul mapping on Versal AIE, while avoiding
the performance bottlenecks that prior works encounter.

III. VERSAL AI ENGINE ARCHITECTURE

In this section, we provide an overview of the AMD/Xilinx
Versal AIE architecture, as well as its main data movement
and communication mechanisms.

A. AI Engine Architecture

The Versal AIE architecture is illustrated in Fig. 1. The
AIE architecture comprises a 2D array of homogeneous AIE
tiles, where each tile contains an AIE core, a memory module,
as well as an interconnection module (switch) [42]. The AIE
array supports effectively three levels of parallelism: first,
each AIE core contains a Single-Instruction Multiple-Data
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Fig. 1: Versal AI Engine architecture.

(SIMD) vector processor, which allows multiple elements to
be computed in parallel (data-level parallelism). Second, the
AIE core is architectured as a 7-way Very-Long Instruction
Word (VLIW) processor, enabling multiple instructions to
be executed every clock cycle (instruction-level parallelism).
Third, multiple AIE cores are able to execute in parallel across
the AIE array (spatial parallelism).

Besides the SIMD processor, each AIE core also includes a
scalar processing unit. Both processors support fixed-point and
floating-point precisions. The AIE cores can be programmed
by either using high-level C/C++ code utilizing the AIE API
[43] or low-level SIMD intrinsics [44]. To map an application
to multiple AIE cores, AMD/Xilinx provides an Adaptive Data
Flow (ADF) graph-based modelling. The nodes in the ADF
represent compute kernel functions and/or sub-graphs, while
the edges represent the data connections among them [44]. The
data connections between AIE cores are realized through either
direct memory sharing for neighboring AIEs or the AXI4-
Stream switches for distantly located cores (Fig. 1).

In addition to AIE array, the Versal architecture combines
the Processing System (PS), as well as the Programmable
Logic (PL), all on the same chip. The PS consists of ARM
CPUs, while the PL comprises the traditional FPGA resources,
such as Look-Up Tables (LUTs), Block RAMs (BRAMs) and
Digital Signal Processors (DSPs). The communication of the
AIE array with the other parts of the Versal device is realized
through interface tiles, located on the last row of the array,
as depicted in Fig. 1. There are two types of interface tiles;
the AIE-PL tiles and the AIE-NOC tiles. The former provide
dedicated connections with the PL, while the latter allow
flexible communication with the other parts of the Versal chip
through a Network-on-Chip (NOC) connection (not shown in
Fig. 1). The dedicated AIE-PL interface tiles contain primarily
a PL interface which supports two different clock domains, i.e.,
the AIE clock and the PL clock, along with an AXI4-Stream
switch to enable higher connection flexibility [42].
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Fig. 2: Data movement mechanisms in AI Engine array.

B. AI Engine Data Movement Mechanisms

Each AIE tile has 16KB of program memory to store VLIW
instructions, as well as 32KB of data memory divided into 8
banks of 4KB. For higher memory requirements, AIEs can
access data memory directly from their neighbors, for a total
of 128KB. Fig. 2 shows this direct access (AIEs highlighted in
green), which constitutes the main data movement mechanism
of the AIE array [42]. However, notice that while each AIE
is able to directly access memory from its north and south
directions, the east and west access depend on the row location
of the AIE. In particular, the AIE array is arranged on alternate
even and odd rows, where the cores in even rows can access
memory on the west direction, while in odd rows, the east
module is accessed. Finally, we note that AIEs on the edges
of the array have fewer memory accesses on both north/south
and east/west directions following the pattern described above.

For non-neighboring AIEs, the communication is realized
through the Direct Memory Access (DMA) mechanism using
the programmable switches, as shown in Fig. 2 (AIEs high-
lighted in orange). Compared to direct access, non-neighboring
communication through DMA has increased communication
latency and requires more memory resources. The AXI4-
Stream switches can be configured for either circuit-switching
or packet-switching. Circuit-switching provides dedicated con-
nections which are statically configured at compilation time.
In contrast, packet-switching allows routing to different des-
tinations by dynamically setting a destination header at the
beginning of each packet. Due to static configuration, circuit-
switching exhibits deterministic latency between connections,
while also supporting broadcast to multiple output channels.
Conversely, packet-switching can cause resource contention,
leading to non-deterministic latency [42]. In this work, we
only exploit the most efficient circuit-switching mechanism,
without the need of explicit packet-switching proposed in [19],
[34], as we discuss in the following Section.

