
A Machine Learning-based Approach for Audio
Signals Classification using Chebychev Moments

and Mel-Coefficients
Luca Pallotta, Michael Neri, Martino Buongiorno, Alessandro Neri, and Gaetano Giunta

Department of Industrial, Electronic, and Mechanical Engineering
via Vito Volterra, 62, Roma Tre University

Rome, Italy
e-mail: {luca.pallotta, michael.neri, alessandro.neri, gaetano.giunta}@uniroma3.it, mar.buongiorno1@stud.uniroma3.it

Abstract—This paper proposes a machine learning-based ar-
chitecture for audio signals classification based on a joint ex-
ploitation of the Chebychev moments and the Mel-Frequency
Cepstrum Coefficients. The procedure starts with the compu-
tation of the Mel-spectrogram of the recorded audio signals;
then, Chebychev moments are obtained projecting the Cadence
Frequency Diagram derived from the Mel-spectrogram into the
base of Chebychev moments. These moments are then concate-
nated with the Mel-Frequency Cepstrum Coefficients to form
the final feature vector. By doing so, the architecture exploits the
peculiarities of the discrete Chebychev moments such as their
symmetry characteristics. The effectiveness of the procedure is
assessed on two challenging datasets, UrbanSound8K and ESC-
50.

Index Terms—audio classification, Chebychev moments, ca-
dence velocity diagram, MFCC, machine learning

I. INTRODUCTION

Audio signals recognition consists of extracting relevant
features from a sound recording in order to categorize it into
semantic classes. In the recent years, this topic has attracted
the research community because of the several possible appli-
cations. Audio signals recognition, also called audio pattern
recognition, involves demanding tasks such as audio and music
tagging [1]–[3], emotion classification [4] and audio anomaly
detection and classification systems [5]. The aforementioned
challenges are partially solved by introducing deep learning-
and/or machine learning-based algorithms, exploiting tradi-
tional time-frequency representation as a input. However, the
audio annotation process is time-demanding and prone to error,
leading to a lack of large and high quality-annotated audio
datasets. For this reason, the research community focuses
also on developing new feature sets for training Artificial
Intelligence (AI)-based models (the interested reader could
refer for instance to the following non-exhaustive list of
references [6]–[8]).

In this paper, an architecture based on a machine learning
approach is designed to automatically classify audio signals
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by introducing a new feature set. Specifically, the proposed
framework is based on a construction of a feature vector that
arises from the concatenation of two distinct feature vectors:

• the Chebychev moments [9] which are extracted from the
Cadence Frequency Diagram (CFD) and derived from the
Mel-spectrogram of the recorded audios;

• the Mel-Frequency Cepstrum Coefficients (MFCC).
Even though the MFCC have been widely applied for

audio classification, it worth to underline the benefits that
could be obtained by the use of the Chebychev moments.
These moments have been already used for hand-gesture
classification in images or radar [10], [11], but, to the authors’
best knowledge, they are not yet exploited in audio signals
classification. Chebychev moments, differently from other
image moments [12], are defined on a discrete set, hence,
they can be implemented without performing any approxi-
mation. Moreover, they can be used in real-time applications
thanks to their symmetry property that allows to reduce the
number of moments to derive and, consequently, the overall
computational time. Performances have been assessed in terms
of the average accuracy metric performing a cross-validation
on two challenging and widely investigated datasets, viz.
UrbanSound8K and ESC-50. Results show the effectiveness
of the proposed architecture in comparison with other existing
machine learning approaches.

The paper is organized as follows: the proposed architecture
for audio signals classification is deeply described in Section II
together with details about Chebychev moments. Then, the
effectiveness of the proposed method is assessed on the
two challenging UrbanSound8K and ESC-50 datasets, whose
results are discussed in Section III. Finally, Section IV draws
the conclusions and provides some useful hints for future
developments.

II. AUDIO SIGNALS RECOGNITION ALGORITHM

This section is devoted to the description of the proposed
algorithm for classification of audio signals. In particular, the
developed procedure is based on a machine learning approach,
in which some peculiar features are extracted from the audio
signals after some processing in order to discriminate them.
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In summary, the method extracts two families of features, viz.
Chebychev moments [9] and MFCC, that are then concate-
nated to form the final feature vector that feeds the classifier.
The improvements provided by the use of Chebychev moments
are strictly related to their intrinsic discrete nature that allows
not to perform approximations. Moreover, their symmetric
characteristics, as well as the possibility of a priori storing the
polynomials, allow also to reduce the computation complexity
of entire system.

