Identifying Vulnerabilities Using Internet-wide
Scanning Data

Jamie O’Hare, Rich Macfarlane, Owen Lo
School of Computing
Edinburgh Napier University
Edinburgh, United Kingdom
40168785, r.macfarlane, o.lo@napier.ac.uk

Abstract—Internet-wide scanning projects such as Shodan and
Censys, scan the Internet and collect active reconnaissance results
for online devices. Access to this information is provided through
associated websites. The Internet-wide scanning data can be used
to identify devices and services which are exposed on the Internet.
It is possible to identify services as being susceptible to known-
vulnerabilities by analysing the data. Analysing this information
is classed as passive reconnaissance, as the target devices are
not being directly communicated with. This paper goes on to
define this as contactless active reconnaissance. The vulnerability
identification functionality in these Internet-wide scanning tools is
currently limited to a small number of high profile vulnerabilities.
This work looks towards extending these features through the
creation of a tool Scout which combines data from Censys
and the National Vulnerability Database to passively identify
potential vulnerabilities. This is possible by analysing Common
Platform Enumerations and associated Common Vulnerability
and Exposures. Through this novel approach, active vulnerability
scanning results can be gained, while mitigating the associated
issues of active scanning, such as possible disruption to the
target network and devices. In initial experiments performed on
2571 services across 7 local academic intuitions, 12967 potential
known-vulnerabilities were identified. More focused experiments
to evaluate the results and compare accuracy with industry
standard vulnerability assessment tools were carried out and
Scout was found to successfully identify vulnerabilities with
an effectiveness score of up to 74 percent when compared to
OpenVAS.

Index Terms—Scout, Censys, Vulnerability Assessment,
Internet-wide, Scanning, Passive, Contactless, National Vulner-
ability Database

I. INTRODUCTION

Gartner believes that by 2020, 99% of vulnerabilities ex-
ploited will be known prior to their use [1]. The risk asso-
ciated with known vulnerabilities cannot be overstated, with
high profile incidents such as WannaCry and NotPetya both
exploiting the Eternal Blue vulnerability, which was both well
known and which had patches developed to mitigate prior to
it being used in these attacks [2].

One way in which known vulnerabilities can be actively
identified is through the use of vulnerability assessment tools
such as OpenVAS and Nessus [3], [4], typically as part of
the active reconnaissance phase of a pentest enagagement. In
an attempt to identify target systems and their exploitable
vulnerabilities, these tools aggressively scan networks and
interrogate operating network services. This can be potentially
disruptive to the target network causing issues such as denial

of service, through the considerable time and resources re-
quired to perform the scans. Due to this potential issue, as
well as specific legal requirements, vulnerability assessment
tools typically require permission from the target organization
before being used.

The known vulnerabilities identified by these tools are
associated with a specific Common Vulnerabilities and Ex-
posure (CVE), which highlights a vulnerability for a specific
service. A CVE entry contains information associated with
the vulnerability including a Common Platform Enumeration
(CPE) and a Common Vulnerability Scoring System (CVSS).
The CPE ties a CVE to a specific product and version, while
the CVSS provides an impact score. These data feeds are
all stored as parts of the National Vulnerability Database
(NVD), a public repository managed by the National Institute
of Standards and Technology. The NVD includes several sep-
arate data feeds including checklist references, software flaws,
misconfigurations, product names and impact metrics. Since its
inception in 1997, the NVD has published information about
more than 100,000 vulnerabilities and is the standard reference
for vulnerabilities.

Another way to identify known vulnerabilities is through
the use of Internet-wide scanning projects such as Shodan and
Censys [5], [6]. These tools collate lightweight active recon-
naissance results from services operating on publicly available
IP addresses, made available to users through their respective
websites and APIs. This data is collected by crawlers which
scan the entire IPv4 address range across many ports gathering
data on network services in a similar way to the vulnerability
assessment tools used in active reconnaissance [7], [8]. These
crawlers operate by sending only one or a small number of
packets to each individual service. Service specific packets are
sent to check for vulnerable service configurations, however
currently, this vulnerability functionality provided by Shodan
and Censys is rather limited [9]. Only a very small number of
vulnerabilities are checked for and each has bespoke identifi-
cation functionality hard coded into the specific scanners [7],
[10].

A way in which this functionality could be expanded is
through cross-referencing the more general service specific
data provided by these Internet-wide scanning projects, against
vulnerability repositories such as the NVD. This piece of work
looks at exploring and evaluating this type of vulnerability

identification by building on the functionality of the Censys
Internet-wide scanning project.

This paper is organized as follows. The methodology in-
cludes the design decisions and their impact on implemen-
tation. Initial Validation presents an applicable use case.
Experiments and Results describe the topology and design
of the experiments conducted along with the corresponding
results. Analysis and Evaluation examine and commentates
on the results of the conducted experiment results. Finally, the
Conclusion closes this paper, providing the outcomes.

II. METHODOLOGY

This section presents the design and subsequent implemen-
tation process towards extending the vulnerability analysis
functionality within an Internet-wide scanning project.