IV. MAXEVA FRAMEWORK

In this section we discuss the details of the MaxEVA frame-
work. The MaxEVA framework addresses the design, mapping
and optimization of MatMul on the AIE array. MaxEVA as-
sumes that input/output data buffers are placed in PL BRAMs,
as repeatedly used in practice to efficiently exploit data reuse in
large matrices [5], [19], [24], [34]. Through optimization based
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on analytical modelling and sophisticated kernel placement
techniques, MaxEVA maximizes the throughput and energy
efficiency of MatMul workloads on Versal AIE.

In this work, we focus on VC1902 device of the VCK190
board [45], which has a total of 400 AIEs organized as an
8 rows × 50 columns array. As described in Section III-A,
the AIE/PL communication is established through the AIE-PL
interface tiles. However, not all existing columns in the AIE
array can interface with PL. For instance, in VC1902 there are
only 39 AIE-PL tiles [46]. The small AIE-PL bandwidth is one
of the main challenges when designing MatMul applications
on AIEs, which MaxEVA successfully overcomes. Finally,
although we show our method on the VC1902, our work can
be generalized in straightforward fashion to any Versal device.

A. Matrix Multiplication Tiling Scheme

Fig. 3 depicts a simplified example of our proposed tiling
scheme. In our design, the tiling size (M×K×N ) is de-
termined by the single MatMul kernel, which is mapped to
exactly one AIE core. Since the Versal AIE comprises multiple
cores, we map multiple MatMul kernels on the AIE array
(described by the parameters X,Y, Z as explained below).
With this scheme, the final MatMul size running on the
entire AIE array is (X · M) × (Y · K) × (Z · N). To
this end, X,Y, Z,M,K,N constitute the configurable integer
parameters which are optimized by the MaxEVA framework.

B. Matrix Multiplication Mapping on AI Engine Array

To overcome the reduced number of AIE-PL interface tiles,
and thus avoid the PL Input/Output (PLIO) bottleneck, we
leverage the two principal properties of the MatMul algorithm.
First, we exploit the inherent data reuse of the MatMul
algorithm to reduce the number of incoming PLIOs (inputs
to AIE array), by broadcasting inputs A and B (Fig. 3) to
multiple AIEs. Second, we utilize the native reduction of the
Y ·K dimension in MatMul to decrease the number of outgoing
PLIOs (outputs of AIE array) by performing reduction on the
AIE itself, instead of the PL. With this method, we are able to
efficiently map X · Y ·Z MatMul kernels (each performing a
MatMul computation of M×K×N size), and X · (Y − 1) ·Z
Add kernels (each reducing partial results of M×N size).

Fig. 4 shows a high-level mapping diagram of MatMul and
Add kernels on the AIE array. In our design, there exist groups
of Y MatMul kernels along with their corresponding adder
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trees (Y −1 adders on each group). More specifically, there are
X ·Z of such groups in total, all executing in a parallel fashion.
Each Ax,y and By,z PLIO input data are broadcasted to their
corresponding MatMul kernels, Z and X times, respectively,
as governed by the MatMul algorithm. In our design, there are
in total X · Y + Y · Z PLIO inputs, as well as X · Z PLIO
outputs. We note here that broadcasts are realized through the
programmable switches of the AIE array and are statically
configured during compilation (circuit-switching).

Fig. 5 illustrates a group comprising 4 MatMul kernels along
with its adder tree (3 Add kernels). As mentioned above, each
MatMul kernel executes on a separate AIE core. However,
we map the whole adder tree to a single AIE core, where all
Add kernels execute in a sequential fashion. We make such
design choice for various reasons. First, we note that only
MatMul kernels contribute to throughput, while Add kernels
are only used to reduce the output PLIOs. Thus, we maximize
the number of MatMul kernels, by minimizing the AIE cores
used to run the Add kernels. Second, Add kernel’s execution
time (latency) is much lower than MatMul kernel’s latency.
Therefore, we are able to map multiple Add kernels to a single
AIE core, without any performance degradation (as we show
in Section V-A). Third, when mapping multiple kernels to a
single AIE core, memory resources are reduced compared to
mapping to several AIE cores. As depicted in Fig. 5, double
buffers are inserted between separate AIE cores to effectively
overlap computation with communication (to increase the
compute utilization of AIEs). However, between the Add
kernels only single buffers are used, since all Add kernels are
executed sequentially. This results in twofold memory buffer
savings compared to if they were executed on separate AIEs.
Overall, the throughput of the entire design is determined by
the computationally heavy MatMul kernels, since the whole
adder tree latency is lower than MatMul latency (Section V-A).

