
Resource Allocation in Streaming Environments

Thesis by

0� (Lu Tian)

In Partial Fulfillment of the Requirements

for the Degree of

Master of Science

California Institute of Technology

Pasadena, California

2006

(Submitted 26 May 2006)



ii

© 2006

0� (Lu Tian)

All Rights Reserved



iii

Acknowledgements

First, I would like to thank my advisor, Professor K. Mani Chandy, for giving me tremendous

support and guidance throughout the years of my graduate study. I feel extremely fortunate

and honored to be his student and have the opportunity to work with him. He is not only an

advisor and a friend, but also my role model. I especially want to thank him for the great effort

he puts into helping his students find and achieve their personal goals in life.

I would also like to thank the members of my group—Mr. Agostino Capponi, Mr. Andrey

Khorlin, and Dr. Daniel M. Zimmerman—for their help and collaboration, and their effort in

creating an excellent working environment.

I must also acknowledge my good friends Patrick Hung, Kevin Tang, and Daniel M. Zim-

merman for their great support, help, and friendship throughout the years, especially their

excellent advice and inspiration regarding my thesis work.

Last but not least, I want to thank my family, my mother }B�, my father 0·�, and my

twin sister 0v for always being there for me with remarkable support and understanding.

The research described in this thesis has been supported in part by the National Science

Foundation under ITR grant CCR-0312778, and by the Social and Information Sciences Labora-

tory at the California Institute of Technology.



iv

Abstract

The proliferation of the Internet and sensor networks has fueled the development of applica-

tions that process, analyze, and react to continuous data streams in a near-real-time manner.

Examples of such stream applications include network traffic monitoring, intrusion detection,

financial services, large-scale reconnaissance, and surveillance.

Unlike tasks in traditional scheduling problems, these stream processing applications are

interacting repeating tasks, where iterations of computation are triggered by the arrival of new

inputs. Furthermore, these repeated tasks are elastic in the quality of service, and the economic

value of a computation depends on the time taken to execute it; for example, an arbitrage

opportunity can disappear in seconds. Given limited resources, it is not possible to process all

streams without delay. The more resource available to a computation, the less time it takes

to process the input, and thus the more value it generates. Therefore, efficiently utilizing a

network of limited distributed resources to optimize the net economic value of computations

forms a new paradigm in the well-studied field of resource allocation.

We propose using a new performance model and resource reservation system as the solution

space, and present two scheduling/resource allocation heuristics for processing streams in a

distributed heterogenous computing environment to optimize economic value. Both heuristics

are based on market mechanisms; one uses a centralized market and the other decentralized

markets. We prove bounds on performance and present measurements to show that the perfor-

mances of these two heuristics are near-optimal and significantly better than straightforward

load-balancing heuristics.
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Chapter 1

Introduction

1.1 Motivation

The resource allocation problem is one of the oldest and most thoroughly studied problems

in computer science. It is proven to be NP-complete [11, 13] and therefore computationally in-

tractable. Thus, any practical scheduling algorithm presents a tradeoff between computational

complexity and performance [6, 15]. There have been several good comparisons [3, 10, 23] of

the more commonly used algorithms. The most common formulation of the problem in a dis-

tributed computing environment is: given a set of tasks, each associated with a priority number

and a deadline, and a set of computing resources, assign tasks to resources and schedule their

executions to optimize certain performance metrics. These optimizations include maximizing

the number of tasks that can be processed without timing/deadline violations, minimizing the

makespan (the total completion time of the entire task set), minimizing the aggregate weighted

completion time, and minimizing computing resources needed to accommodate the executions

of a set of tasks to meet their deadlines.

In the last decade, the proliferation of the Internet, the World Wide Web, and sensor networks

has fueled the development of applications that process, analyze, and react to continuous data

streams in a near-real-time manner. Each streaming application consists of a graph of multiple

interacting and repeatedly executed processing units. These processing units perform particu-

lar types of processing on the incoming data streams—annotating or transforming the data in a

stream or merging multiple streams—and publish the generated results as new streams or into

persistent storage. For example, a financial company may have several such stream process-

ing applications running concurrently. There could be an application continuously receiving

and processing stock-tick prices, commodity prices, and foreign-exchange rates to detect ar-

bitrage opportunities. There could be another application receiving stock-tick prices, total

risk exposure and news story feeds, and using some model to monitor business performance

and trigger alerts when the business enters dangerous critical situations. Furthermore, offline
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post-processing on the data streams may be carried out for data mining, pattern discovery, and

model building.

Stream processing applications differ from tasks in the traditional scheduling problem in

the following aspects:

• Each is a repeating task triggered by inputs arriving at a specified rate, or arriving at

random intervals with a known or unspecified probability distribution.

• Instead of having hard deadlines, tasks are elastic in quality of service (QoS), and the

economic value of each computation depends on the time taken to execute it; for example,

the value of delivering a stock tick stream to a user with a 10-second delay is less than

that with a 1-second delay.

• There can be interdependences and communication among stream processing applica-

tions.

Therefore, the conventional models and their solutions are not applicable for the new problem:

• Associating each task with a single deadline is not suitable because the computations

have elastic deadlines.

• Using a priority number to indicate a task’s importance/value is not suitable because

applications have elastic QoS and varying economic values depending on delay.

• The solution space of determining when and on what machine each task is to be executed

is not suitable because the exact time at which each computation can start is not known

a priori.

• The objective is not to minimize the makespan, as in the conventional multiprocessor

scheduling problem, but rather to optimize the net economic value of the computations.

As in most real-time systems, it is critical to find the most efficient way to optimize the

ongoing resource consumption of multiple, distributed, cooperating processing units. To ac-

complish this, the system must handle a variety of data streams, adapt to varying resource

requirements, and scale with various input data rates. The system must also assist and coor-

dinate the communication, the buffering/storage, and the input and output of the processing

units.

In this thesis, we propose a new framework for solving resource allocation problems for

streaming applications.
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1.2 Thesis Structure

The remainder of this thesis is structured as follows:

In Chapter 2, we review the research literature on resource allocation problems in hetero-

geneous computing systems.

Chapters 3, 4, and 5 are devoted to the specific problem we are addressing: resource allo-

cation for streaming applications.

In Chapter 3, we start by defining the computational fabric and streaming applications, then

formulate our problem as an integer optimization problem and prove that it is NP-complete.

We also propose using resource reservation systems as the solution space.

In Chapter 4, we present two market-based heuristics for building such resource reservation

systems.

In Chapter 5, we evaluate the performances of our two market-based heuristics through

computer simulations.

Finally, in Chapter 6, we present a summary of our results and a discussion of their appli-

cability, and conclude with a discussion of future work.
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Chapter 2

Resource Allocation on Heterogeneous
Computing Systems

A computing system is said to be heterogeneous if differences in one or more of the follow-

ing characteristics are sufficient to result in varying execution performance among machines:

processor type, processor speed, mode of execution, memory size, number of processors (for

parallel machines), inter-processor network (for parallel machines), etc.

The study of resource allocation and scheduling has transitioned from single processor sys-

tems to multiprocessor systems, from offline problems to online problems, from independent

tasks to interacting tasks and from one-time tasks to repeated tasks. There is a rich body

of research in this problem domain. Some resource allocation methods employ conventional

computer science approaches, while others apply microeconomic theory and employ market

or auction mechanisms. In this chapter, we review the studies conducted in this area.

2.1 Scheduling Heuristics

As described earlier, the most common formulation of the scheduling problem in a distributed

computing environment is: given a set of tasks, each associated with a priority number and a

deadline, and a set of computing resources, assign tasks to resources and schedule their exe-

cutions to optimize certain performance metrics. There have been several good comparisons

[3, 10, 23] of commonly used algorithms.

2.1.1 Engineering Heuristics

The heuristics presented in this section are for mapping/scheduling a set of tasks onto multiple

processors. The objective of these heuristics is to minimize the makespan of the task set.
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2.1.1.1 Bin-Packing Heuristics

Two bin-packing heuristics—First Fit and Best Fit—can be applied to solve the mapping problem.

In this formulation, tasks are treated as balls and machines are treated as bins.