This work resulted in a tool known as Scout, named due to
the connotations of reconnaissance, exploration, and discovery.
Previous work has defined Contactless Reconnaissance when
using the output of Internet search engines such as Google [11]
to limit the contact with target systems, and this work extends
this with the use of the Censys Internet-wide scanning cached
information and associated NVD vulnerability data. Thus the
term Contactless Active Reconnaissance has been proposed
for this type of reconnaissance using Internet-wide subject-
specific search engines which index and make available active
reconnaissance results [9], [11]. A graphical representation of
the comparison between the approach outlined above to a more
standard vulnerability assessment approach can be seen in Fig.
1. Fig. 1 illustrates a difference between these approaches
can be highlighted. This comparison was originally performed
by Simon, Moucha and Keller however, latency was not
considered [11]. This latency can vary across services across
Internet-wide scanning projects. The standard active approach
interacts with the target receiving immediate feedback through
their correspondence. While contactless active approach does
not directly interact with the target and therefore, inherits a
latency which varies.

This comparison will serve as the basis for the evaluation
of Scout.

A. Design

Scout has 3 distinct operations, gathering service scanning
data, associating possible vulnerabilities, and presentation of
results. The first stage of gathering Internet-wide scanning
data can differ considerably depending on the service chosen.
There are three main Internet-wide scanning projects, Shodan,
Censys and ZoomEye [5], [6], [12]. The oldest, most popular
and well-known internet scanning project is Shodan. Founded
in 2009 by John Matherly, it is infamous for revealing the
sheer number of sensitive information about devices connected
to the internet. More recently Censys has emerged, a product
of a research group from the University of Michigan. The
same group is also responsible for ZMap, which will be
discussed later. Unlike the other projects, the methodology
for Censys can be found in the associated academic literature.
Finally, there is ZoomEye, developed by Knownsec Inc from

Internet

II\-._ A [3

Y i‘ *‘ L '

i i

Fig. 1. Approach Comparison

Beijing. Despite being released in July 2013, ZoomEye does
not seem to have been discussed much literature. From the
little research available, most of it appears to be not transcribed
into English yet. There is also seems to be a lack of detailed
documentation. Due to these factors, ZoomEye was not be
considered suitable. When deciding which scanning project to
utilize, the determining factors were the value and format of
the data provided. There are several factors which impact the
value of data coming from an Internet-scanning project, these
are age, bias, and comprehensiveness.

1) Age: Shodan's scans perpetually across a massive num-
ber of services in the IPv4 address range, indexing 550 million
services a month [8], [13]. Shodan scans are performed in
a blend of horizontal and vertical scanning as numerous
services are scanned for, across the Internet in a random order
[14]. Matherly comments that the scan results are continually
used to update the underlying database, however, research
suggests otherwise. In research conducted by Bodenhiem,
Butts, Dunlap, and Mullins, they noted a varying delay in
scan results appearing on the web interface of Shodan, a
delay varying from 1 day to 19 days [15]. This finding
has impacted the methodology employed in related research
[16]. Censys’ scans horizontally with scans scheduled daily,
biweekly and weekly depending on the service [14]. These
scans are performed over a 24-hour period, even though the
underlying ZMap technology can perform this faster [7]. This
regimental scanning behavior and its corresponding updates to
the underlying database at fixed times is in contrast with the
Shodan behaviour.

2) Bias: Bias in Internet-wide scanning stems from the
scanning method, specifically the geographic source(s) of
the scan. Shodan distributes crawlers world-wide to mini-
mize the effect of a geographic bias [8], [14]. An example
of potential geographic bias is the banning of Chinese IP

ranges by network administrators in the United States [13].
Upon initial deployment, Censys'scans were conducted from
a single source at the University of Michigan [7]. Despite
not documented in the more recent literature, this can be
confirmed through the use of GreyNoise, an Internet-wide
scanning aggregator [17].

3) Comprehensiveness: Comprehensiveness is the com-
pleteness of the scans. The scanning method used looks to have
an impact on the completeness of the scan data. For scanning,
Censys uses the ZMap scanner, another project from the same
research group [7]. ZMap was released in 2013, later upgraded
in 2014 to increase scanning speed using specialist hardware.
A comprehensive comparison was carried out against Masscan,
which at the time was seen to be the recommended port
scanner [7], [18]. Masscan offeres incremental or random
scanning. During incremental scanning, the scanner is more
likely to be blocked automatically by firewalls due to the
predictable behaviour and common scan source [19]. Random
scanning is recommended to avoide these issues. Masscan
uses their own encryption algorithm to randomize target IP
addresses. The encryption algorithm employed in Masscan is
a custom algorithm which uses the first 3 rounds of DES, but
when visualized, this seems to reveal artifacts which suggest
the randomization is not entirely random. This issue was
identified by the author, however it was deemed suitable for
the randomizing required [20]. However, in comparison to
ZMap, Masscan was considered to be less random, and led to
poorer performance due to the potential for overloading target
networks [18]. Matherly comments that Shodan's crawlers are
randomized, using a similar method to ZMap, although it
seems the implementation is not well documented [13].

Assessing these qualities: age, bias, and comprehensive-
ness, Censys looked to possibly have fewer bias data than
Shodan, however it is a more comprehensive, up-to-date and
predictable data source. Therefore, Censys was chosen to be
taken forward as the Internet-wide scanning project for the
work.

With Censys selected, an approach to associate vulnera-
bilities to the Censys scanning data was then considered. A
key factor in this process is the way Censys provides their
information. Using the Python API a user must specify the
desired fields along with an acceptable query. Output fields
are returned and provide specific attributes of the active recon-
naissance results, for example a web service would include the
HTTP status code and HTTP body. Metadata fields are those
which are needed to identify possible vulnerabilities associated
with a service, as they contain the required information about
the service. There can be a greater number of useful fields
than the 20 field limit in a Censys query depending on the
services being scanned [6]. The approach which was chosen to
maximize testing was to simply use one query which looked
for the applicable metadata field for a specific service. The
service chosen was HTTP operating on port 80 due to the high
density of these services online as well as service information
found within the NVD. '80.http.get.metadata.description'is the
field which is specifically queried for in this. Future work

could look to expand to a wider range of public Internet
services.