C. AI Engine Kernels Modelling & Optimization

Since the design space of the configurable integer param-
eters X,Y, Z,M,K,N is large, we propose an analytical
model to maximize the throughput of MatMul on the AIE
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array. Our model takes as input device-specific parameters
and constraints, e.g., I/O bandwidth, AIE peak throughput,
number of PLIOs, and finds the optimal solution based on
our mapping methodology. In this section, first, we describe
the optimization of the single MatMul kernel, and then we
discuss mapping the entire MatMul to the AIE array.

1) Single AI Engine Kernel Optimization: M, K, N pa-
rameters. Our model takes as input a lower bound of the
efficiency of the single MatMul kernel, eff lb, to ensure that
the achieved throughput is very close to the theoretical AIE
throughput. Here, we define efficiency (eff ) as the fraction of
the achieved throughput to the peak throughput of the vector
processor inside the AIE core. In particular, each AIE vector
processor is able to achieve up to 128 MACs/cyc (multiply-
accumulate operations per clock cycle) for int8 precision,
while for fp32 the peak throughput is 8 MACs/cyc [42].
Defining peak MACs as the AIE core peak throughput and
kernel cyc as the latency (in clock cycles) of the MatMul
kernel of M×K×N size, we get the following constraint:

eff ≥ eff lb ⇒(
M ·K ·N
kernel cyc

)
/peak MACs ≥ eff lb ⇒

kernel cyc ≤ M ·K ·N/ (eff lb · peak MACs) (1)

Next, we optimize our design by ensuring that I/O bandwidth
does not become a performance bottleneck. There are two I/O
bandwidth considerations in our design: the PLIO bandwidth
for both inputs and outputs, as well as the bandwidth of the
AXI4-Stream switches. According to [42], the bandwidth for
both I/Os is BW IO = 4Bytes/cyc. To assure that our
design is not I/O limited, we require the latency of input
(a cyc, b cyc) and output (c cyc) data transmission to be
lower than the MatMul kernel latency. Therefore, we get:

{a cyc, b cyc, c cyc} ≤kernel cyc ⇒
{M ·K · sizeof(a)/BW IO ≤ kernel cyc,

K ·N · sizeof(b)/BW IO ≤ kernel cyc,

M ·N · sizeof(c)/BW IO ≤ kernel cyc} (2)

By combining equations 1 and 2, we have the following:

N ≥ eff lb · peak MACs · sizeof(a)/BW IO (3)
M ≥ eff lb · peak MACs · sizeof(b)/BW IO (4)
K ≥ eff lb · peak MACs · sizeof(c)/BW IO (5)



Notice that a, b are the inputs of the MatMul kernel, while c
is the output of either the MatMul or the Add kernel (both
have same output size of M×N ). The sizeof() function
calculates the size (in Bytes) of input/output data types. This is
particularly important for int8 computation, since we perform
all accumulations in 32-bits (int32). In this case, the size of
inputs a, b is 1 Byte, while the size of output c is 4 Bytes.

Finally, we define a constraint that all input/output buffers
of the single MatMul kernel should fit within the local AIE
memory. By not exceeding the local AIE memory, we are
able to maximize the number of MatMul kernels that execute
in parallel on the AIE array. Each AIE core needs some
system memory for its operation, e.g., stack, heap. The AIE
data memory is partitioned in 4KB banks; we leave one bank
for system memory. This implies an available space of 28KB
for our/user buffers. Because both input and output buffers of
MatMul kernels are double buffered (see Fig. 5), we get:

{M ·K · sizeof(a) +K ·N · sizeof(b)
+M ·N · sizeof(c)} ≤ 14KB (6)

The solution of M,K,N can be formulated as an integer
programming (IP) optimization problem, where we maximize
the number of MACs of the single MatMul kernel by having
eq. 3–6 as constraints. Increasing the number of MACs will
lead to more data reuse in the vector registers of the AIE core,
resulting in higher kernel efficiency. The lower bound of the
efficiency (eff lb) can be assigned based on the performance
constraints of the application and the achievable throughput.
In this work, we are able to achieve 95% of MatMul kernel
efficiency (Section V-A), which we set it as our lower bound.
The configurable parameters are evaluated through exhaustive
search and top-ranked design points are reported. We note
that solving the IP exhaustively is a suitable approach, since
the search space is significantly reduced by considering only
powers of two for M,K,N (as discussed in Section V-A).