A. Algorithm Description

The architecture of the proposed machine learning-based
algorithm, described in the present section, is schematically
illustrated in Figure 1.

The starting point of the method is the raw audio signal
acquisition associated with one of possible sound event, and
recorded by means of a classic microphone. This signal
indicated as a[n], n = 0, . . . , N − 1 comprises N samples
depending on the used sampling frequency as well as on
its time duration. Then, the signal is firstly processed to
derive its Mel-spectrogram [13]. This is performed following
some few steps; the signal a[n] is firstly divided into short
overlapped blocks of samples through the use of a smoothing
window function w[·] whose size rules the trade-off between
temporal and frequency resolution, then its Short-Time Fourier
Transform (STFT) is computed as

STFT{a[n]}(k,m) =

N−1∑
n=0

a[n]w[n− k]e−j2πmn/NDFT , (1)

where k = 0, . . . ,K − 1, with K the number of time frames,
whereas m = 0, . . . , NDFT − 1 denotes the frequency bin
index. It is worth to underline that the smoothing window is
applied to each frame that is then Fourier transformed through
a specific number of points representing the spectrogram size
in the frequency variable. If the number of frequency bins to
compute the Discrete Fourier Transform (DFT) is a power of
2, then the efficient Fast Fourier Transform (FFT) algorithm
can be used. At the next step, the modulus of STFT is given
as input to the Mel filter bank, whose output is summed up to
finally form the Mel-spectrogram diagram.

The next step in the proposed pipeline consists in a trans-
formation of the Mel-spectrogram into a new domain referred
to as CFD. In particular, in [14], [15] the Cadence Velocity
Diagram (CVD) is derived to improve the extraction of micro-
Doppler features from the spectrogram of radar signals. In
fact, this transformed domain provides information about the
repetition cycle of each frequency involved in the signal, that
is dubbed cadence frequency. Therefore, following the line of
reasoning of [14], [15], the CFD is computed as an additional
domain to be investigated together with the Mel-spectrogram.
More specifically, it is herein evaluated performing the DFT
(through the efficient FFT algorithm) of the Mel-spectrogram
modulus (in place of the classic spectrogram used in [14], [15])
for each frequency bin. Now, indicating with Ψ the above-
mentioned Mel-spectrogram, the CFD is computed as:

Ξ(ξ,m) =

K−1∑
k=0

|Ψ(k,m)| e−j2πkξ/K , (2)

where ξ is the cadence frequency.
Once the complex-valued CFD is computed, we firstly take

the logarithm of its modulus and we normalized it in interval
[0, 1] to be compliant with the extraction procedure of Cheby-
chev moments. More in detail, the normalized logarithm of the
CFD modulus, say ∆, is projected in the orthogonal basis of
the Chebychev polynomials (more insights about Chebychev
polynomials and moments are provided in Subsection II-B)
through the following operation

Cl,h =
1

ρ̄(l, L)ρ̄(h,H)

NDFT−1∑
x=0

NCVD−1∑
y=0

c̄l(x)c̄h(y)∆(y, x), (3)

where NCVD denotes the number of frequency bins used
to compute the CFD, ρ̄ is a normalized amplitude factor
described in Subsection II-B, and c̄l(·) is the Chebychev
polynomial of order l. It is herein worth to underline that since
the Chebychev polynomials only depend on the polynomial
order (a priori set) as well as on NCVD (this point is better
detailed in Subsection II-B), they can be a priori computed.
This is compliant with real-time applications of the proposed
pipeline.

Finally, the feature vector f1 is constructed with the above
moments as

f1 = [C0,0, C0,1, . . . , Cl,h]
T
. (4)

From inspection of Figure 1 it is also evident that after the
Mel-spectrogram computation, the MFCC are also extracted.
In particular, they are obtained as the amplitudes of the
Discrete Cosine Transform (DCT) of the logarithm of the Mel-
spectrogram. Then, the feature vector f2 is constructed taking
the mean value of each MFCC over time, say MFCC, that is

f2 =
[
MFCC1,MFCC2, . . . ,MFCCNDFT

]T
. (5)

Then, the feature vector f used to train the classifier is
obtained by concatenation of the above mentioned feature
vectors f1 and f2 as

f =
[
fT
1 ,f

T
2

]T
. (6)

Finally, the audio classification is carried out by machine
learning-based classifier such as k-Nearest Neighbour (k-NN)
and Random Forest (RF).