The link between service information and any possible
vulnerabilities, is the Common Platform Enumeration (CPE).
A CPE is a unique identifier comprised of several fields for a
specific version for a particular hardware, service or operating
system [31]. They are used to partition issues identified in
other data feeds within the NVD to an exact application and
version. The following is an example of a CPE:

cpe:/a:apache:http_server:2.4.7

where /a denotes an application, apache denotes the vendor,
http_server denotes the product, 2.4.7 denotes the version.
Typically the metadata fields do not supply information ap-
plicable beyond the version field. The Internet-wide scanning
data which corresponds to this CPE will commonly look
similar to the below:

Apache httpd 2.4.7

Several related work have put forward methods to deduce
a CPE from analysis of related data.

Na, Kim, and Kim propose a hierarchical tree approach
when conducting CPE creation through service banner analysis
[21], [22]. This method includes the generation and utilization
of a CPE dictionary tree. After conducting keyword analysis
on a service-banner, the keyword(s) extracted are used in
conjunction with the CPE tree. This process is repeated at
each step of the tree, the longest (greater number of child
nodes) CPE is created. The outlined approach has a significant
weakness, the inability to operate on incomplete data. The re-
liance on sequential keywords starting with the vendor creates
a dependency on identifying a vendor-specific keyword despite
having enough keywords from other sections to identify the
CPE.

Gawron, Cheng, Meinel explored CPE creation in their re-
search surrounding patch monitoring [23]. The authors propose
a new passive vulnerability detection method by analyzing
system logs and creating CPEs to tie to CVEs. Log files
are parsed to identify program and version information. This
approach omits vendor information because their analysis of
system logs concluded that system logs do not include vendor
details. This omission hinders the possibility of manufacturing
a CPE without additional computation to associate the correct
vendor. This omission also could create a problem when
services share the same name but not the same vendor causing
incorrect results.

The approach employed by the ShoVAT tool utilizes hash
tables to store elements of CPEs corresponding to version
numbers [24]. Instead of searching for specific substrings
through the large CPE database, ShoVAT identifies version
numbers matching the regular expression pattern, Vpat =
.(I)*T'. Once the pattern is identified, the hash table is used
to associate the other elements of the CPE such as Vendor
and Product. If this association is not decisive then the

surrounding information in the banner is used to identify the
most appropriate banner.

A significant weakness with this and aforementioned ap-
proaches, is the reliance and explicit dependency on the CPE
dictionary. The CPE dictionary has some issues, such as it
contains over 2,500 depreciated entries, all of which are due
to name correction [25]. This problem may have a knock on
affect with all of the aforementioned approaches, as it seems
none consider this issue. There seems to be only one approach
in the current literature which considers these typographical er-
rors, the work by Sanquino & Uetz, in which they explore CPE
creation in relation to Vulnerability Management Systems. The
authors employ the use of the Levenshtein distance algorithm
to address the erroneous NVD. The Levenshtein distance
algorithm returns the number of dissimilarities between two
strings, and for their use, the authors set a threshold of 2. This
threshold of 2 was determined by analysing the deprecated
CPEs in the CPE dictionary, commonly depreciation took
place due to a typo in the product with a Levenshtein distance
of 1 or 2. This step has the ability to produce more than
one CPE, therefore the CPEs are then ordered by version as
required. Although this method reduces the errors, it can result
in the creation of more than one possible CPEs.

The approach for Scout was to incorporate a hybrid of previ-
ous suggestions. Using symmetric comparisons in conjunction
with a tiered list and some usage of the Levenshtein distance
algorithm. This is discussed in further detail in the next section
prior to presenting results.

B. Implementation

for CPE in dictionary:
intersection = candidate (| CPE
if length(intersection) = 0 then
elected candidate append CPE
else if length(intersection) < 2 then
vetted candidate append CPE
else if length(intersection) = 2 then
if levenshtein(intersection)
< length(intersection) then
accepted candidate append CPE

Listing 1. CPE matching pseudocode

Python was chosen for the Scout tool, mainly due to the
ease of integration with the Censys API, and other libraries
including a Levenshtein distance algorithm, editdistance. The
Censys'API requires a valid set of API keys, therefore, the
tool’s user must also register for Censys use. To obtain infor-
mation from the NVD, an existing project known as cve-search
was used [26]. cve-search aggregates several data feeds in-
cluding those of the NVD within a MongoDB instance, which
can be easily accessed and used through the Python library
pymongo. The most significant piece of implementation was
the Internet-wide scanning data to vulnerability information.
As mentioned prior, the approach taken to in service banner
analysis tried to address issues found in previous research. The
CPE dictionary was iterated over and for each iteration, the
given metadata returned by Censys was symmetrical compared

" VO NN v NVAN A
(VY VUL A UL WA
\ VA A\ A \

L~
~ S

AVAN \ \, AN \,
A AAY) AV Y / N
Scout is a contactless 'active' reconnaissance known vulnerability assessment tool.
N 20 DRl
' ()
‘M 0 (| 'cpe': ‘cpe:2.3:aiapache:http_server:2.4.6',
'metadata': 'Apache httpd 2.4.6°',
‘vulns': { ‘eves': { 'CVE-2013-4352': { ‘c