2) Multiple AI Engine Kernels Optimization: X, Y, Z pa-
rameters. To obtain an optimal mapping onto the AIE array,
we require our entire design to fit in the total number of AIE
cores (AIE cores). We also require the number of utilized
input/output PLIOs to not exceed the available PLIOs of
the device. In particular, for VC1902, PLIO in = 78 and
PLIO out = 117 [42], [46]. Based on the discussion at
Section IV-B and the above, the following can be expressed:

X · Y · Z +X · Z ≤ AIE cores (7)
X · Y + Y · Z ≤ PLIO in (8)

X · Z ≤ PLIO out (9)

The optimization of X,Y, Z is evaluated through exhaustive
search by maximizing the total number of MatMul kernels (X ·
Y · Z), which leads to maximized throughput of the MatMul
application. Again, exhaustive search is sufficient because all
constants in eq. 7–9 are in the order of hundreds (reasonably
small) [42]. Multiple top-ranked design points are reported,
from which we explore various options (refer to Section V-B).

D. AI Engine Kernel Placement

To leverage the most efficient local data sharing mechanism
described in Section III-B, we propose a sophisticated kernel
placement strategy. Fig. 6 illustrates an example of the place-
ment procedure, where each multiplication symbol denotes a
MatMul kernel, while the addition symbol indicates the adder
tree mapped to a single AIE core. We place each group of Y
MatMul kernels along with its adder tree, in a manner to avoid
any DMA usage in the buffer connections between MatMul
and Add kernels (Fig. 5). For instance, when considering the
group starting at (0, 0) location in Fig. 6, the adder tree is able
to access the memory of 3 (out of 4) MatMul kernels directly
(along the north, south and east direction). Notice that in this
case, the MatMul kernel located at (1, 0) does not directly
communicate with the adder tree. However, the output buffer
of this MatMul kernel can be placed to its north location (1,
1); this is possible because of direct memory sharing between
neighboring AIEs as shown in Fig 2. From here the adder tree
AIE can access it directly, thus ensuring no DMA usage.

Another placement example is the group starting at (0, 5).
Although, this placement is similar to the (0, 0) case described
above, notice that the adder tree is located on the opposite side.
This is because the local data sharing is realized only on the
west direction in even rows. We observe that in this case, the
adder tree can only access 2 out of 4 MatMul kernels directly
(located at (0, 6) and (1, 5)). However, the output buffers of all
MatMul kernels can be placed such that no DMA is used. For
instance, the output buffers of (0, 5) and (0, 7) kernels can be
placed at (1, 5) and (1, 7) locations (east access), respectively,
which can be both directly accessed by the adder tree.

An example for a group of Y = 3 kernels is also shown
in Fig. 6, where the explanation of its placement is similar to
the examples discussed above. Finally, we note that the input
data buffers of the MatMul kernels, as well as the output data
buffer of the adder tree (refer to Fig. 5) can be placed on any
free memory space, again only accessing memory directly. We
let the AMD/Xilinx AIE PnR (place and route) tool to make
such decisions and optimize the whole AIE array mapping.

We exploit the aforementioned placement strategy to fill the
entire AIE array, thus mapping multiple MatMul/Add kernels.
Fig. 7 shows our two proposed placement patterns, P1 and
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P2. Notice that in pattern P1, we use a new “T”–like shape
outlined in orange color, while all other shapes of both patterns
are similar to the examples in Fig. 6. This is required to fill the
whole AIE array and ensure that no AIEs remain unutilized.
However, each “T”–like shape will lead to a small DMA usage
(one MatMul output buffer), as we show in the next Section.
Finally, we only propose patterns for Y = 3, 4, because these
constitute the top-ranked solutions based on our optimization
approach, as we also present in the next Section.

V. EVALUATION

In this section, we first report single AIE kernel experi-
mental results. Second, we present results and evaluation of
full MatMul mapping on the AIE array. Finally, we perform a
comprehensive comparison with the state-of-the-art approach,
which exhibits the superiority of the MaxEVA framework.