The First Fit heuristic is also called Opportunistic Load Balancing [4]. This is the simplest

heuristic of all. It randomly chooses a task from the unmapped set of tasks and assigns it to

the next available machine.

The Best Fit heuristic first calculates, for each task, the machine that can execute that task

the fastest. It then assigns each task to its optimal machine.

2.1.1.2 Min-Min and Max-Min Heuristics

Min-Min Given a set of machines {M1 . . .MM}, the Min-Min heuristic starts with a set of un-

mapped tasks and repeats the following steps until the set of unmapped tasks is empty:

1. Let ETij be the execution time of task Ti on machine Mj . For each task Ti, calculate the

minimum execution time (MinETi ) and its choice of machine choicei based on the current

machine availability status:

(a) MinETi = minMj=1 ETij

(b) choicei = argMinETi

2. Assign the task with the smallest MinETi to its choice of machine choicei .

3. Remove this task from the unmapped set and update the availability status of its assigned

machine.

The intuition behind this method is that the Min-Min way of assigning tasks to machines mini-

mizes the changes to machine availability status. Therefore, the percentage of tasks assigned

to their first choice machines is likely to be higher.

Max-Min This heuristic is similar to the Min-Min heuristic. It also starts with a set of un-

mapped tasks and calculates the minimum execution time and choice of machine for each

task. However, instead of assigning the task with the smallest MinETi first, this heuristic as-

signs the task with the largest MinETi to its choice of machine first, then repeats the process of

updating machine availability status and calculating MinETi for each task until the unmapped

set is empty.

The intuition behind this method is that the Max-Min way of assigning tasks to machines

minimizes the penalty incurred by tasks with longer execution times. It is also an attempt to



6

avoid the situation where all shorter tasks execute first, then longer tasks execute while some

machines sit idle.

We can see that Min-Min and Max-Min both have advantages and disadvantages. This in-

spired the development of another heuristic, Duplex, to incorporate the advantages of both

heuristics and avoid their pitfalls. The Duplex heuristic performs both Min-Min and Max-Min

and chooses the better of the two results.

2.1.1.3 Genetic Algorithm and Simulated Annealing

Genetic Algorithm In genetic algorithms [14, 19], each chromosome is a vector that encodes a

particular way of mapping the set of tasks to machines. Each position in this vector represents

a task, and the corresponding entry represents the machine that task is mapped to, e.g., if the

i th chromosome is ci = [0 1 1 2 1 3 0 4 2], ci[3] = 1 means that task T3 is assigned to machine

M1.

Each chromosome has a fitness value, which is the makespan that results from the mapping

that chromosome encodes. The algorithm is as follows:

1. Generate the initial population, e.g., a population of 200 chromosomes following a random

distribution.

2. While no stopping condition is met:

(a) Selection: Probabilistically duplicate some chromosomes and delete others. Chro-

mosomes with good makespan have higher probability of being duplicated, whereas

chromosomes with bad makespan have higher probability of being deleted.

(b) Crossover: Randomly select a pair of chromosomes, then randomly select a region

on those two chromosomes and interchange the machine assignments on the chosen

region.

(c) Mutation: Randomly select a chromosome, then randomly select a task on that chro-

mosome and reassign it to a new machine.

(d) Evaluation: Evaluate the following stopping conditions:

i. The process has reached a certain number of total iterations.

ii. No change in the best chromosome has occurred for a certain number of itera-

tions.

iii. All chromosomes have converged to the same mapping.

3. Output the best solution.
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Simulated Annealing Simulated annealing [9, 18] also uses chromosomes to encode the map-

ping of tasks to machines. However, unlike genetic algorithms, which deal with a population

of chromosomes, simulated annealing only considers one mapping at a time and uses a muta-

tion process on that chromosome to improve its makespan. It introduces the notion of system

temperature to probabilistically allow poorer solutions to be accepted at each iteration. This

is an attempt to avoid being trapped at local optima and to better explore the solution space.

The system temperature decreases with each iteration. The higher the temperature, the more

likely it is that a worse mapping is accepted. Thus, worse mappings are likely to be accepted

at system initiation, but less likely as the system evolves. The procedure is as follows:

1. Generate the initial mapping.

2. While no stopping condition is met:

(a) Mutation: Randomly select a task on the chromosome and reassign it to a new ma-

chine.

(b) Acceptance decision:

i. If the new makespan is better, replace the new mapping with the old one.

ii. Otherwise, probabilistically decide whether to accept the new mapping based on

makespans and system temperature.

(c) Evaluation: Evaluate the following stopping conditions:

i. The system temperature approaches zero.

ii. No change in the makespan has occurred for a certain number of iterations.

3. Output the best solution.

Genetic Simulated Annealing Genetic simulated annealing is a combination of the genetic

algorithm and simulated annealing. It follows a procedure similar to that of the genetic algori-

thm with an annealing ‘flavor’ added: in the process of selection, mutation and crossover, the

new chromosome is compared with the original chromosome and the decision of whether to

accept the new mapping is made using the same probabilistic technique as that in simulated

annealing.
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2.1.2 Scheduling Periodic Tasks

A periodic task is a task that has an assigned period, is executed periodically, and must finish

each execution before the start of the next period. That is, the deadline for the execution at

each period is assigned to be the start of the next period. Periodic tasks are often scheduled

preemptively using a class of algorithms known as priority-driven algorithms [10, 20, 23, 27].

The goal is to schedule a set of tasks such that all the deadlines are met. A task set is said to

be schedulable if there exists a schedule such that all tasks can finish execution before their

corresponding deadlines.

2.1.2.1 Scheduling Periodic Tasks on a Single Processor

Liu and Layland [23] proposed the dynamic priority earliest-deadline-due (EDD) algorithm. The

priorities of tasks are based on their relative deadlines: the closer the deadline, the higher

the priority. As its name implies, EDD schedules the task with the earliest deadline (highest

priority) first. They proved that EDD is optimal among all scheduling algorithms (if a task set

is schedulable, then EDD achieves a feasible schedule).

Another well-known priority-driven algorithm is the rate monotonic (RM) algorithm, also

proposed by Liu and Layland. RM is a fixed-priority algorithm, where the priority for each task

is defined by the fixed number pi = 1/Ti (the inverse of its period). Thus, the longer the period

of the task, the lower priority it has. The task with the highest priority (shortest period) is

scheduled first.

Liu and Layland presented sufficient schedulability conditions for RM: a set of N tasks is

guaranteed to meet their deadlines on a single processor under RM scheduling if system uti-

lization is no greater than N(2
1
N − 1). This lower bound is called the minimum achievable

utilization. It is a conservative but useful test for schedulability.

Due to its low computational requirement, the RM algorithm is one of the most popular

choices for scheduling real-time periodic tasks on a single processor system.

2.1.2.2 Scheduling Periodic Tasks on Multiprocessor Systems

Although real-time tasks are expected to benefit greatly from the aggregated available resources

multiprocessor systems can provide, scheduling these tasks on such systems is non-trivial. The

objective here is to minimize the total number of machines needed to support the execution

of a set of these tasks. There are two schemes for scheduling tasks on multiprocessor systems

[7], global scheduling and partitioning scheduling.
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Tm+1

T1

T2

Tm

o

T1

T2

Tm

...
...

mx mx+1 mx+2
(a) All tasks can be scheduled on m processors if Tm+1 has one proces-
sor.

Tm+1

T1

T2

Tm

o

T1

T2

...
...

mx mx+1

Tm

mx+2
(b) Tm+1 misses its deadline with RM using m processors.

Figure 2.1: An example showing poor RM scheduling performance

Global Scheduling In this scheme, all tasks are stored on a centralized server and the global

scheduler selects the next task to be executed on a chosen processor. The task can be pre-

empted and resumed on a different processor. One of the most commonly used algorithms

for the global scheduling approach is the RM algorithm. However, Dhall and Liu [22] showed

that this method can result in arbitrarily low utilization if the task set contains m tasks with

compute time Ci = 1 and period Ti = 2mx and one task with compute time Cm+1 = 2mx + 1

and period Tm+1 = 2mx + 1. The optimal solution is to schedule Tm+1 by itself on a machine,

T1 and Tm on one machine, and T2 . . . Tm−1 each on a separate machine, as shown in Figure

2.1(a). However, the RM algorithm schedules the m easy tasks first because they have higher

priority, and then the one hard task last (easy tasks are those with shorter periods, hard tasks

are those with longer periods). As shown in Figure 2.1(b), RM requires at leastm+1 processors

for the task set. Total utilization of this set of tasks is

U =
m∑
i=1

Ci
Ti
+ Cm+1

Tm+1

=m 1
2mx

+ 2mx + 1
2mx + 1

= 1
2x

+ 1.
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As x → ∞, the utilization becomes arbitrarily low. Furthermore, admission control is needed

to guarantee that the tasks form a schedulable set.