'CVE-2013-6438': { e
'CVE-2014-8098': { ‘o
'CVE-2014-0117': { ‘e
'CVE-2014-8118': { e
'CVE-2014-8226"': { ‘c
'CVE-2014-08231': { e
'CVE-20814-3523"': { ‘o
'CVE-2014-8189': { ‘e
'CVE-2015-3184"': { e
'CVE-2015-31B5': { ‘c
'CVE-2016-8736': { e
'CVE-2016-2161"': { ‘o
'CVE-2016-8743': { ‘e i 5.8},
'CVE-2017-9788': { ‘o : 6.4},
'CVE-2017-9788': { ‘'cvss2': 5.8}}}},

‘_': 1 ‘cpe’: 'cpe:Z.3:a:nginx:nginx:1.6.2°,

‘metadata’: 'nginx 1.6.2',
‘wulns': { ‘cves': { 'CVE-2016-1247': { ‘cwss2': 7.2}}}},
‘_‘ R ‘cpe’: 'cpe:Z.3:a:apache:http_server:2Z.4.8',

‘metadata’: 'Apache httpd 2.4.9',
‘vulns': { ‘'cves': { 'CVE-2014-8117':
'CVE-2814-0118':
'CVE-2814-08226":
'CVE-2814-0231':
'CVE-2814-3523"':
'CVE-2014-B109':
'CVE-2815-3184':
'CVE-2815-31B5":
'CVE-2816-0736':
'CVE-2816-2161":
'CVE-2016-B743':
'CVE-2817-9788':
'CVE-2817-9758':

T

Fig. 2. An example of Scout output with IP addresses censored

to the CPE. If the result of this symmetric difference was 0
then the CPE was appended to the elected candidate list. If
the difference was less than 2 then CPE was appended to a
vetted candidate. Finally, if the difference was equal to 2 then
further analysis was done to discover if there were similar
strings between the metadata and CPE through the use of the
Levenshtein distance algorithm. Pseudocode for this process
can be found in Listing 1.

Once the CPE dictionary has been enumerated, the 3 lists
produced are analysed. Beginning by checking the length of
items in the elected, vetted and candidate list in sequential
order. If the result returns O then the next list is analysed,
if the length of returns 1 then that result is treated as the
final CPE, however, if the length is greater than 1 then the
matching finishes inconclusively. A major advantage of this
method is that it is conclusive by providing a suitable CPE
where possible instead of producing a list of potential CPEs.
This is achieved through the usage of a tiered list along with
the Levenshtein distance algorithm. The latter of which allows
for consideration of any erroneous NVD entries. An additional
benefit of this approach is that it is non-service specific, as
there is no hard coded rules for specific individual services.

With the CPE identified, it is then used in the CVE
assignment. Included within CVEs, is a field of the vulnerable
configurations. This field is a list of CPEs which correspond
to services vulnerable to the CVE. By using cve-search, this
field can be searched with the chosen CPE. For each CVE that
is returned the ID and corresponding CVSSv2 score is stored.
The final step is to present the findings. The method chosen
was simply to print the results with clear indentation to isolate
each result. An output example can be seen in Fig. 2.

Percentage of Vulnerabilites by CVSSv2 Severity found in Academic
Institiutions

100%
90%
80%
70%
60%
50%
40%
30%
20%
10%

0%

-:High
“# Medium

mLow

Percentage

BN AN\

4
S
&
&

» AN

R
X
&

&

Y AN
AN\

Y NNNA\\\\N

&

&
o

%, , ',
[« £2) ¢ e el

Academic Institution

&

Fig. 3. Vulnerabilities in local institutions

CVSSv2 Spread Across Academia

CVSSv2 Score
O m W R a om0

University A University B University C University D University E University F University G
Academic Institution

Fig. 4. Average and Outliers Vulnerabilities

III. INITIAL VALIDATION

To present a potential use case for Scout, 7 local academic
institutions were used as a dataset, leading to a total of 12967
services being processed. Results from this analysis can be
found in Fig. 3 and Fig 4. Fig. 3 illustrates University A
having the largest percentage of high severity vulnerabilities,
while also having the smallest percentage of low severity
vulnerabilities. Fig. 4 illustrates University B has the highest
lowest CVSSv2 score across all institutions. When included
in reports and audits, this can be especially useful to portray
the significance of the findings to individuals without technical
knowledge. This is just one of the potential uses of Scout.

IV. EXPERIMENTS AND RESULTS

To gain an insight into the possibility and the potential
usefulness of Scout, an array of experiments were carried out.
Included in this section is the experiments conducted along
with their results.

A. Experiment 1 Manual CPE Assessment

In previous research, CPE creation accuracy conducted
automatically by a tool is compared against performing the
process manually [24]. Precision and Recall have been used
to allow for comparison in future work. Additionally, the data
used is publicly available so the work can be reproduced [27].
For this experiment the scanning data was generated from
a Censys query for a Scottish university, resulting in output

TABLE I
MANUAL CPE ASSESSMENT RESULTS

Scout’s Assessment
Match | No Match
Manual Assessment Match 17 1
No Match 12 22
Scout
Censys OpenVAS

@

Fig. 5. Experiment Design

which includes 52 unique services. This data is then processed
by Scout and the results are were analysed manually.

True positives in this assessment are defined as entries
in which a CPE is assigned correctly by Scout, while true
negatives are defined as entries in which a CPE is not assigned
as it does not exist. False positives in this assessment are
defined as entries in which a common platform enumeration is
assigned incorrectly by Scout, while false negatives are defined
as entries in which a common platform enumeration exists,
but cannot be determined. Results for this experiment can be
found in Table I.