B. Theory of Chebychev Moments

Before starting, it is worth recalling that the moments of
order or degree l + h, Ml,h, of a non-negative real-defined
image of size L×H , f(x, y), are defined as its projection on
the monomials xlyh, by means of the integral [12]:
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Figure 1. Block scheme of the proposed architecture for audio signals classification.

Ml,h =

∫∫
R2

xlyhf(x, y) dx dy. (7)

In general, the monomials {xlyh} used in (7), do not share
the orthogonality condition, hence producing non-orthogonal
moments. However, this drawback is overcame by the Cheby-
chev polynomials described in [9]. More in detail, Chebychev
polynomials of order l describe a set of orthogonal functions
sharing useful characteristics [9] and can be cast in the
following form

cl(x) = (1− L)l 3F2 (−l,−x, 1 + l, ; 1, 1− L; 1) , (8)

where x = 0, 1, 2, . . . , L−1. The term (a)l is the Pochhammer
symbol [16] defined as

(a)l = a(a+ 1) · · · (a+ l − 1) =
Γ(a+ l)

Γ(a)
, (9)

whereas

3F2 (a1, a2, a3; b1, b2; z) =

+∞∑
k=0

(a1)k(a2)k(a3)k
(b1)k(b2)k

zk

k
. (10)

It is now worth noticing that (8) can be also rewritten in a
more simple form as:

cl(x) = l!

l∑
k=0

(−1)l−k

(
L− 1− k

l − k

)(
l + k
l

)(
x
k

)
.

(11)
As already said, Chebychev polynomials share the orthog-

onality condition that reduces to the following expression

L−1∑
x=0

cl(x)ch(x) = ρ(l, L)δl,h, (12)

where 0 ≤ l, h ≤ L−1 and δl,h is the Kronecker delta function
that is equal to 1 when l = h and 0 otherwise, whereas the
term ρ(l, L) is an amplitude factor defined as:

ρ(l, L) = (2l)!

(
L+ l

2l + 1

)
. (13)

Moreover, to ensure the numerical stability for the moments
computation, the scaled Chebychev polynomials are consid-
ered instead, that is:

c̄l(x) =
cl(x)

Ll
. (14)

Hence, the Chebychev moments are obtained projecting the
image f(x, y) of size L×H on the specific polynomials given
in (14):

Cl,h =
1

ρ̄(l, L)ρ̄(h,H)

L−1∑
x=0

H−1∑
y=0

c̄l(x)c̄h(y)f(x, y), (15)

with ρ̄ the normalized amplitude factor defined as:

ρ̄(l, L) =
ρ(l, L)

L2l
. (16)

III. PERFORMANCE ASSESSMENT AND RESULTS

In this section we show the effectiveness of the proposed
architecture based on the joint exploitation of both Cheby-
chev moments and MFCC to automatically distinguish among
different audio sources. Tests are conducted on two publicly
available databases, viz. UrbanSound8K [3] and ESC-50 [2].
In particular, the UrbanSound8K dataset comprises 8732 audio
files of at most 4 seconds of duration and divided into
the following 10 different classes: air conditioner, car horn,
children playing, dog bark, drilling, engine idling, gun shot,
jackhammer, siren and street music. As to the ESC-50 dataset,
it has 2000 short clips recorded at a sampling frequency of
44.1 kHz grouped into 50 classes of various common sound
events: dog, rain, crying baby, door knock, helicopter, rooster,
sea waves, sneezing, mouse click, chainsaw, pig, crackling
fire, clapping, keyboard typing, siren, cow, crickets, breathing,
door, wood creaks, car horn, frog, chirping birds, coughing,
can opening, engine, cat, water drops, footsteps, washing
machine, train, hen, wind, laughing, vacuum cleaner, church
bells, insects, pouring water, brushing teeth, clock alarm,
airplane, sheep, toilet flush, snoring, clock tick, fireworks,
crow, thunderstorm, drinking, glass breaking, hand saw.

Then, to assess the performance of the proposed frame-
work, a 10-fold and 5-fold cross-validation is applied on the



Table I
MEAN CLASSIFICATION ACCURACY (%) FOR EACH FEATURE SET ON THE
URBANSOUND8K DATASET USING THE 10-FOLD CROSS-VALIDATION AND

TWO DIFFERENT CLASSIFIERS, VIZ. K-NN AND RF.