Partitioning Scheduling In this scheme, the problem becomes twofold:

1. Partition the set of tasks and assign the subsets to machines.

2. Schedule task executions on each machine (e.g., using the RM algorithm).

The first step, finding the optimal task assignment to machines, is equivalent to the bin-packing

problem, which is proven to be NP-hard [21]. People have applied bin-packing heuristics such

as First Fit and Next Fit to this problem, where the tasks are treated as balls and the machines

are treated as bins. The decision of whether a bin is full is made based on the schedulability

condition discussed previously. Rate Monotonic Next Fit (RMNF) and Rate Monotonic First Fit

(RMFF) heuristics use Next Fit and First Fit heuristics for assigning the tasks to processors, and

the RM heuristic for scheduling task executions on each machine. Both of them order tasks

based on the lengths of their periods. RMNF assigns new tasks to the current processor until

it is full (schedulability is violated), then moves on to a new processor. RMFF tries to assign a

new task to a processor that is marked as full before assigning it to the current processor. A

variation of RMFF is the First Fit Decreasing Utility (FFDU) method. In this method, instead of

being sorted according to period, tasks are sorted according to utility, which is defined as the

ratio between execution time and period. This ratio is also called the load factor of a task.

As mentioned earlier, the goal of these algorithms is to minimize the number of processors

needed to accommodate the executions of all the tasks. To evaluate the performances of these

methods, a worst case upper bound (ratio between the number of machines needed in the worst

case and the optimal solution) is used. In summary, RMNF achieves a worst case upper bound

of 2.67, RMFF achieves a worst case upper bound of 2.33, and FFDU achieves a worst case upper

bound of 2.0.

2.2 State-of-the-Art Resource Management Systems

2.2.1 Spawn

Spawn [29] is an auction-based computational system that achieves two goals: (1) harness

idle computational cycles from a distributed network of heterogeneous workstations, and (2)

allocate idle resources to applications. It uses linear monetary funding as an abstraction for

priority: the more funding, the higher priority. It employs a second-price auction market for

allocating resources as follows:
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1. Each task bids for the next available slot on the machine where it can finish earliest.

2. Each machine chooses from the available bids to maximize its revenue, awarding exclusive

usage during the next timeslot to the highest bidding task while charging the second

highest price.

3. The auction is not committed until the last possible moment.

This system emphasizes economic fairness over economic efficiency. A fair resource distribu-

tion is one in which each application is able to obtain a share of system resources proportional

to its share of the total system funding. An efficient resource distribution maximizes aggregate

utility (social welfare). Spawn uses a second-price auction. Thus, at any given time, there is only

one auction open on each machine: bidding for the next available timeslot. This is a simple

scheme, but it is not combinatorial, i.e., each winning task, whose execution may span multi-

ple timeslots, is guaranteed the next available timeslot but is not guaranteed future timeslots.

Therefore, a situation can occur where a task needs K timeslots to execute, but is only able to

get k < K of them before exhausting its funds. This is a major disadvantage of the second-

price single-item auction compared to combinatorial auctions. Furthermore, a winning task has

exclusive use of the machine during its timeslot; situations can occur where less demanding

tasks do not use their entire reservations, causing low utilization.

2.2.2 MSHN

MSHN (Management System for Heterogeneous Networks) [4] is a collaborative project funded

by DARPA. Its main goal is to determine the best way to support executions of many different

applications in a distributed heterogeneous environment. The system uses a conventional

computer science approach: it employs a centralized scheduler and uses heuristics to solve

the online scheduling problem.

MSHN uses a performance metric that takes deadline, priority, and versioning into account.

Performance is measured as the weighted sum of completion times, where weights are the

priority numbers assigned to the tasks. Formally, performance is
∑
(DikPiRik), where Dik is 1

if task i is mapped to machine k and 0 otherwise, Pi ∈ {1,4,8,16} is a priority assigned by the

centralized scheduler, and Rik is the time required to execute task i on machine k (entry (i, k)

in the expected time to completion matrix).

This is a better measure of performance than the conventional optimization objective of

minimizing completion time for the last (or an average) task. However, the three factors (dead-

line, priority and versioning) do not fully characterize how the cost of delaying the execution

of a task varies with delay. In addition, the MSHN solution is centralized and may not scale
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well enough for large systems. Finally, similar to other existing approaches, MSHN assumes

that the exact time required to execute each task on each machine is known. In a streaming

environment, where the arrival time of each new input is usually not known precisely a priori,

this approach may not work well.

2.2.3 Tycoon

Tycoon [12] is a proportional share abstraction-based resource allocation system using an eco-

nomic market-based approach, developed at HP Labs. Task owners choose computers to run

their tasks and bid for resources on the chosen machines. Each bid is of the form {Bi, Ti},
where Bi is the total amount the task owner is willing to pay and Ti is the time interval she

is bidding for. Machines make scheduling decisions by calculating a threshold price, Bk/Tk,

for each timeframe (e.g., 10 s) based on the collected bids. Any task with a bid above the

threshold price gets a share of the machine resources proportional to the relative amount of

its bid, ri = (Bi/Ti)/(Bk/Tk), and pays the machine based on its actual usage of the allocated

resources, paymenti = min(qi/rq,1)(Bi/Ti).

One drawback of this scheme is that, since payment is based on actual usage, a task’s best

strategy is to bid high on all machines to guarantee a share and ensure quick execution. This

results in the following two problems:

1. Tasks bid high, get large amounts of resource allocated without fully utilizing it, and pay

a small amount based on actual usage; this prevents other tasks from getting reasonable

shares on the machine.

2. Tasks bid high and win on all machines, and continually switch to the machine requiring

the lowest payment; this results in oscillation in the system.

Furthermore, the system works in an online environment, so the amount of resource allocated

to each task changes dynamically depending on the other tasks’ utilization of the machine

resources and their bid amounts. Thus, there is no guarantee with respect to the resources

available for the tasks running on each machine. To guarantee a given level of performance, a

task must constantly monitor resource availability and change its bid accordingly.
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2.2.4 Summary

This concludes our review of existing literature on the resource allocation problem. To the

best of our knowledge, people have only studied this problem for traditional tasks, one-time

or repeated, each characterized by a priority number and a deadline. No one has examined

the resource allocation problem where tasks have elastic deadlines and the value of each task

changes with the delay incurred in finishing the execution. In the following chapters, we focus

on the resource allocation problem for this new class of tasks.
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Chapter 3

Problem Formulation

There are several research projects studying various aspects of stream processing, e.g., STREAM

[5], Borealis [1], SMILE [16], and GATES [8]. However, their approaches for resource management

are fundamentally different from the one presented here. For example, Borealis focuses on

load-balancing: minimizing end-to-end latency by minimizing load variance.

In this chapter, we first describe the components of the problem domain: the computational

fabric and streaming applications. Then, we formally describe our problem as an optimization

problem and propose using resource reservation systems as the solution space. Finally, we

provide a formal proof of the NP-completeness of the problem.

3.1 Computational Fabric

The computational fabric for stream processing is represented by a graph, where the nodes

represent processors and the edges represent communication channels. Associated with each

node and each edge is a set of parameters. The parameters of a node include the amount

of memory, floating-point and fixed-point speeds, etc. The parameters of an edge include

bandwidth and latency.

3.2 Streaming Application

Each streaming application can be represented as having three components:

1. One or more input flows.

2. A graph of interacting processing units.

3. One output flow.
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Figure 3.1: Two streaming applications

The interacting tasks are represented by a computation directed acyclic graph (DAG). The ver-

tices of the graph represent tasks, and a directed edge represents flow of information from

one task to another. We allow communication among applications, which means the output

from one computation could be an input to another computation. Figure 3.1 shows a pair

of interacting streaming applications. We model streaming applications using the following

parameters:

1. A persistence interval [Tstarti ,Tendi ], where Tstarti is the time instant when the application

starts receiving inputs and become active and Tendi is the time instant when it stops

receiving inputs and becomes inactive.

