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ABSTRACT

Human gaze is a crucial cue used in various applications
such as human-robot interaction and virtual reality. Recently,
convolution neural network (CNN) approaches have made
notable progress in predicting gaze direction. However, esti-
mating gaze in-the-wild is still a challenging problem due to
the uniqueness of eye appearance, lightning conditions, and
the diversity of head pose and gaze directions. In this paper,
we propose a robust CNN-based model for predicting gaze in
unconstrained settings. We propose to regress each gaze an-
gle separately to improve the per-angel prediction accuracy,
which will enhance the overall gaze performance. In addition,
we use two identical losses, one for each angle, to improve
network learning and increase its generalization. We evaluate
our model with two popular datasets collected with uncon-
strained settings. Our proposed model achieves state-of-the-
art accuracy of 3.92◦and 10.41◦on MPIIGaze and Gaze360
datasets, respectively. We make our code open source at
https://github.com/Ahmednull/L2CS-Net.

Index Terms— Appearance-based gaze estimation, Gaze
Analysis, Gaze Tracking, Convolutional Neural Network.

1 Introduction

Eye gaze is one of the essential cues used in a large variety
of applications. It indicates the user’s level of engagement in
human-robot interaction [1,2], and open dialogue systems [3].
Furthermore, it is used in augmented reality [4] to predict
the users’ attention, which improves the device’s awareness
and reduces power consumption. Therefore, researchers de-
veloped multiple methods and techniques for accurately esti-
mating the human gaze. These methods are divided into two
categories: model-based and appearance-based approaches.
Model-based methods generally require dedicated hardware
that makes them difficult to use in an unconstrained environ-
ment. On the other hand, appearance-based methods regress
the human gaze directly from the images captured by inex-
pensive off-the-shelf cameras, making them easy to generate
in different locations with unconstrained settings.
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Recently, CNN-based appearance-based methods are the
most commonly used gaze estimation methods as they pro-
vide better gaze performance [5–8]. Most of the related work
[5–7, 9, 10] focussed on developing novel CNN-based net-
works which mainly consist of popular backbones (e.g. VGG
[11], ResNet-18 [9], ResNet-50 [12]) to extract gaze features
and finally outputs the gaze direction. The input to these net-
works can be a single stream [9, 12](e.g., face or eye images)
or multiple streams [5] (e.g., face and eye images). The most
common loss function used for the gaze estimation task is the
mean square loss or `2 loss. However, Petr et al. [9] proposed
a novel pinball loss that estimates the gaze direction and error
bounds together, which improves the accuracy of gaze esti-
mation, especially in unconstrained settings. Although CNN-
based methods achieve improved gaze accuracy, they lack ro-
bustness and generalization, especially in unconstrained envi-
ronments.

In this paper, we introduce a new method to estimate
3D gaze angles from RGB images using a multi-loss ap-
proach. We propose to regress each gaze angle (yaw, pitch)
independently using two fully-connected layers to enhance
the prediction accuracy of each angle. Furthermore, we use
two separate loss functions for each gaze angle. Each loss
consists of gaze binary classification and regression compo-
nents. Finally, the two losses are backpropagated through
the network, which accurately fine-tunes the network weights
and increases network generalization. We perform gaze bin
classification by utilizing a softmax layer along with cross-
entropy loss so that the network estimates the neighborhood
of the gaze angle in a robust manner. Based on the proposed
loss function and the softmax layer (`2 loss+ cross-entropy
loss+ softmax layer), we present a new network (L2CS-Net)
to predict 3D gaze vector in unconstrained settings. Finally,
we evaluate the robustness of our network on two popular
datasets, MPIIGaze [10] and Gaze360 [9]. The proposed
L2CS-Net achieved state-of-the-art performance on MPI-
IGaze and Gaze360 datasets.