B. Experiment 2 Comparative CPE Assessment

In previous research, the CPE creation accuracy is compared
with industry tools which perform the same procedure [11],
[24]. This involves scanning the same service with both an
active and contactless active vulnerability assessment tool.
Ideally, this would be the method in which Scout's CPE
creation would be evaluated, however, permission could not
be gained to use the active scanning tools on a large sample
size of live target machines. Therefore, an experiment was
conducted on targets created in Amazon Web Services, which
were configured to run a small sample size of the same services
found by the Scout tool. For the industry tool, OpenVAS was
used for comparison. The topology for this experiment can
be found in Fig. 5 while the results of the experiment can be
found in Table II. In Table II ’*’ is used to denote a successful
match whereas * * is used to denote an unsuccessful match.

C. Experiment 3 CVE Assignment

In related work, CVE assignment is compared against indus-
try tools which perform a similar function [11], [24], so again
active and contactless vulnerability assessment tools were run
against the same services. Metrics used in work to assess
web vulnerability scanning, such as Precision, Recall, and
F1 measure are used to quantify accuracy, comprehensiveness
and effectiveness [28]-[30]. These metrics seemed appropriate
to be used in the evaluation due to their test data having a

TABLE II
COMPARATIVE CPE ASSESSMENT RESULTS
Advertised Service Correct CPE OpenVAS | Scout
Apache 2.4.7 apache:http_server:2.4.7 . .
Apache 2.4.10 apache:http_server:2.4.27 . .
Apache 2 apache:http_server:2.4.27
Apache httpd apache:http_server:2.4.27
lighttpd 1.4.18 lighttpd:lighttpd:1.4.18 . .
1.4.18 lighttpd lighttpd:lighttpd:1.4.18 .
lighttpd 1.4.19 lighttpd:lighttpd:1.4.18
lighttpd 1.4.33 lighttpd:lighttpd:1.4.33 . .
lighttpd lighttpd:lighttpd:1.4.33
nginx 1.4.6 nginix:nginx:1.4.6 . .
nginx nginix:nginx:1.4.6
TABLE III
CVE ASSIGNMENT RESULTS
Service NVD | OpenVAS | Scout
Apache httpd 2.4.7 18 18 15
Apache httpd 2.4.10 16 14 13
Lighttpd 1.4.18 14 6 12
Lighttpd 1.4.33 5 4 3

similar property of a ground truth with a binary state of being
susceptible to a vulnerability or not.

To distinguish between potential vulnerabilities and those
that could be exploited by an attacker, the National Vulner-
ability Database was included in the comparison to provide
a reference to potential vulnerabilities, while OpenVAS was
used to provide a comparison to vulnerabilities the service is
susceptible to. A service may have more potential vulnera-
bilities that are susceptible to due to necessary features being
enabled or required configurations. There is also the possibility
of the vulnerability have being patched through the process of
backporting.

Table 3 presents an overview of outputs from the National
Vulnerability Database, OpenVAS, and Scout. The NVD col-
umn has been created by manual investigation of the Censys
output to NVD CVE information. The OpenVAS and Scout
columns shows CVE’s output by the tools for the specific
services. The specific OpenVAS reports can be found along
with the test data [27]. The National Vulnerability Database
information used in the process was taken from the website
variant on the 19th of March 2018. The differences between
the manual NVD data analysis and the Scout output highlights
possible issues with the data being returned from the NVD API
compared to what is available on the website.

V. ANALYSIS AND EVALUATION
A. Experiment 1 Manual CPE Assessment

Table I suggests that Scout can correctly assign CPEs
from Internet-wide scanning data with a success rate of
75%. Of the 13 false results, only 1 was a false pos-
itive. This false positive is for the advertised service
’Apache httpd 2.4° where Scout failed to assign the cor-
rect CPE - ’cpe:/a:apache:http_server:2.4.0’. Due to lack
of consideration for the potential ’.0° to be amended
on a CPE version field. This led Scout to incorrectly

‘cpe:2.3:a:apache:mod_python:2.4’. The 12 false negatives
highlight several different problems with the approach em-
ployed. 8 of the false negatives come from Apache products
stemming from 2 problems. The first problem is due to
identifying apache products without a corresponding CPE.
This is a particular problem within the NVD, and is not limited
to apache products as this problem was also responsible for an-
other 2 false negatives. The second problem stems from when
the advertised service does not follow a regular formatting. For
the advertised service *Apache httpd2.2.11°, Scout was unable
to correctly identify the service due to the lack of a space
character separating the version number from the product. The
final problem encountered is specific to Microsoft IIS products
as the CPE syntax changes from ’cpe:/a:microsoft:iis:7.5°
to ’cpe:/a:microsoft:internet_information_services:8.5’. A so-
lution to this problem could be to write a direct rule to change
it accordingly, however, doing so would not align with the
non-service specific approach aimed at with Scout.

B. Experiment 2 Comparative CPE Assessment

The purpose of this comparative assessment was to analyse
how well Scout can manufacture Common Platform Enumer-
ations in comparison to OpenVAS, which performs the same
function. Table II presents an overview of the experiment
results. Interestingly with the data used, Scout outperforms
OpenVAS as Scout is able to identify 1 more CPE than
OpenVAS. This is a rather unexpected result due to Scout
having the limitation of not being able to interact with the
target. Both tools only correctly matched the CPE when
enough correct information was supplied. The caveat for
OpenVAS which led to Scout outperforming was the need
for the advertised service information to be given in the
correct order. Due to Table II not displaying information on
false positives, a false positive which Scout returned is not
highlighted. Scout returned this result due to the advertised
service being false, but still having a corresponding CPE.
The advertised service was ’lighttpd 1.4.19°, Scout returns
“cpe:2.3:a:lighttpd:lighttpd:1.4.19°, which although a wvalid
CPE, is not the correct CPE for the ’lighttpd 1.4.18” service.
Scout only gathers information from one source and can not
corroborate information from other methods, such as an active
approach used in OpenVAS could. These results suggest that
Scout is able to perform CPE assignments in a more diverse
dataset than OpenVAS, although does likely return a false
positive in situations where there is false advertisement.