We compile and simulate our designs by using the
AMD/Xilinx Vitis 2022.1 version. Across all experiments,
the AIE frequency is set to the maximum frequency of the
VC1902 on VCK190, i.e., 1.25 GHz, while the PL operates
at 312.5 MHz, as recommended in [44], [47]. To ensure rate
matching without performance reduction between AIE and PL,
we set the PLIO width to 128-bits [44]. Moreover, we use the
AIE simulator [47] to calculate the throughput of our designs,
which we report as an average of 10 runs. Finally, power
consumption is estimated through the AIE XPE tool [48].

Since our focus is to achieve maximum MatMul throughput
from the AIE array, isolating the AIE implementation from
any source of performance degradation is crucial to obtain
accurate evaluation. Such sources of performance reduction
may arise from any design mapped to PL causing stalls, as well
as the limited DRAM bandwidth. Therefore, we simulate our
AIE designs without utilizing the PL and DRAM. We simulate
the state-of-the-art CHARM framework as well by leveraging
their open-source code [19], [34], in the exactly same manner,
with the same assumptions. This ensures a thorough and fair
comparison between MaxEVA and CHARM frameworks, thus
enabling us to report accurate throughput, power, and AIE
resource utilization. However, we note that the CHARM code
includes only fp32 implementation. In [34] the authors report
results for int8 implementation as well, but their code is not
publicly available. Therefore, for int8, we show a qualitative
comparison based on their reported results.

TABLE I: Single AI Engine kernel results.

Kernel Kernel size Latency Throughput Effic-
type M×K×N (cyc) (MACs/cyc) iency

MatMul int8 32×128×32 1075 (1×) 121.93 95.26%
Add int32 32×32 164 (0.15×) 6.24 78.05%

MatMul fp32 [19], [34] 32×32×32 4329 (1×) 7.57 94.70%
Add fp32 32×32 167 (0.04×) 6.13 76.65%

A. Performance of Single AI Engine Kernels

For maximum efficiency, MatMul and Add kernels have
been designed to leverage the vector processors of the AIEs.
Our kernels are written in C/C++ utilizing the AIE APIs and
several optimization compiler directives (pragmas) that per-
form software pipelining, loop unrolling/flattening and explicit
independence between data [44]. Moreover, during our kernel
design experimentation, we found that MatMul kernels with
powers of two dimensions produce higher efficiency. Hence,
in this work, we use powers of two during the optimization
of the M,K,N parameters, as also proposed in [19], [37].

Table I presents the single AIE kernel results. For int8
precision, the 32×128×32 MatMul kernel was the only solu-
tion that satisfied all constraints in our optimization procedure
(Section IV-C). All other values for M,K,N are either I/O
bandwidth limited or exceed the memory constraint of 14KB
(eq. 6). In contrast, for fp32, there are many top-ranked so-
lutions that maximize the number of MACs, e.g., 16×64×32,
64×16×32, 32×32×32, etc. However, we notice that all best
solutions exhibit the same number of MACs (equal to 32768).
Since 32×32×32 MatMul kernel is one of our optimized
solutions and also used in state-of-the-art CHARM [19], [34],
we obtain its code from their open-source code base. This
ensures a fair comparison between their approach and ours.

From Table I, we observe that the int8 MatMul kernel
utilizes the vector processor of the AIE efficiently - a very high
efficiency of 95.26% is achieved. The fp32 MatMul kernel
obtained from [19], [34] also presents very high efficiency
(94.70%), and is designed by using AIE intrinsics. Moreover,
we observe that int8 and fp32 Add kernels have very similar
latencies, which are both significantly lower than MatMul
latencies (164 vs. 1075 cycles for int8, and 167 vs. 4329 cycles
for fp32). This validates that multiple Add kernels are able
to run sequentially into a single AIE, without causing any
performance degradation. We also observe that the relative
latency ratio of Add kernel to MatMul kernel is notably lower
for fp32 (0.04×) compared to int8 (0.15×). These relative
ratios indicate that the AIE core running even multiple Add
kernels remains idle for substantially longer for the fp32 case,
affecting its power consumption accordingly (Section V-B).
Finally, we note that Add kernels also exhibit high efficiency
(78.05% and 76.65% for int8 and fp32, respectively), though
not as high as the efficiency of MatMul kernels. This perfor-
mance difference is due to less data reuse on the AIE vector
registers by Add kernels compared to MatMul kernels.