UrbanSound8K [3]
k-NN RF

Baseline [3] 55.00 66.00
MFCC 37.82 50.91
pseudo-Zernike order 20 [17] 38.39 60.05
Chebychev order 10 37.37 63.65
Chebychev order 20 37.70 62.13
Chebychev order 10 + MFCC (ours) 40.40 68.55
Chebychev order 20 + MFCC (ours) 40.10 67.35

UrbanSound8K and on ESC-50 datasets, respectively. As to
classifier, both a k-NN with the parameter k set equal to 11
and a RF with 500 trees are used. The settings of classifiers are
the result of a grid search over a finite set of hyper-parameters.
Results of tests on UrbanSound8K and ESC-50 are reported in
terms of average accuracy in Table I and Table II, respectively,
for the proposed algorithm considering two different values
for the moments order, i.e., 10 and 20. More in detail, let TP
be the number of true positive, FP be the number of false
positive, FN be the number of false negatives, and TN be the
number of true negatives, the average classification accuracy
of the system with Nclass audio classes is defined as follows:

Acc =
TP + TN

TP + FP + TN + FN
. (17)

Since the classifier always outputs an audio class and each
recording contains an event, i.e. TN = FN = 0, Equa-
tion (17) becomes:

Acc =
TP

TP + FP
(18)

Analogously, if the squared Nclass ×Nclass confusion matrix
CF is available, the average accuracy can be evaluated also
as:

Acc =

∑Nclass

i=1 CF (i, i)∑Nclass
i=1

∑Nclass

j=1 CF (i, j)
. (19)

For comparison purposes, the results obtained applying
other feature sets on both UrbanSound8K and ESC-50 clas-
sification are also reported, such as MFCC and Chebychev
moments of order 10 and 20, separately.

To corroborate further the results analyzed in terms of
average accuracy, Figure 2 shows the confusion matrix of
the proposed method with Chebychev order equal to 10 for
the case showing the highest accuracy in the cross-validation
procedure. Specifically, with the k-NN the maximum value for
the accuracy is 49.14%, whereas for the RF it reaches 72.97%.
The figures refer to the tests conducted on UrbanSound8K
with both the k-NN and RF used as classifier. Differently
from the accuracy metric, the confusion matrix allows to better
understand which classes are confused with each other. In fact,
we can observe that more challenging cases are car horn and

Table II
MEAN CLASSIFICATION ACCURACY (%) FOR EACH FEATURE SET ON THE

ESC-50 DATASET USING THE 5-FOLD CROSS-VALIDATION AND TWO
DIFFERENT CLASSIFIERS, VIZ. K-NN AND RF.

ESC-50 [2]
k-NN RF

Baseline [2] 32.20 44.30
MFCC 18.15 31.60
pseudo-Zernike order 20 [17] 17.85 40.50
Chebychev order 10 13.45 45.05
Chebychev order 20 13.80 42.45
Chebychev order 10 + MFCC (ours) 16.85 52.15
Chebychev order 20 + MFCC (ours) 15.00 50.30

siren, whereas the best discrimination is observed in street
music, air conditioner, dog bark, and engine idling.
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Figure 2. Confusion matrix of the proposed method (with Chebychev order
equal to 10) for the 10 classes of the UrbanSound8K dataset. Subplots refer
to the used classifier, i.e., (a) k-NN, and (b) RF.



Additionally, Figure 3 shows the confusion matrix of the
proposed method with Chebychev order equal to 10 for the
case showing the highest accuracy in the cross-validation
procedure. This figure refers to tests conducted on the database
ESC-50 again with both the k-NN and RF classifier. Similarly,
in spite of the very high number of classes (i.e., 50), the effec-
tiveness of the proposed framework can be also appreciated
in terms of its discriminative capabilities. As a matter of fact,
the proposed method allows to reach an accuracy of 20.00%
with the k-NN and 58.00% with the RF.
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Figure 3. Confusion matrix of the proposed method (with Chebychev order
10) for the 50 classes of the ESC-50 dataset. Subplots refer to the used
classifier, i.e., (a) k-NN, and (b) RF.

IV. CONCLUSIONS

In this paper, an architecture based on a machine learning
approach is devised and analyzed with the aim of automati-
cally discriminating different audio signal sources. The pro-
posed framework is based on a concatenation of two different

feature vectors. The former is obtained as the Chebychev
moments extracted from the CFD that is in turn obtained from
the Mel-spectrogram of the incoming audio, and the second
that comprises the well-known MFCC. Hence, the proposed
procedure has a low computational complexity thanks to the
symmetry property of the discrete Chebychev moments as well
as the fast computation of the CFD with the FFT algorithm.
Tests conducted on UrbanSound8K and ESC-50 datasets have
shown interesting results demonstrating the effectiveness of
the proposed pipeline. Finally, the use of Chebychev moments
with deep learning-based features for improving the accuracy
of the system is left as a future research work.
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