2 Related Work

According to the literature, appearance-based gaze estimation
can be divided into conventional and CNN-based methods.
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Conventional gaze estimation methods use a regression func-
tion to create a person-specific mapping function to the hu-
man gaze, e.g., adaptive linear regression [13] and gaussian
process regression [14]. These methods show reasonable ac-
curacy in constrained setup (e.g., subject-specific and fixed
head pose and illumination), however they significantly de-
crease when tested on unconstrained settings.

Recently, researchers have gained more interest in CNN-
based gaze estimation methods, as they can model a highly
nonlinear mapping function between images and gaze. Zhang
et al. [10] first proposed a simple VGG CNN-based architec-
ture to predict gaze using a single eye image. Also, they de-
signed a spatial weights CNN in [15] to give more weight to
those regions of the face that related to the gaze in appear-
ance. Krafka et al. [16] proposed a multichannel network that
takes eye images, full-face images, and face grid information
as inputs.

Combining statistical models with deep learning is a good
solution for gaze estimation as in [17], which they introduced
a mixed effect model that integrates information from statis-
tics within CNN architecture based on eye images. Chen et al.
[7] adopted dilated convolutions to make use of the high-level
features extracted from images without decreasing spatial res-
olution. In addition, they expanded their work by proposing
GEDDNet [18], which utilizes both gaze decomposition with
dilated convolutions and reported better performance than us-
ing dilated convolutions only. Fischer et al. [11] append the
head pose vector along with features extracted using a VGG
CNN with eye crops to predict gaze angels. Additionally, they
used an ensemble scheme to improve gaze accuracy.

Motivated by the two-eye asymmetry property, Cheng et
al. [19] proposed FAR-Net that estimates 3D gaze angels for
both eyes with an asymmetric approach. They give asymmet-
ric weights to each loss of the two eyes and finally sum these
losses. The proposed model presented a top performance in
multiple public datasets. Wang et al. [20] integrated adver-
sarial learning with the Bayesian approach in one framework,
which demonstrates an increased gaze generalization perfor-
mance. Cheng et al. [6] proposed a coarse-to-fine adaptive
network (CA-Net) that first uses face image to predict primary
gaze angels and adapt it with the residual estimated from eye
crops. Then, they proposed a bi-gram model to bridge the
primary gaze with the eye residual. Kellnhofer et al. [9] used
a temporal model (LSTM) with a sequence of 7 frames to
predict gaze angels. In addition, they adopt pinball loss to
jointly regress the gaze direction and error bounds together to
improve gaze accuracy.

The most recent work with gaze estimation is AGE-Net
[5] which they propose two parallel networks for each eye im-
age, one is used to generate a feature vector using CNN, and
the other is used to generate a weight feature vector using an
attention-based network. The output of the two parallel net-
works is multiplied and then refined with the output of VGG
CNN of the face images.

3 METHOD

3.1 Proposed loss function
Most CNN-based gaze estimation models predict 3D gaze as
the gaze direction angles (yaw, pitch) in spherical coordinates.
Further, they adopt the mean-squared error (`2 loss) for penal-
izing their networks. We propose to use two identical losses
for each gaze angle. Each loss contains a combined cross-
entropy loss and mean-squared error. Instead of directly pre-
dicting continuous gaze angels, we used a softmax layer with
cross-entropy to predict binned gaze classification. Then, we
estimate the expectation of the gaze binned output to fine-
grain the predictions. Finally, we add a mean-squared error to
the output to improve the gaze predictions. Using `2 together
with Softmax can tune the nonlinear softmax layer with im-
mense flexibility.

The cross entropy loss is defined as:

H(y, p) = −
∑
i

yi log pi

And the mean-squared error is defined as:

MSE(y, p) =
1

N

N∑
0

(y − p)2

Our proposed loss for each gaze angle is a linear com-
bination of the mean-squared error and cross-entropy losses,
which is defined as:

CLS(y, p) = H(y, p) + β ·MSE(y, p)

Where CLS is the combined loss, p is the predicted val-
ues, y is the ground-truth values and β is the regression coeffi-
cient. We change the weight of the mean-squared loss during
the experiments in Section 4 to obtain the best gaze perfor-
mance.