B. Performance of Matrix Multiplication on AI Engine Array

We utilize the MaxEVA framework to optimize the per-
formance of the entire MatMul application. To map multiple



TABLE II: Evaluation of several MaxEVA configurations for fp32 and comparison with state-of-the-art approach.

MaxEVA Cfg. MatMul Total Memory DMA PLIOs Throughput Power Energy Eff. AIE core Memory
X×Y×Z (pat.) kernels AIE cores banks banks (GFLOPs) (W) (GFLOPs/W) P. (W) P. (W)

1. 13×4×6 (P1) 312 390 (97.5%) 3138 (98.1%) 18 154 (79.0%) 5442.11 (+20.8%) 43.83 124.16 (+20.4%) 25.62 18.21
2. 10×3×10 (P2) 300 400 (100%) 3190 (99.7%) 0 160 (82.1%) 5405.33 (+20.0%) 44.66 121.03 (+17.4%) 25.54 19.12
3. 11×4×7 (P1) 308 385 (96.3%) 3106 (97.1%) 18 149 (76.4%) 5414.39 (+20.2%) 44.01 123.03 (+19.3%) 25.36 18.65
4. 11×3×9 (P2) 297 396 (99.0%) 3176 (99.3%) 0 159 (81.5%) 5382.27 (+19.5%) 44.13 121.96 (+18.3%) 25.35 18.78
5. 12×4×6 (P1) 288 360 (90.0%) 2934 (91.7%) 16 144 (73.8%) 5031.19 (+11.7%) 40.68 123.68 (+20.0%) 23.77 16.91
6. 12×3×8 (P2) 288 384 (96.0%) 3092 (96.6%) 0 156 (80.0%) 5225.05 (+16.0%) 42.28 123.58 (+19.9%) 24.68 17.60
CHARM [19], [34] 384 384 (96.0%) 3086 (96.4%) 0 80 (41.0%) 4504.46 (+0%) 43.69 103.10 (+0%) 26.95 16.74

TABLE III: Evaluation of several MaxEVA configurations for int8 (results for CHARM obtained from [34]).

MaxEVA Cfg. MatMul Total Memory DMA PLIOs Throughput Power Energy Eff. AIE core Memory
X×Y×Z (pat.) kernels AIE cores banks banks (TOPs) (W) (TOPs/W) P. (W) P. (W)

1. 13×4×6 (P1) 312 390 (97.5%) 3112 (97.3%) 18 154 (79.0%) 77.01 (2.19×) 66.83 1.152 48.65 18.18
2. 10×3×10 (P2) 300 400 (100%) 3194 (99.8%) 0 160 (82.1%) 76.08 (2.16×) 65.52 1.161 47.44 19.08
3. 11×4×7 (P1) 308 385 (96.3%) 3096 (96.8%) 18 149 (76.4%) 75.67 (2.15×) 66.79 1.133 48.17 18.62
4. 11×3×9 (P2) 297 396 (99.0%) 3178 (99.3%) 0 159 (81.5%) 74.66 (2.12×) 65.83 1.134 47.04 18.79
5. 12×4×6 (P1) 288 360 (90.0%) 2918 (91.2%) 16 144 (73.8%) 71.25 (2.02×) 62.13 1.147 45.15 16.98
6. 12×3×8 (P2) 288 384 (96.0%) 3080 (96.3%) 0 156 (80.0%) 72.93 (2.07×) 63.24 1.153 45.71 17.53
CHARM [19], [34] 192 192 (48.0%) – – – 35.19 (1×) – – – –

kernels to the AIE array we wrote a parameterized C++ code
for any values of X,Y, Z by exploiting the ADF graph model.

1) MaxEVA vs. state-of-the-art CHARM for fp32 precision:
From our multiple AIEs optimization of X×Y×Z parameters,
we found that the 10×4×8 solution maximizes the number of
MatMul kernels. In this case, there are 320 MatMul kernels
and 80 cores which run Add kernels, hence, all 400 AIE cores
are utilized. However, this solution was not feasible because
the AIE PnR tool failed due to routing congestion. This is due
to the extra routing needed because of DMA usage (pattern
P1), as well as the 100% utilization of the AIE cores, leaving
no free space for successful routing. Our second top-ranked
solution, i.e., 13×4×6, does not present any routing issues and
is successfully mapped to the AIE array. In Table II we show
this solution (row 1), which achieves a very high throughput of
5442.11 GFLOPs, outperforming the state-of-the-art approach
by 20.8% (CHARM presents 4504.46 GFLOPs).