2. A utility function U(r), which maps an amount of resource r to the value realized by

processing the inputs with that guaranteed amount of resource.

For theoretical foundations about utility functions, refer to Mas-Colell, Whinston and Green

[24]. In most cases, U(r) is a concave nondecreasing function with parameters that depend on

the application. Figure 3.2 shows the utility functions of three streaming applications.

3.3 Proposed Solution Space: Resource Reservation Systems

The more resource available to a streaming application, the quicker it can process its inputs,

and thus the more utility it generates. Our objective is to allocate limited distributed resources

to a set of streaming applications such that the total utility realized by all the applications is

maximized.
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If we assume that each processing unit can be split and hosted on multiple machines, then

the problem becomes the following continuous convex optimization problem, which is easily

solved using standard optimization techniques:

max
∑N
i=1Ui(ri)

subject to ri ≥ 0,∑N
i=1 ri ≤

∑
Cj .

However, computations on these streams often have substantial state; for example, a compu-

tation in a trading application maintains the state of the trade. Some operations on streams

cannot be moved from one computer to another without also moving the states associated

with the operations, so pinning operations to computers in a grid is an important step in the

scheduling process. This turns the optimization problem into the following non-convex integer

programming problem, which is NP-complete:

max
∑N
i=1Ui(ri)

subject to
∑N
i=1 rixij ≤ Cj for all j ∈ M

ri ≥ 0 for all i ∈ N

xij ∈ {0,1} for all i ∈ N, j ∈ M.
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We propose using a resource reservation system to solve the problem in two steps:

1. Assign each processing unit Ti to one machine Mj .

2. Reserve a certain amount of Mj ’s resource rij for Ti’s execution during its existence in-

terval.

Figures 3.3 and 3.4 show a system view and a per-machine view of this solution space. Each

resource reservation is of the form (ri, xijt , [Tstarti ,Tendi ]), where

• ri denotes the amount of resource that is reserved for streaming application i;

• xijt ∈ {0,1} indicates whether stream i is assigned to machine j during time t;

• [Tstarti ,Tendi ] is the time interval during which streaming application i persists (requiring

computing resources) in the system.
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Figure 3.5: Example of a mapping problem and a possible solution

Now we take a step back to see how to solve the overall mapping and scheduling problem:

1. Map streaming applications to machines.

(a) Assign each streaming application to a machine.

(b) Reserve a certain amount of that machine’s resource for that streaming application.

2. Locally schedule the executions of the streaming applications assigned to each machine.

Figure 3.5(a) is our original pair of streaming applications, and Figure 3.5(b) shows a possible

mapping for this problem. Tasks T1 and T2 are mapped to machine M1, and they each get

a certain percentage of M1’s resource reserved for their computations; Task T3 is mapped to

machine M3, and gets 100% of M3’s resource; Tasks T4 and T5 are mapped to machine M2,

and each gets a certain percentage ofM2’s resource. Each machine has one queue for each task

located on it, to receive that task’s inputs. At runtime, the machines make scheduling decisions

about these queues based on several parameters, one of which could be the reservation amount

for the corresponding task. The runtime scheduling step is described by Khorlin [17] in great

detail.

Our focus is on the first step: mapping tasks to machines and making one reservation

for each streaming application. We investigate a simpler version of the problem, where each

streaming application consists of a single processing unit instead of a graph of interacting

processing units and all streaming applications have the same existence interval. We propose

the following problem formulation:

Let there beN streaming applications, each with a concave utility function Ui(ri), i ∈ [1, N],
andM machines, each with resource capacity Cj , j ∈ [1,M]. In our system, we assume that ma-

chine capacities are large relative to an individual streaming application’s resource requirement.
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The objective is to determine the allocation of resources, ri (the amount of resource assigned to

stream i during i’s existence interval) and xij (a zero or one value indicating whether machine

j’s resource is allocated to stream i), that maximizes the total utility:

max
∑N
i=1Ui(ri)

subject to
∑N
i=1 rixij ≤ Cj for all j ∈ M

ri ≥ 0 for all i ∈ N

xij ∈ {0,1} for all i ∈ N, j ∈ M.

3.4 Hardness Proof

We can prove the NP-completeness of our problem by reduction from the Multiple Knapsack

Problem (MKP). The MKP involves a set of M bins with capacities C1 . . . CM and a set of N

items with weights w1 . . .wN and values v1 . . . vN . The objective is to find a feasible set of bin

assignments xij = {0,1} (xij = 1 if item i is assigned to bin j) that maximizes the sum of

values of the items assigned to the bins. That is,

max
∑N
i=1
∑M
j=1 vixij

subject to
∑N
i=1wixij ≤ Cj for all j ∈ M

xij ∈ {0,1} for all i ∈ N, j ∈ M∑M
j=1 xij ≤ 1 for all i ∈ N.

Theorem 1 Our formulation of the resource allocation problem is NP-complete.

Proof Given any instance of the MKP {Cj , j ∈ [1,M] and (wi, vi), i ∈ [1, N]}, we can construct

an instance of our problem as follows: Let there beM machines with capacities C1 . . . CM and N

tasks, all with the same existence interval [t0, tk] and each with a constant utility function if the

resource assigned to it has value at least wi, i.e., Ui(
∑M
j=1 rjxij) = vi for ri ≥ wi. Thus, the M

machines correspond to theM bins, and the N tasks correspond to the N items. For each task,

the resource threshold value ri ≥ wi corresponds to the weight of the item, and the constant

utility Ui(
∑M
j=1 rjxij) = vi corresponds to the value of the item. By assuming that all streaming

applications have the same existence interval, we eliminate the time dimension, so xijt is the

same across t and corresponds to the xij in the MKP indicating whether or not item/task i is
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assigned to bin/machine j. Under this setup, an optimal solution to our problem must assign

at most ri = wi resource to streaming application i. Thus, the optimization problem can be

formulated as follows:

max
∑N
i=1
∑M
j=1 vixij

subject to
∑N
i=1wixij ≤ Cj for all j ∈ M

xij ∈ {0,1} for all i ∈ N, j ∈ M∑M
j=1 xij ≤ 1 for all i ∈ N.

We can therefore convert any instance of the MKP to an instance of our problem. If we can solve

any instance of our problem in polynomial time, then we can solve any instance of the MKP in

polynomial time. Since the MKP is known to be NP-complete, our problem is also NP-complete.

2
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Chapter 4

Market-Based Heuristics

In this chapter, we present two heuristics for building the resource reservation systems using

the competitive market concept from microeconomics. Both heuristics need to determine the

best allocation of a machine’s resource to streams, which is equivalent to solving the following

optimization problem:

max
∑N
i=1Ui(ri)

subject to
∑N
i=1 rixi ≤

∑M
j=1 Cj

ri ≥ 0 for all i ∈ N

xi ∈ {0,1} for all i ∈ N, j ∈ M, t ∈ T .

This is equivalent to:

min −
∑N
i=1Ui(ri)

subject to
∑N
i=1 rixi ≤

∑M
j=1 Cj

ri ≥ 0 for all i ∈ N;

xi ∈ {0,1} for all i ∈ N, j ∈ M, t ∈ T .

Since the objective function
∑N
i=1Ui(ri) is concave and the constraints are linear, the problem

is a convex optimization problem and can be solved using convex optimization techniques.

To avoid requiring each consumer to reveal its utility function to a centralized solver, we

design a distributed method to solve the problem by using the market mechanism to solve

its dual—the pricing problem. The pricing problem can be formulated as follows: There is a

single market for resource with one supplier (the machine) and N consumers (the streaming

applications). The supplier has an inelastic supply function S = capacity . Each consumer has

a continuous concave utility function Ui(r) = bi r
1−ai

1−ai .
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Figure 4.1: Demand, supply and optimal allocations

The supplier and the consumers interact with each other and participate in the price-

adjustment process of the market:

1. The market sets an initial price.

2. While supply is not equal to total demand:

(a) Each consumer reacts to price and adjusts its optimal consumption level by equating

its marginal utility and the current market price; that is, it sets U ′i(r) = r−ai = price.