To the best of our knowledge, all related works which
estimated gaze using CNN-based methods do not consider
the combined classification and regression loss in their tech-
niques.

3.2 L2CS-Net Architecture
We propose a simple network architecture (L2CS-Net) based
upon the proposed classification and regression losses. It
takes face images as input and feeds them to ResNet-50 as
a backbone to extract spatial gaze features from images. In
contrast to most previous work that regresses the two gaze
angles together in one fully-connected layer, we predict each
angle separately using two fully-connected layers. These two
fully-connected layers share the same convolution layers in



Fig. 1: L2CS-Net with combined classification and regression losses.

the backbone. Also, we use two loss functions, one for each
gaze angle (yaw, pitch). Using this approach will improve
network learning, as it has two signals that backpropagate
through the network.

For each output from the fully-connected layer, we first
use a softmax layer to convert the network output logits into a
probability distribution. Then, a cross-entropy loss is applied
to calculate the bin classification loss between output proba-
bilities and target bin labels. Next, we calculate the expec-
tation of the probability distribution to get fine-grained gaze
predictions. Finally, we calculate the mean square error for
this prediction and add it to the classification loss. The de-
tailed architecture of L2CS-Net is shown in Figure 1.

3.3 Datasets

With the development of appearance-based gaze estimation
methods, large-scale datasets have been proposed to improve
gaze performance. These datasets were collected with differ-
ent procedures, varying from laboratory-constrained settings
to unconstrained indoor and outdoor environments. In order
to get a valuable evaluation of our network, we train and eval-
uate our model using two popular datasets collected with un-
constrained settings: Gaze360 and MPIIGaze.

Gaze360 [9] provides the widest range of 3D gaze annota-
tions with a range of 360 degrees. It contains 238 subjects of
different ages, genders, and ethnicity. Its images are captured
using a Ladybug multi-camera system in different indoor and
outdoor environmental settings like lighting conditions and
backgrounds.

MPIIGaze [15] provides 213.659 images from 15 subjects
captured during their daily routine over several months. Con-
sequently, it contains images with diverse backgrounds, time,
and lighting that make it suitable for unconstrained gaze esti-
mation. It was collected using software that asks the partici-
pants to look at randomly moving dots on their laptops.

4 Experiments

4.1 Data preprocessing
We follow the same procedures in [15] to normalize images
in the two datasets. In summary, this process applies rotation
and translation to the virtual camera to remove the head’s roll
angle and keep the same distance between the virtual camera
and a reference point (the center of the face). Furthermore,
we split up the continuous gaze target in each dataset (pitch
and yaw angles) into bins with binary labels for classifica-
tion based on the range of the gaze annotations. As a result,
both datasets have two different target annotations: continu-
ous and binned labels make them suitable for our combined
regression and classification losses. Furthermore, we change
the regression coefficient in the combined loss function dur-
ing the experiments to obtain the best gaze performance.

4.2 Training and results
We use an ImageNet-pretrained ResNet-50 as the backbone
network. Our proposed network (L2CS-Net) was trained in
PyTorch framework using Adam optimizer with a learning
rate of 0.00001. We train our proposed network for 50 epochs
using a batch size of 16. We evaluate our proposed network on
MPIIGaze and Gaze360 datasets. We change the regression
coefficient during the experiments and compare the output
performance with the state-of-the-art gaze estimation meth-
ods. We utilize gaze angular error (◦) as the evaluation met-
ric following most gaze estimation methods. Assuming the
ground-truth gaze direction is g ε R3 and the predicted gaze
vector is ĝ ε R3 , the gaze angular error (◦) can be computed
as:

Langular =
g · ĝ
‖g‖ ‖ĝ‖



Methods MPIIFaceGaze
iTracker (AlexNet) [16] 5.6◦

MeNets [17] 4.9◦

FullFace (Spatial weights CNN) [15] 4.8◦

Dilated-Net [7] 4.8◦

RT-Gene(1 model) [11] 4.8◦

GEDDNet [18] 4.5◦

RT-Gene(4 ensemble) [11] 4.3◦

Bayesian Approach [20] 4.3◦

FAR-Net [19] 4.3◦

CA-Net [6] 4.1◦

AGE-Net [5] 4.09◦

L2CS-Net (β = 1)
L2CS-Net (β = 2)

3.96◦

3.92◦

Table 1: Comparison of mean angular error between our pro-
posed model and SOTA methods on MPIIGaze dataset

Methods Front 180◦ Front Facing
FullFace 14.99◦ N/A

Dilated-Net 13.73◦ N/A
RT-Gene (4 ensemble) 12.26◦ N/A

CA-Net 12.26◦ N/A
Gaze360 (LSTM) [9] 11.4◦ 11.1◦

L2CS-Net (β = 2)
L2CS-Net (β = 1)

10.54◦

10.41◦
9.13◦

9.02◦

Table 2: Comparison of mean angular error between our pro-
posed model and SOTA methods on Gaze360 dataset

We adapt leave-one-subject-out cross-validation on MPI-
IGaze dataset as used in the related works [5, 6, 15]. In or-
der to obtain the best performance, we train L2CS-Net on the
MPIIGaze dataset with different regression coefficients (β)
of 1 and 2. Table. 1 shows the comparison of mean angular
error between our proposed model and state-of-the-art meth-
ods on MPIIGaze dataset. Our proposed L2CS-Net (β = 1)
achieved state-of-the-art gaze performance with 3.92◦mean
angular error. Furthermore, we present the gaze accuracy of
each subject of the MPIIGaze dataset and compare it with
FARE-Net [19] as they presented the subject-wise gaze accu-
racy. Out of 15 subjects, our proposed method achieves better
gaze accuracy for 11 subjects, as shown in Fig 2.

Kellnhofer et al. [9] divided the Gaze360 dataset into
train-val-test sets and presented three evaluation scopes based
on the range of gaze angles: all 360◦, front 180◦, and front-
facing (within 20◦). We follow the same evaluation criteria
in [9], but only with the front 180◦and front-facing for a fair
comparison with all related methods that are trained and eval-
uated on datasets within 180◦range. We trained L2CS-Net
on Gaze360 dataset with different regression coefficients of 1
and 2. Table. 2 shows the comparison of mean angular error
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Fig. 2: Comparison of subject gaze accuracy between our pro-
posed model and FARE-Net [19] on MPIIGaze dataset.

between our proposed model and State-of-the-art methods
on Gaze360 dataset. We used the results from [21] as they
implement typical gaze estimation methods on the Gaze360
dataset. Our proposed L2CS-Net (β = 1) achieves state-of-
the-art gaze performance with 10.41◦mean angular error on
front 180◦and 9.02◦on front facing.

5 Conclusion

In this paper, we present a robust CNN-based model (L2CS-
Net) for predicting 3D gaze directions in unconstrained envi-
ronments. We propose to predict each gaze angle individually
with two fully-connected layers and a ResNet-50 backbone.
In order to improve the network learning, we used two sepa-
rate loss functions for each gaze angle, each of them is a linear
combination of regression and classification losses. Further,
we use a reliable softmax layer to predict gaze bins. Fur-
thermore, we changed the regression coefficient during the
experiments to obtain the best gaze performance. To show
the robustness of our model, we validate our network using
two of the most unconstrained gaze datasets: MPIIGaze and
Gaze360, and we followed the same evaluation criteria used
in each dataset. Our model achieved state-of-the-art gaze ac-
curacy with the lowest angular error in both datasets.
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