When further comparing the 13×4×6 MaxEVA solution
to CHARM, we can observe from Table II (row 1) that our
method utilizes the AIE array slightly more (390 vs. 384 AIE
cores). However, we use considerably fewer cores for MatMul
kernels (312 vs. 384), while the remaining (390-312=78) AIE
cores are used to run Add kernels. Also notice that CHARM
has only MatMul kernels. Therefore, our solution is also
able to achieve less AIE core power consumption (25.62
W vs. 26.95 W), because the cores that run the fp32 Add
kernels remain idle most of the time (Table I). However, our
implementation uses more memory banks than CHARM (3138
vs. 3086 out of 3200 available), which leads to higher data
memory power consumption (18.21 W vs. 16.74 W). When
computing the total AIE power as the summation of AIE
core power and data memory power [48], we observe that our
13×4×6 design exhibits slightly higher power than CHARM
(43.83 W vs. 43.69 W). Hence, our highest throughput solution
presents also 20.4% higher energy efficiency compared to
CHARM. We note here that our method of input broadcasting

and output adder tree reduction, utilizes efficiently the avail-
able PLIOs (79% for 13×4×6). On the contrary, CHARM
severely under-utilizes the device’s PLIOs (only 41%), which
acts as a performance bottleneck for their design. Finally, we
observe a very small DMA usage of 18 banks due to the “T”–
like shapes of pattern P1 (see Fig. 7), as expected.

2) MaxEVA vs. state-of-the-art CHARM for int8 precision:
Since int8 CHARM implementation is not open-sourced, we
perform a qualitative comparison of performance. In [34] the
authors report MatMul throughput of 28.15 TOPs for int8
CHARM design, when operating at 1 GHz frequency. To fairly
compare with our results, we scale the aforementioned value
to 1.25 GHz (our frequency), thus becoming 35.19 TOPs. In
contrast, MaxEVA presents int8 maximum throughput of 77.01
TOPs, which is 2.19× higher than CHARM (Table III). To get
more confidence, we do a similar qualitative comparison for
fp32 results. When scaling for fp32, we get a CHARM perfor-
mance of 4342.33 GFLOPs at 1.25GHz. But our experimental
results in Table II show a performance of 4504.46 GFLOPs
for fp32 CHARM implementation. This small performance
difference of 3.73% is expected because the authors in [34]
measure the end-to-end performance on the VCK190. Thus,
they experience sources of performance degradation, including
the required zero padding [34]. However, this small difference
indicates that our experiments are accurate, and also validates
our ∼2.19× performance gain for int8 over CHARM. This
substantial performance gain is because CHARM utilizes only
192 AIE cores (48%) for int8, due to routing congestion issues
[34]. On the contrary, MaxEVA utilizes efficiently the entire
AIE array, by mapping 390 cores (97.5%) for the highest
throughput design (row 1 in Table III). Finally, we note
that due to the absence of open-source code, power for int8
CHARM cannot be calculated through the XPE tool, thus we
are not able to present energy efficiency comparison.

3) Placement Patterns Comparison: To provide a compre-
hensive evaluation of the proposed placement patterns, we
show the two top-ranked solutions for each pattern in Tables



II, III (rows 1–4). Based on the results, in general, we observe
that pattern P2 has higher total AIE core and memory usage
compared to P1, because it uses more Add kernels. However,
higher AIE core usage does not necessarily lead to higher core
power consumption. For instance, pattern P2 10×3×10 design
utilizes the entire AIE array (400 cores, feasible routing for
pattern P2 since no DMA is used), but exhibits lower AIE
core power than P1 13×4×6 design (25.54 W vs. 25.62 W
and 47.44 W vs. 48.65 W for fp32 and int8, respectively). This
is attributed to the fact that P2 has fewer MatMul kernels than
P1 (300 vs. 312), and more cores that run Add kernels which
remain mostly idle (100 vs. 78). However, when also including
the memory power, the total power consumption depends on
the number of memory banks used as well. In particular, when
comparing 10×3×10 with 13×4×6, the former shows slightly
higher total power for fp32 (44.66 W vs. 43.83 W), while for
int8 its power is lower (65.52 W vs. 66.83 W) than the latter.