(b) The supplier reacts to demand and updates the market price according to the excess

demand.

The equilibrium price p∗ is the price at which the total demand is equal to supply. At this

equilibrium price each consumer has a corresponding demand r∗i , which forms the solution to

the resource allocation optimization problem.

Figure 4.1 shows the demand-supply curves when there are two consumers in the market.

The intersection of the total demand curve and the supply corresponds to the market equilib-

rium price. The demands of the consumers at that price, r∗1 and r∗2 , are the optimal solution

to the resource allocation problem.
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According to general equilibrium theory in microeconomics, there exists a unique equilib-

rium price for this convex optimization problem at which the market clears (total demand

equals total supply) and achieves maximum social welfare (max
∑N
i=1Ui(ri)). The convergence

property of the algorithm is also guaranteed [24].

The price update process (Figure 4.2) uses an interpolation method instead of the con-

ventional step-size-based price adjustment. The interpolation method updates prices in two

phases. In the first phase, it finds lower and upper bounds on the optimal price; the lower

bound is a price when excess demand is greater than zero, and the upper bound is a price

when excess demand is less than zero. When the bounds are found, it enters the second phase,

where the new price is calculated by interpolating from the current price bounds. Experimen-

tal results show that this method results in a substantial performance improvement and cuts

the number of iterations in the price adjustment process from thousands to fewer than one

hundred.
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update_price(excessDemand)
{

/* find lower and upper prices to bound the optimal price */
if (!(upperBoundFound && lowerBoundFound))
{

if (excessDemand > 0)
pt+1 = 2pt;

if (excessDemand < 0)
pt+1 = pt/2;

}
else

/* update the price using interpolation */
pt+1 = lowerPrice +

(lowerDemand−supply)(upperPrice−lowerPrice)
(lowerDemand−upperDemand) ;

}

(a) the price update algorithm

upper_p

lower_p

lower_dupper_d

pt+1

Supply

Quantity

Pr
ice

Demand Curve

(b) pictorial description of the price update algorithm

Figure 4.2: The interpolation method for updating the market price
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4.1 Single Market Resource Reservation System

The first resource reservation system we present is a three step process:

1. Use a single market to determine the optimal allocation of the total system resource to

each of the streams.

2. Use a variation of the First Fit Decreasing Utility heuristic to assign tasks to machines

according to the optimal allocation.

3. Locally optimize the resource allocation to streams assigned to each machine.

Figure 4.3 illustrates how the system works. There are three roles in the system:

1. One controller for the entire system.

2. One machine agent for each machine.

3. One stream agent for each streaming application.
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Figure 4.3: System view of the single-market method



26

4.1.1 Algorithm

The algorithm has the following three steps:

1. controller : Assuming a virtual machine Mv with capacity equal to the sum of the capaci-

ties of the machines in the system
∑
Ci, use the local optimization algorithm to solve for

the optimal allocation r1 . . . rn.

2. controller : Assign streaming applications to machines according to the best-fit-decrea-

sing-value heuristic, where the size of each item is ri and the value is U(ri) (details are

presented below).

3. each machine agent : Use the local optimization algorithm to determine the best alloca-

tion of each machine’s resource to streaming applications.

best-fit-decreasing-value In this step, streaming applications are assigned to machines based

on the optimal allocation found in the previous step. The heuristic we use is a modified version

of the best-fit-decreasing-value heuristic commonly used in the bin-packing problem. Given

the allocation R = (r∗1 . . . r∗N ) and the corresponding utilities U = (U1(r1) . . . UN(rN)), do the

following:

1. Sort the tasks in decreasing order of utility.

2. Apply the best-fit-decreasing-value heuristic to assign these sorted tasks to machines.

(a) If the next task Tk can be assigned to a machine according to its optimal allocation

r∗k , do so.

(b) Otherwise, if Tk can not be assigned to any machine according to the optimal alloca-

tion (∀j : r∗k ≥ remaining_Cj), put it in the set {RT}.

3. Assign the tasks in the set {RT} to machines using the best-fit-decreasing-value heuris-

tic, regardless of the fact that the sizes of streaming applications are greater than the

remaining capacities on the machines.

4.1.2 Lower Bound Analysis

We prove that, in the worst case, the solution found by our heuristic is a 2-approximation.

Theorem 2 Let U=
∑
Ui(ri) be the total utility achieved by our solution and Uopt be the total

utility achieved by the optimal allocation; then U ≥ 1
2Uopt .
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Proof Recall that our heuristic has three main steps: (1) run the local optimization algorithm

on the virtual machine; (2) assign tasks to machines according to the resulting ri; and (3) run

the local optimization algorithm on each machine. The first step solves the underlying convex

optimization problem exactly and finds the optimal allocation of resources to tasks assuming

all machine resources are gathered into one virtual machine. Thus the total utility achieved on

the first step, U , serves as an upper bound on the optimal solution: U ≥ Uopt . If we can show

that U ≥ 1
2U , the proof is complete.

There are two substeps in the second step: (2a) assign tasks to machines according to r∗i
with the constraint r∗i ≤ remaining_Cj ; and (2b) assign remaining tasks to machines according

to r∗i without the constraint r∗i ≤ remaining_Cj . We now prove that, after (2a), the sum of

utilities of the assigned tasks is at least 1
2U .

Recall that each task has a value Ui(r∗i ) and a size r∗i . (2a) first arranges tasks in decreas-

ing order of value Ui(r∗i ), then assigns the largest-valued task to a machine unless it doesn’t

fit within the remaining capacity of any machine. Let W1 . . .Wj be the wasted space on the

machines after (2a). Let LT be the set of leftover tasks that can’t be assigned to a machine

according to their sizes r∗i . Then

W =
∑
Wj =

∑
i∈{LT}

ri.

We assumed that machine capacities were much larger than any individual task’s resource

requirement, thus

max r∗i < minCj .

When no remaining task can be assigned to any machine, we have:

maxWj < min r∗k

Wj < rk
W
M
<

W
| LT |

| LT | < M
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In the worst case, those M tasks are the ones with the (M + 1)st, (M + 2)nd, …, (2M)th

highest values, and the sum of their values is less than or equal to the combined value of tasks

1 . . .M :

2M∑
i=M+1

Ui(r∗i ) ≤
M∑
i=1

Ui(r∗i )

2M∑
i=M+1

Ui(r∗i ) ≤
1
2
U.

Therefore, after (2a), the total utility realized by the tasks assigned to the machines is more

than half of the optimal. It is apparent that the remaining steps never decrease the total utility:

step (2b) adds remaining tasks to machines, and step (3) does a local optimization on each

machine to re-balance the resource allocations to the tasks on that machine and maximize the

total utilities. That is, if the original allocation (r∗i to tasks assigned during (2a), and 0 to tasks

assigned during (2b)) is optimal, then it is kept, otherwise the reallocation achieves higher total

utility. Therefore, the total utility achieved by our heuristic is at least half of the optimal. 2

From the proof, it is apparent that the 1
2 lower bound is not tight. This conjecture is con-

firmed by experiment and simulation, as described in Chapter 5.

4.2 Multiple Market Resource Reservation System

The second resource reservation system we present models the system as multiple markets,

one for each machine resource. This is analogous to the concept of multiple markets for sub-

stitutable goods in microeconomics theory. Consumers/streaming applications can choose to

purchase goods/resources from different markets based on the price information available to

them. Under the assumption that streaming applications can’t split (each has to be pinned to

one machine), the necessary condition for this M-commodity market to reach equilibrium is

that the N streaming applications can be partitioned into M subsets, such that:

1. U ′i(xia) = U ′j(xjb), for all i, j ∈ [1, N]

2. Pricea = Priceb , for all a,b ∈ [1,M]

3.
∑N
i=1 xia = Ca, for all a ∈ [1,M]

Under this formulation, market equilibrium is not guaranteed to exist. Furthermore, even if

an equilibrium exists, the same lock-step algorithm used in the single-market heuristic doesn’t

converge to the equilibrium; instead, the system oscillates with applications repeatedly switch-

ing to lower priced machines. We therefore design a method to eliminate the oscillation.