C. Experiment 3 CVE Assignment

Experiment 3 sought to compare the contactless active
approach employed in Scout to the active approach found
in industry tools such as OpenVAS. An overview of this
experiment can be found in Table III, which shows the NVD
contains more vulnerabilities than is reported by OpenVAS
and Scout. This is expected due to vulnerabilities being tied to
specific configurations. However, this is unexpected in regards
to Scout as Scout is supposed to return the same NVD data.
This suggests there is a discrepancy between the data used

TABLE IV

CVE ASSIGNEMENT FOR APACHE 2.4.7 SERVICE

NVD

OpenVAS

Scout

TABLE VI

CVE ASSIGNMENT FOR A LIGHTTPD 1.4.18 SERVICE

CVE-2004-0230

NVD

OpenVAS

Scout

CVE-2013-6438

CVE-2013-6438

CVE-2004-0230

CVE-2014-0098

CVE-2014-0098

CVE-2008-0983

CVE-2008-0983

CVE-2008-0983

CVE-2014-0117

CVE-2014-0117

CVE-2014-0117

CVE-2008-1111

CVE-2008-1111

CVE-2014-0118

CVE-2014-0118

CVE-2014-0118

CVE-2008-1270

CVE-2008-1270

CVE-2014-0226

CVE-2014-0226

CVE-2014-0226

CVE-2008-1531

CVE-2014-0231

CVE-2014-0231

CVE-2014-0231

CVE-2008-4298

CVE-2008-4298

CVE-2014-3523

CVE-2014-3523

CVE-2014-3523

CVE-2008-4360

CVE-2008-4360

CVE-2008-4360

CVE-2014-8109

CVE-2014-8109

CVE-2014-8109

CVE-2010-0295

CVE-2010-0295

CVE-2010-0295

CVE-2015-0228

CVE-2015-0228

CVE-2011-4362

CVE-2011-4362

CVE-2015-3183

CVE-2015-3183

CVE-2013-1427

CVE-2013-1427

CVE-2015-3184

CVE-2015-3184

CVE-2013-4559

CVE-2013-4559

CVE-2015-3185

CVE-2015-3185

CVE-2015-3185

CVE-2013-4560

CVE-2013-4560

CVE-2016-0736

CVE-2016-0736

CVE-2014-2323

CVE-2014-2323

CVE-2014-2323

CVE-2016-2161

CVE-2016-2161

CVE-2016-2161

CVE-2014-2324

CVE-2014-2324

CVE-2014-2324

CVE-2016-5387

CVE-2016-5387

CVE-2015-3200

CVE-2015-3200

CVE-2016-8743

CVE-2016-8743

CVE-2016-8743

Differences

+1/-9

+0/-2

CVE-2017-3167

CVE-2017-3169

CVE-2017-7679

CVE-2017-9788

CVE-2017-9788

CVE-2017-9788

CVE-2017-9798

CVE-2017-9798

CVE-2017-9798

TABLE VII

+8/-2

CVE ASSIGNMENT FOR A LIGHTTPD 1.4.33 SERVICE

Differences

+4/-4

+0/-3

NVD

OpenVAS

Scout

TABLE V

+4/-7

CVE-2004-0230

CVE ASSIGNEMENT FOR APACHE 2.4.10 SERVICE

CVE-2011-4362

CVE-2013-4508

CVE-2013-4508

CVE-2014-2323

CVE-2014-2323

CVE-2014-2323

CVE-2014-2324

CVE-2014-2324

CVE-2014-2324

NVD

OpenVAS

Scout

CVE-2015-3200

CVE-2015-3200

CVE-2004-0230

Differences

+1/-2

+0/-2

CVE-2014-3583

CVE-2014-3583

CVE-2014-3583

CVE-2014-8109

CVE-2014-8109

CVE-2014-8109

CVE-2015-0228

CVE-2015-0228

CVE-2015-3183

CVE-2015-3183

+1/-2

CVE-2015-3184

CVE-2015-3184

CVE-2015-3185

CVE-2015-3185

CVE-2015-3185

CVE-2016-0736

CVE-2016-0736

CVE-2016-2161

CVE-2016-2161

CVE-2016-2161

CVE-2016-5387

CVE-2016-5387

CVE-2016-8743

CVE-2016-8743

CVE-2016-8743

CVE-2017-3167

CVE-2017-3167

CVE-2017-3167

CVE-2017-3169

CVE-2017-3169

CVE-2017-3169

CVE-2017-7668

CVE-2017-7668

CVE-2017-7679

CVE-2017-7679

CVE-2017-7679

CVE-2017-9788

CVE-2017-9788

CVE-2017-9788

CVE-2017-9798

CVE-2017-9798

CVE-2017-9798

Differences

+1/-3

+0/-3

+3/-4

in the NVD for this experiment and the data used by Scout.
To explore the reasoning and further assess the usefulness of
Scout in comparsion to OpenVAS, a dissection of the results
reported in Table III is needed. What follows is a detailed
examination of the individual results, found in Table IV, V, VI
and VII, comparing the vulnerability assessment tools to the
NVD and between the two tools.