In general, we observe from Tables II, III that the higher
the number of MatMul kernels, the higher the throughput.
However, this does not always hold true. For instance, for
int8 precision, the 10×3×10 design presents slightly higher
throughput than 11×4×7 (76.08 vs. 75.67 TOPs), despite the
fact that it has fewer MatMul kernels (300 vs. 308). This
very small performance difference (<1%) is due to memory
conflicts (leading to a few stalls), caused by dissimilarities in
buffer optimizations from the AIE PnR tool [47].

To quantify the effect of DMA usage on MatMul per-
formance, we also implement the highest common solution
(same number of MatMul kernels) between our two placement
patterns (Tables II, III, rows 5–6). In particular, when compar-
ing 12×4×6 (P1) with 12×3×8 (P2), which both have 288
MatMul kernels, we notice that throughput is higher in P2 for
both precisions. For instance, for int8, P1 attains 71.25 TOPs,
while P2 achieves 72.93 TOPs. This is attributed to the DMA
resources used in P1, which increase latency compared to
P2, where no DMA is used. However, from Tables II, III we
observe that P2 has higher energy efficiency for int8 (1.153
vs. 1.147 TOPs/W), while for fp32 the opposite occurs (123.58
vs. 123.68 GFLOPs/W). This arises from the fact that cores
running Add kernels remain idle for significantly fewer cycles
for int8 compared to fp32 (Table I). To this end, we observe
a higher percentage difference of total power for fp32 when
comparing the aforementioned P1 and P2 solutions (40.68
W vs. 42.28 W for fp32, and 62.13 W vs. 63.24 W for int8).
We notice that although in most cases P2 and P1 present
higher energy efficiency for int8 and fp32, respectively, this
relationship is complicated and depends on the number of
MatMul kernels, the total cores used, as well as the memory
banks and switch routing (as optimized by the AIE PnR tool).

Overall, throughout all design points, 13×4×6 (P1) ex-
hibits both highest throughput (5442.11 GFLOPs, 20.8% over
CHARM) and energy efficiency (124.16 GFLOPs/W, 20.4%
higher than CHARM), for fp32 precision. However, for int8,
13×4×6 (P1) has the highest throughput (77.01 TOPs, 2.19×
higher than CHARM), while 10×3×10 (P2) exhibits the
greatest energy efficiency (1.161 TOPs/W). Finally, all of our

(a) fp32 (b) int8

Fig. 8: Variation of throughput for different square matrix sizes
for the 13×4×6 design.

optimized designs present very high resource utilization, using
up to 100% AIE cores, 99.8% AIE memory and 82.1% PLIOs.

4) Variation of Performance under Different Matrix Sizes:
We also explore the performance variation when altering the
input matrix sizes (as powers of two) of the highest throughput
design (Fig. 8). The throughput is estimated by supposing that
tiling is performed in PL for large matrix sizes, and also the PL
does not cause any stalls (commonly attained in practice [34]).
As expected, we observe that as the matrix size increases, the
throughput also increases, and for large enough matrices it
converges to its peak value. This is ascribed to zero padding
in matrices such that they fit the native MatMul size of the
13×4×6 design. In particular, the 13×4×6 design is able to
perform a MatMul of 416×128×192 and 416×512×192 size
for fp32 and int8, respectively. To this end, we notice that
for square matrices larger than ∼2K×2K×2K, less padding is
needed throughout tiling, leading to almost peak performance.

Going a step further, we estimate the performance of full
DNN inference, under the same assumptions as above. More
specifically, when considering the MLP used in [19], MaxEVA
achieves a throughput of 4735.94 GFLOPs. In contrast, when
scaling the reported results from [19] to 1.25 GHz, we get
3670.88 GFLOPs, showcasing a higher MaxEVA performance
of 29% over CHARM. Finally, we note that our work can be
extended in straightforward fashion to other special cases of
MatMul, e.g., Matrix-Vector, which we leave as future work.

VI. CONCLUSION

The Versal AIE architecture introduces a new paradigm in
reconfigurable computing, while posing several unique design
challenges. To resolve these new challenges, we propose the
novel MaxEVA framework. MaxEVA successfully maximizes
the efficiency of MatMul on Versal AIE, by effectively lever-
aging the AIE characteristics and addressing performance bot-
tlenecks from various perspectives. Our experimental results
show remarkable performance gains over the state-of-the-art
design of up to 2.19× higher throughput and 20.4% greater
energy efficiency. The MaxEVA framework is generalizable to
any Versal AIE platform and MatMul-based DL workloads.
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