29

M1

M2 M3

pairwise comparison
stream movement

pairwise comparison
stream movement

pairwise comparison
stream movement

s1

s2

s3 s4

local optimization

local optimizationlocal optimization

Figure 4.4: System view of the multiple-market method

Initially, each streaming application is assigned to one market (randomly or based on loca-

tion). When all markets reach equilibrium, streaming applications from higher priced machines

have incentives to move to lower priced machines. We enforce restrictions on when a stream-

ing application may move from one machine to another: a move is allowed if and only if it

increases the sum of the total utilities of the source and destination machines (their pair-total

utility). Each step of this process involves a pair of machines attempting to move one streaming

application from one to the other and comparing the pair-total utilities before and after this

attempt. This is an iterative monotonic process that increases (or leaves constant) the total

utility at each step and terminates when no streaming applications can be moved from one ma-

chine to another to increase the pair-total utility. Figure 4.4 illustrates how the system works.

There are two roles in the system:

1. One machine agent for each machine.

2. One stream agent for each streaming application.

The algorithm is as follows:

1. Initialization: each streaming application is randomly assigned to a machine (e.g., based

on geographical location).
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2. While there is at least one pair of streams in the system whose locations can be swapped

to increase the total utility:

(a) Each machine agent runs the local optimization algorithm to find the equilibrium

price p∗j .

(b) machine agents communicate in pairwise fashion to move streams from one to an-

other if the moves increase their pair-total utilities.

4.3 Summary

In this chapter, we have described two market-based heuristics for building resource reserva-

tion systems.

The single-market heuristic uses a single market to determine the optimal allocation of

total resources to each streaming application, and then uses engineering heuristic NFDV to

assign streaming applications to each machine based on the optimal allocation. It has provably

polynomial running time and a 1
2 lower bound on performance. We conjecture that this lower

bound is loose (i.e., the real performance is much better than this lower bound).

However, although most of the computation in the single-market heuristic is done by the

individual stream agents and machine agents, all the price and demand information needs to be

exchanged between the centralized controller and the agents. Therefore, the communications

overhead is large and the system does not scale well.

The scaling issue motivated the development of the multiple-market heuristic. In this heuris-

tic, the system is modeled as multiple markets, one for each machine. In addition to running

the price adjustment algorithm to find the optimal resource allocation for each individual ma-

chine, machines are allowed to exchange streaming applications to increase the total utility.

The multiple-market heuristic is completely decentralized and scales well to large numbers of

machines and streams; however, there is no theoretical complexity bound on its performance.

In the next chapter, we will use simulations to study the performances of these two methods.
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Chapter 5

Simulations

We evaluate the performances of the two heuristics developed in Chapter 4 through simulation.

In the experiments, we assume that all streaming applications have utility functions of the form

Ui(ri) = bi r
(1−ai)
i
(1−ai) , ai ∈ (0,1), bi ∈ (0,∞). We choose this particular class of functions because

it captures/approximates many concave functions that are typically used as utility functions

[25]. To evaluate performance, we compare the total utility achieved by our heuristics with two

metrics:

1. Upper bound U: the maximum total utility achieved assuming streams can split.

2. Base bound U: the total utility achieved by the naïve balanced-streams heuristic, which

assigns streams to balance the number of streams per machine.

In most of the figures below, we compare the performances of our heuristics and the

balanced-streams heuristic by plotting the normalized performance gap (NPG) for each. The

NPG for a heuristic is calculated as U−U
U , where U is the total utility achieved by the heuristic

andU is the performance upper bound. Thus, the NPG is a number between 0 and 1; the smaller

the NPG, the better the performance.

5.1 A Motivating Example

The balanced-streams heuristic has a randomness factor in its performance. That is, for N

streaming applications and M machines, it has MN possible assignments, each occurring with

equal probability but resulting in different performance. We first use a motivating example to

show that, in some cases, the naïve approach achieves arbitrarily bad performance where our

heuristics each achieve near-optimal performance.

Suppose there are two machines, each with unit capacity C1 = C2 = 1, and four streaming

applications T1 . . . T4, each with utility function Ui(ri) = bi r
(1−ai)
i
(1−ai) , where a1 = a2 = 0.1, b1 =
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Figure 5.1: Utility functions for T1 . . . T4

b2 = 1, a3 = a4 = 0.9, and b3 = b4 = 0.01. Thus U1(r1) = U2(r2) = r0.9

0.9 and U3(r3) = U4(r4) =
0.01 r

0.1

0.1 as shown in Figure 5.1.

The balanced-streams heuristic has six possible assignments with equal probabilities. It

has 1
3 probability of assigning T1 and T2 to the same machine, which results in allocations

of r1 = r2 = r3 = r4 = 0.5 and total utility of U = 0.5953 + 0.5953 + 0.0933 + 0.0933 =
1.3772 = 0.59Uopt . Our market-based heuristics always assign T1 and T2 to different machines,

resulting in allocations of r1 = r2 = 0.994 and r3 = r4 = 0.006 and total utility of U =
1.105+1.105+0.06+0.06 = 2.33 = Uopt . Thus, the total utility achieved by the naïve balanced-

streams heuristic is only 1.3772
2.33 = 59% of that achieved by our market-based heuristics for this

example setup.

Next, we compare the metrics under two distributions: a heavy-tail distribution and a uni-

form distribution.
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5.2 Heavy-tail Distribution

The stream processing applications follow a heavy-tail distribution if, under the optimal allo-

cation on the virtual machine, many streams have small allocations, a few streams have large

allocations, and very few fall in between. This distribution is typical for flows on the Internet,

and is known as the “elephants and mice” distribution.

To test the performances of our heuristics under this distribution, we run the following

experiments. Assume there are 2 machines in the system, each with unit capacity, and N =
{3,4,5,6,7,8,9} streaming applications each with a utility function Ui(ri) = bi r

(1−ai)
i
(1−ai) . LetM of

the streaming applications have the parameters a = 0.1, b = 1, and N−M have the parameters

a = 0.9, b = 0.01.

Under this experimental setup, the balanced-streams heuristic has MN different assign-

ments. To compare the performances of the heuristics, we compute the average performance

of the balanced-streams heuristic. This is done by brute force:

1. Run the heuristic under each of the possible assignments.

2. Compute the average utilities achieved by all possible assignments.

As shown in Figure 5.2, the average performance of the balanced-streams heuristic stays at 85%

of optimal, while both of our heuristics perform near 100% of optimal. The fully-decentralized

multiple-market heuristic performs just as well as the single-market heuristic.
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Figure 5.2: Performances of the three heuristics under a heavy-tail stream distribution
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5.3 Uniform Distribution

In this section, we analyze how different factors affect the performances of the three heuristics

when the streaming applications follow a uniform distribution.

5.3.1 Comparison Among the Three Heuristics

To compare the performances of the three heuristics under a uniform stream distribution, we

use the following experimental setup:

Generate N streaming applications, each with a utility function Ui(ri) = bi r
(1−ai)
i
(1−ai) , with ai ∈

(0.2,0.3) and bi ∈ (0,1) chosen randomly. Generate M machines, each with capacity 1.

Figure 5.3 shows the performances of the three heuristics with 7, 25, 42 and 111 machines

in the system.
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Figure 5.3: Performances of the three heuristics under a uniform stream distribution, with
various numbers of machines
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The following observations are based on the simulation results:

1. The performances of our two market-based heuristics approach optimal quickly as the

number of streaming applications increases.

2. The balanced-streams heuristic performs significantly worse than our market-based heu-

ristics in all cases.

3. The performance gap for the balanced-streams heuristic decreases as the number of

streams increases, but doesn’t converge to optimal (for up to 500 streams in the system),

staying from 1% to 10% below optimal.

4. The more machines in the system, the larger the performance gap for the balanced-

streams heuristic, and the slower the convergence of the two market-based heuristics.

5.3.2 The Effect of Number of Machines on Performance

To see how the number of machines affects the performance for each heuristic, we generate

one plot for each heuristic showing the performances of that heuristic with various numbers

of machines.