Table IV contains the results obtained from further analysis
of vulnerability assessment reports on an Apache 2.4.7 service.
This table shows the differences in results across the three
collections. In comparison to the NVD, Scout returned all
but 3 vulnerabilities, again suggesting there is a discrepency
between the versions of NVD used. Table IV also shows Open-

VAS reporting 4 vulnerabilities not found in the associated
NVD entry. These vulnerabilities are CVE-2004-0230, CVE-
2017-3167, CVE-2017-3169, and CVE-2017-7679. CVE-
2004-0230 is associated with TCP/IPv4 methods rather than
the Apache web service itself, due to this Scout does not
report this vulnerability. The remaining 3 vulnerabilities were
all vulnerabilities tied to the Apache service however, only
CVE-2017-7679 has an explicit reference to the Apache 2.4.7
CPE. This seems to be an issue with NVD as the description of
the vulnerabilities mentions Apache 2.4.7 being susceptible. In
comparison to the NVD, OpenVAS did not identify 4 vulnera-
bilities which are associated with the service, CVE-2013-6438,
CVE-2014-0098, CVE-2015-3184, and CVE-2016-0736. The
explanation for which seems to be due to these vulnerabilities
being tied to optional configurations.

When comparing Scout to OpenVAS it can be observed
that Scout reports 4 vulnerabilities which OpenVAS does not,
but omitted 7 vulnerabilities which OpenVAS reported. Using
OpenVAS results as the ground truth in comparison to Scout’s
results allows for the use of Precision, Recall and F1 score
to quantify accuracy, comprehensiveness and effectiveness
[?1, [?], [28]. To calculate these metrics, true positive, false
positives and false negatives must be defined. True positives
are results which appear in the output of both OpenVAS and
Scout, false positives are results which are present in to only
Scout’s results and false negatives are results which OpenVAS
returns but Scout does not. The workings and results for the

TABLE VIII
EQUATIONS RESULTS

Service Precision | Recall | F1 Score
Apache 2.4.7 0.73 0.61 0.66
Apache 2.4.10 0.77 0.71 0.74
Lighttpd 1.4.18 0.33 0.67 0.44
Lighttpd 1.4.33 0.67 0.50 0.57

metrics can be observed in the following equations.

TP 11 _11_073 "
TP+FP 1144 15

(1) shows Scout has a precision of 73%. This is a significant
result as this shows that contactless active reconnaissance
can identifying vulnerabilities, usually found through active
reconnaissance. Although as can be seen by the precision,
these results may be inaccurate.

TP 11 1
TP+FN 11+7 18

(2) shows Scout has a recall of 61%. This is an important
result as this quantifies the comprehensiveness of the results
Scout. With a recall of 61% Scout is able to identify more
than half, close to two thirds, of the applicable vulnerabilities
for this Apache service.

Precision =

Recall =

=0.61 2)

1 2 X Precision x Recall 2 x0.73 x 0.61 _ 0.66 (3)
0.73 4+ 0.61

Precision + Recall

(3) shows Scout has an F-Measure of 66%, the effectiveness
of Scout can be quantified as nearly two-thirds of OpenVAS
however, this metric only applies to this configuration of an
Apache 2.4.7 service.

The results of the equations associated with data provided in
Table IV-VII are presented in Table VIII. Table VIII presents
a variance in results. In overall effectiveness, measured by
F1 score, the effectiveness ranged from a high of 74% for
Apache 2.4.10 to a low of 44% for Lighttpd 1.4.18. Closer
inspection of the data shows that reason for the moderate
range of F1 score is due to the significant range in precision.
Precision ranges from 33% to 77%, this 40% range is greater
that of the range for Recall, which is 29%. Overall, these
results indicate that Scout varies moderately in effectiveness
as vulnerability assessment tool, this variance is due to the
deviation in accuracy more so than the comprehensiveness.

D. Evaluation

From the prior experiments, the subsequent analysis and
comparison, Scout has shown to be a useful vulnerability as-
sessment tool. This can be supported through the comparative
assessment where Scout performed better than OpenVAS by
identifying more services. In the limited experiments in com-
parison to OpenVAS, a significant finding to emerge from this
comparison was the effectiveness of Scout to identify known
vulnerabilities. In this aspect Scout performed worse than
OpenVAS, however, the effectiveness of Scout measured in

TABLE IX
TooL COMPARISON
Tool Active | Passive | Custom Banner | CPE/CVE
Masscan oo . . .
ZMap coe o . .
Shodan . eoe o .
Censys o eoe o .
Nessus coe . o oo
OpenVAS eee o . eoe
ShoVAT o eoe . eoe
Scout . ooo oo ooo

F1-score ranged from 33-74%. Notwithstanding the limitation
to services located on port 80 and the lack of consideration for
vulnerabilities associated to transport medium, this comparison
suggests that there is a moderate to significant usefulness to
the results provided. This usefulness is enhanced by the novel
contactless approach which by design mitigates any impact
on the target network seen in a typical active vulnerability
assessment tool.

Although no interaction takes place between the Scout user
and the target systems, the information gained through the
operation of Scout may be used in conjunction with more
sophisticated tools and malicious intent [9]. The possibility
of this is perhaps increased through the lack of complexity
and knowledge required to operate Scout. Despite this, Scout
has the potential to be a useful security tool for both network
management and security auditing. Scout could be used in
reaction to a high-profile vulnerability’s release into the NVD
to locate any possible exploitation on an administered network.
Scout could be used in to demonstrate to organizations what
a potential malicious actor can see and what they may try to
exploit.