We use the same setup as the one in the previous section: N streaming applications, each

with a utility function Ui(ri) = bi r
(1−ai)
i
(1−ai) , with ai ∈ (0.2,0.3) and bi ∈ (0,1) chosen randomly;

M machines, each with capacity 1. The following observations are based on the simulation

results shown in Figure 5.4:

1. For each fixed number of streaming applications in the system, the performance gap for

the naïve balanced-streams heuristic increases as the number of machines increases.

2. Initially, for each fixed number of streaming applications in the system, the performance

gaps for the two market-based heuristics increase as the number of machines increases;

however, with increasing numbers of streaming applications, the performance gaps for

all heuristics quickly converge to zero.

3. The fully-decentralized multiple-market heuristic performs almost as well as the single-

market heuristic.

Recall that the upper bound is calculated by aggregating all machine resources into a virtual

machine and allocating the aggregated resource to streams. Thus, each streaming application

gets an ‘optimal’ amount of resource (the more competitive streams get more resource, and the

less competitive streams get less resource). These optimal allocations result in a maximized

total utility. Furthermore, the performance gap is calculated as U−U
U , where U is the total utility

achieved by the heuristic and U is the performance upper bound.
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(a) balanced-streams heuristic
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Figure 5.4: The effect of number of machines on heuristic performance

The value U −U has two components:

1. The gap between the upper bound and the optimal value.

2. The gap between the optimal value and the heuristic result.

The first component is called the duality gap. It is the value forgone because of the ‘indivisible’

nature of the problem, and is irrelevant to the goodness of the heuristic.

One reason that the performance gap increases with increasing number of machines is a

larger duality gap; when streams are assigned to machines, the ‘optimal’ allocations can’t be

preserved because the total resource is fragmented among the machines. When there are more

machines in the system, the total resource is more fragmented, so more streams are unable to

get their ‘optimal’ allocations. This results in a larger duality gap between the upper bound

and what can possibly be achieved.



37

0 2 4 6 8 10
0

0.05

0.1

0.15

0.2

0.25

0.3

number of streams per machine

pe
rf

or
m

an
ce

 g
ap

balanced−streams
single−market
multiple−market

(a) 7 machines

0 2 4 6 8 10
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

number of streams per machine

pe
rf

or
m

an
ce

 g
ap

balanced−streams
single−market
multiple−market
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(c) 42 machines

Figure 5.5: The effect of streams-to-machine-ratio on performance, by number of machines

To analyze how the relative number of streams to machines affects the performance gap,

we plot the performance gaps of the three heuristics with respect to the number of streams

per machine. Figures 5.5 and 5.6 show the comparisons of performance gaps among the three

heuristics for various numbers of machines. As we can see from these plots, in all cases, the

performance gaps of our market-based heuristics converge to 0 when there are more than 4

streams per machine while the naïve balanced-streams heuristic stays at a 1% to 4% performance

gap (depending on the number of machines).
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(a) balanced-streams heuristic
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Figure 5.6: The effect of streams-to-machine-ratio on performance, by heuristic
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5.3.3 The Effect of Total System Resource on Performance

To study how the total system resource affects the performance, we run the heuristics with three

different mean values for machine capacity: 1, 0.1, and 0.01. We use a setup similar to the one

in the previous section: N streaming applications, each with a utility function Ui(ri) = bi r
(1−ai)
i
(1−ai) ,

with ai ∈ (0.2,0.3) and bi ∈ (0,1) chosen randomly.

Each plot in Figure 5.7 shows the performances of the three heuristics with a distinct CPU

mean value in a system with 42 machines. Figure 5.8 has one plot per heuristic, which shows

the heuristic’s performance under three CPU mean values with 42 machines in the system.
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(b) cpu mean = 0.1
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(c) cpu mean = 0.01
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(d) cpu mean = 0.001

Figure 5.7: The effect of total system resource on performance, by capacity (42 machines)
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(b) single-market heuristic
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Figure 5.8: The effect of total system resource on performance, by heuristic (42 machines)

The following observations are based on these plots:

1. Balanced-streams heuristic:

(a) The performance gap is larger when the total system resource is smaller.

(b) The performance gap decreases as the number of streams increases, but never con-

verges.

2. Single-market heuristic:

(a) The performance gap is larger when the total system resource is smaller.

(b) The performance gap decreases as the number of streams increases, and eventually

converges to zero. The smaller the total resource, the slower it converges.
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3. Multiple-market heuristic:

(a) The performance gap is larger when the total resource is smaller.

(b) The performance gap decreases as the number of streams increases and eventually

converges to zero. The smaller the total resource, the slower it converges.

(c) Performance is almost as good as that of the single-market heuristic.

One reason that the performance gap increases with decreasing amount of total resource is

the larger duality gap. An intuitive explanation is: when the total resource is scarce (supply is

low), while the demands from the streams remain the same, the market is more competitive.

Under a more competitive market, it is more important that the streams get their ‘optimal’

allocations because a small perturbation will result in a large utility loss. The theory behind

this intuition is that, when the total resource is less, the resource each stream gets is also less.

Since each stream has a concave utility function with decreasing marginal utility with respect

to resource, less resource results in larger marginal utility. Thus, the system is more sensitive

to the fact that the resource is fragmented among a number of machines. Therefore, a smaller

amount of total resource results in a larger marginal utility, which in turn results in a larger

performance gap.

The decrease in performance gap with increasing number of streaming applications is due

to the decreasing duality gap; the more streaming applications in the system, the less resource

each of them gets under the upper bound calculation. Thus, fewer of them fail to get their

‘optimal allocation’ when they are assigned to individual machines. This is similar to the bin

packing example; given a set of fixed bins, it is easier to assign smaller balls to the bins than

larger balls, so less bin volume is wasted by an inability to assign balls to bins.

5.3.4 The Effect of Utility Functions on Performance

Recall that each streaming application has a utility function of the form Ui(ri) = bi
r
(1−ai)
i
(1−ai) ,

ai ∈ (0,1), bi ∈ (0,∞). In this section, we study how the choices of a and b affect the

performances of the three heuristics.

5.3.4.1 Choice of a

To test how parameter a affects performance, we fix the range of b to be (0,1) and the machine

capacity to be 1, and run the heuristics with various ranges of a: (1) a ∈ (0.2,0.3); (2) a ∈
(0.2,0.5); (3) a ∈ (0.2,0.8); and (4) a ∈ (0.01,0.99). As shown in Figures 5.9 and 5.10, when

the mean of a is smaller, the performance gap tends to be larger.
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(a) balanced-streams heuristic
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Figure 5.9: Performance comparison with various ranges of a, by heuristic (42 machines)
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(a) a ∈ (0.2,0.3)
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(b) a ∈ (0.2,0.5)
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(c) a ∈ (0.2,0.8)
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(d) a ∈ (0.01,0.99)

Figure 5.10: Performance comparison with various ranges of a, by range (42 machines)

Recall that each stream has a concave utility function of the form Ui(ri) = bi r
1−ai
i

1−ai . Thus the

marginal utility is U ′i(ri) = bir−ai . When a is smaller, the marginal utility becomes larger. As

discussed earlier, larger marginal utilities cause larger performance gaps. This explains why

the performance gaps are larger with smaller a.

However, there is a contradiction: when there are more than 70 streams in the system,

a ∈ (0.2,0.5) has a higher performance gap than a ∈ (0.2,0.3). This is because, as the variance

of a becomes larger, the streams become more diverse and a complementary effect takes over.

This complementary effect occurs because it is easier to fill the machines with streams of

diverse sizes than to fill them with equally sized streams. As an analogy, consider the problem

of filling bins with balls. It is easier to fill the bins with balls of different sizes than with balls

of same size. When there is a large number of streams in the system, the complementary effect

is more influential and subsumes the a mean effect.
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5.3.4.2 Choice of b

To test how parameter b affects performance, we fix the range of a and run the heuristics with

various ranges of b: (1) b ∈ (1,1); (2) b ∈ (0,1); (3) b ∈ (0.1,10); and (4) b ∈ (0.01,100). As

shown in Figures 5.11 and 5.12, regardless of the range of b, the two market-based heuristics

perform significantly better than the naïve balanced-streams heuristic.
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(b) b = (0,1)
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(c) b = (0.1,10)
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(d) b = (0.01,100)

Figure 5.11: Performance comparison with various ranges of b, by range (42 machines, a ∈
(0.2,0.3))
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(a) b = (1,1)
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(b) b = (0,1)
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(c) b = (0.1,10)
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(d) b = (0.01,100)

Figure 5.12: Performance comparison with various ranges of b, by range (42 machines, a ∈
(0.01,0.99))

From Figure 5.13 it can be observed that, with fixed CPU mean of 1 and for two tested ranges

of a, the performance gap increases with the mean of b. This occurs for a reason similar to that

discussed previously for a. Since U ′i(x) = bx−a, U ′i is larger when b is larger; therefore, the

performance gap is larger. This behavior can be best observed in Figures 5.13(b)(d)(f), where

a ∈ (0.01,0.99). We discussed the complementary effect earlier when analyzing how the choice

of a affects the performance. This complementary effect can also be induced by the choice of

b; the larger the variance in b, the larger the complementary effect. This explains why the

marginal utility behavior is more apparent when a ∈ (0.01,0.99) than when a ∈ (0.2,0.3);

when a ∈ (0.01,0.99), the streams are already more diverse than when a ∈ (0.2,0.3), so

increasing b to increase diversity has little impact.
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(a) balanced-streams heuristic, a ∈ (0.2,0.3)
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(b) balanced-streams heuristic, a ∈ (0.01,0.99)
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(c) single-market heuristic, a ∈ (0.2,0.3)
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(d) single-market heuristic, a ∈ (0.01,0.99)
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(e) multiple-market heuristic, a ∈ (0.2,0.3)
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(f) multiple-market heuristic, a ∈ (0.01,0.99)

Figure 5.13: Performance comparison with various ranges of b and two ranges of a, by heuristic
(42 machines)
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5.3.5 Timing Analysis for the Multiple-Market Heuristic

The single-market heuristic has provably polynomial running time. However, there is no the-

oretical complexity bound on the performance of the multiple-market heuristic. We study the

timing/computational complexity of the multiple-market heuristic empirically by measuring

how long it takes for the process to converge during each simulation. We measure time by the

number of rounds it takes for each simulation to complete, where each round is one attempt

to move a streaming application from one machine to another (each attempt essentially entails

running the local optimization step once). The average running time for the local optimization

step is 10 ms.

We plot the number of rounds against the number of streams in the system. Figure 5.14

shows four curves, one for each distinct number of machines in the system. One observation is

that the running time increases with the number of streams in the system but does not depend

on the number of machines in the system.
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Figure 5.14: Timing comparison
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Figure 5.15: Timing approximation

To study how the execution time changes with increasing number of streams in the system,

we attempt to approximate it with a polynomial function. Suppose this function is of order x:

T(n) = O(nx), where n is the number of streaming applications. We derive the following:

log(T(n)) = log(nx)

log(T(n)) = x log(n)

x = log(T(n))
log(n)

Thus if we plot log(time) vs. log(number_of _streams) for each distinct number of machines,

x can be approximated by the slope of this log-log plot. Such a plot for 7, 25 and 111 machines

appears in Figure 5.15.

It is evident from the empirical result that the time complexity of the multiple-market heuris-

tic is approximately quadratic in the number of streams.
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Chapter 6

Conclusion

6.1 Summary

In this thesis, we have described the emerging class of streaming applications and addressed

the fact that the existing model and method for solving scheduling problems are not suitable for

streaming applications because of their differences from conventional tasks. We introduced a

new performance model and solution space (resource reservation system) that are better suited

for modeling and solving the scheduling/resource allocation problem in the streaming environ-

ment. We also proposed two market-based heuristics for building such resource reservation

systems. The single-market heuristic is semi-decentralized with provably polynomial running

time. The multiple-market heuristic is fully decentralized with empirically polynomial running

time. We proved a 1
2 lower bound on the performance of the semi-decentralized heuristic.

We then evaluated the performances of these two heuristics by comparing them with that

of a naïve load balancing heuristic, balanced-streams. Experimental results show that the

balanced-streams heuristic performs better under a uniform distribution than under a heavy-

tail distribution. Given a fixed number of machines in the system, the performance gap de-

creases as the number of streams increases, however, it never converges to optimal but stays

around 90% of optimal. This is still significantly worse than our single-market heuristic.

Our polynomial time single-market heuristic performs well on both uniform and heavy-

tail distributions, and outperforms the naïve balanced-streams heuristic significantly on the

heavy-tail distribution. Given a fixed number of machines in the system, the performance gap

decreases as the number of streams increases and converges to optimal quickly. However,

this heuristic is based on a single market: although computations are distributed, all price and

demand information flows to a centralized scheduler. Thus, this scheme does not scale to large

systems that have no centralized locus of information. We therefore devised another heuristic

that is fully decentralized.

It is evident that, under both types of stream distributions, the fully-decentralized multiple-
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market heuristic performs almost as well as the single-market heuristic without requiring a

centralized market/scheduler. This makes it a good candidate for use in large distributed

systems and grid-like environments.

However, our multiple-market heuristic is not provably polynomial in time complexity. To

determine the complexity of this heuristic, we did an empirical study by measuring the time

it takes to finish in simulation. We then analyzed the complexity by plotting the logarithm of

time vs. the logarithm of the number of streams for various numbers of machines to see how

the system scales as the number of streams increases. The results show that this heuristic’s

running time is independent of the number of machines in the system, and is approximately

quadratic in the number of streaming applications. Thus it scales well with increasing numbers

of streams and machines, which makes it a practical and attractive alternative to the single-

market heuristic.

6.2 Applications

Significant work has been done in the area of applying economic principles to resource alloca-

tion in grids. Some of this work is based on auctions [29], while some is based on competitive

markets [2]. Wolski et al. [31] provide a good comparison of these projects. Research that in-

tegrates computer science with economics has also proved useful with respect to the Internet

[26, 28].

Our resource reservation system designs were carried out using concepts from the litera-

ture on scheduling and economics. The market-based heuristics presented in this thesis for

building resource reservation systems can be used for general resource allocation on heteroge-

nous computing systems for streaming applications, and have a wide range of applications.

Examples of possible application areas are the following:

Computational Grids Grid computing “is an emerging computing model that provides the

ability to perform higher throughput computing by taking advantage of many networked com-

puters to model a virtual computer architecture that is able to distribute process execution

across a parallel infrastructure.” [30] Currently, computational grids focus on providing sup-

port for massive computations such as protein folding, financial modeling, earthquake simu-

lation, and climate/weather modeling. We believe that computational grids can also be used

as the computational fabric for processing streaming applications. Thus, making the best

possible use of resources on computational grids to process these streams and generate the

most economic value becomes crucially important. Our market-based heuristics, especially the

fully-decentralized multiple-market heuristic, are good candidates for resource management
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for streaming applications on computational grids.

Enterprise Computing As sensors and RFID tags become more widely deployed, and streams

of data from commodity exchanges, wire services, and other sources become more widely and

freely available, new application areas for enterprise computing systems are emerging. It is

becoming increasingly important for enterprises to build applications that use this data to

detect and react to potential threats and opportunities (“critical states”).

Streaming applications analyze events from many different sources and of many different

forms—numerical, textual, and visual—to determine when a critical state exists and what the

appropriate response should be. They allow enterprise computing systems to act as “informa-

tion factories”; just as industrial factories create value by transforming raw materials into fin-

ished products, information factories create value by transforming raw events into structured

data. This transformation can take considerable computational resources, so it is important

both to design efficient and reliable heuristics and to make the best possible use of the available

computing infrastructure when executing these heuristics.

6.3 Future Directions

We conjecture that the 1
2 lower bound for the single-market heuristic is not tight. This has been

confirmed by simulation results. We are trying to formulate a proof that tightens this bound.

We are also refining optimization techniques for the multiple-market heuristic.

In addition, we are working on optimization techniques for the multiple-market heuristic.

We also plan to study various extensions of this problem by relaxing existing assumptions.

For example, when the stream processing applications do not have the same existence interval,

the problem becomes a stochastic problem; when the stream processing applications consist

of interacting graphs of processing units, communication costs need to be taken into account

when making scheduling decisions.
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