A natural progression of this project is to further develop
Scout in an effort to improve effectiveness and usefulness.
Greater effectiveness could be achieved through performing
text analysis on the NVD to identify configuration specific
vulnerabilities [32]. Greater usefulness could be achieved by
allowing a larger number of data sources to be cross-referenced
with a user-specified query, this could include incorporating
more ports provided by Censys.

To show the nature of Scout in comparison to other tools,
Table 9 contains a comparison comprising of tools mentioned
previously.

VI. RELATED RESEARCH

Through a series of published works, Genge and Endchescu
introduced the novel idea of identifying vulnerabilities pas-
sively through Internet-wide scanning data, culminating in
their tool known as ShoVAT [24], [33]-[35]. Until now,
ShoVAT is the only published work about a tool relying
solely upon an internet scanning project to identify known
vulnerabilities. ShoVAT takes Shodan input, hence the name,
and creates CPEs then associates them with known wvul-
nerabilities. The methodology implemented utilizes a vital
dependency on identifying version numbers, to correspond
with an entry in a hash table containing possible CPEs. Scout

differs from ShoVAT by using Censys over Shodan, this effects
the CPE manufacturing process as the banner for the service
is already processed by Censys. This redirects the dependency
from version numbers to vendor and product information.
Which results in consideration for the erroneous NVD and
incomplete service banner information. In the evaluation of
ShoVAT, several experiments were undertaken however, these
experiments could not be produced in this research due to the
lack of data given. Therefore, for the following experiments,
the data used is available via GitHub [27]. A criticism of
research published about ShoVAT is that it focuses too heavily
on the performance aspect of the tool over the accuracy [11].
As the performance of Scout is not within the scope of this
paper, Scout was not evaluated against ShoVAT in this aspect.
Williams, McMahon, Samtani, Patton and Chen use Shodan
in conjunction with the vulnerability assessment tool Nessus
to produce a scalable approach for identifying vulnerabilities
in IoT devices [36]. Their approach employed the use of 3
resourceful computers which took IP addresses provided by
IoT related Shodan queries which are then passed to Nessus.
In similar research conducted by Al-Alami, Hadi and Al-
Bahadili, their approach only employed the use of tailored
queries and did not make use of vulnerability assessment tools
[37].

They did not use an external vulnerability assessment tool.

VII. CONCLUSION

The aim of this research was to explore and evaluate how
well Internet-wide scanning projects could be used to identify
potential known-vulnerabilities. To accomplish this aim, the
creation of a novel tool, Scout, was undertaken. Scout utilizes
the Internet-wide scanning project Censys to source publicly
available services and the NVD in an attempt to assign these
services with applicable known vulnerabilities. The contactless
active approach employed by Scout has shown to be successful
by correctly identifying vulnerabilities in Internet services.

By investigating literature surrounding Internet-wide Scan-
ning, the main tools Censys and Shodan were identified.
Censys' was selected as the structured output data from the
Internet-wide scanning it provided was more useful than the
more extensive but raw Shodan information. Other instru-
mental findings to emerge from literature included that the
NVD is in fact rather flawed, with many inconsistencies which
impacted its usability for this type of work. To mitigate these
the issues when using the NVD for service banner analysis,
an approach from related work which utilized the Levenshtein
distance algorithm to perform approximate matching was
attempted [25].

The experiments undertook had a basis in research cited
throughout the methodology, with alterations made to create
a clear reproducible process [11], [24]. 3 distinct experiments
were conducted. 2 CPE creations experiments, one focused
on the accuracy and one experiment focused on obfuscated
banners. The last experiment focused on the accuracy, compre-
hensiveness, and effectiveness in relation to CVE assignment.
The reproducibility was furthered through the use of applicable

scientific measurements to quantify results. These metrics
allow for evaluation of similar tools such as OpenVAS. When
comparing Scout to OpenVAS at the ability to identify known-
vulnerabilities, Scout obtained an effectiveness of 74% for a
specific Apache service, this is a remarkable result considering
Scout does not correspond directly with the service. However,
this effectiveness ranges across results with a 44% effective-
ness observed against OpenVAS'findings on a Lighttpd 1.4.18.
The reason for this difference in effectiveness is mostly due
to the accuracy from which it is derived from, although the
comprehensiveness of the results also plays a part. These
statistics can also be used to evaluate the project as a whole
against the aim of the project, which is to evaluate how
well Internet-wide scanning results could be used to identify
potential known-vulnerabilities in Internet-connected systems.
In which it was successfully able to.

In future work, Scout will be updated with the ability to
analyse more diverse services through the use of a combination
of Internet-wide scanners including Shodan and ZoomEye. For
avenues of future research, experiments could be repeated to
further analyse the effectiveness of contactless active recon-
naissance against alternative vulnerability assessment methods.
This research could look to compare these tools across a
diverse test bed, including more diverse services including IoT
devices.

Scout is currently available to the public through the au-
thor’s personal Github [27].

REFERENCES

[1] K. Panetta, Gartner's top 10 security predictions 2016, Gartner blog 2016,
available at https://www.gartner.com/smarterwithgartner/top-10-security-
predictions-2016.

[2] N. Perlroth, and M. Scott, and S. Frenkel, Cyberattack hits ukraine
then spreads internationally, The New York Times, 2017, available at
https://www.nytimes.com/2017/06/27/technology/ransomwarehackers.html.

[3] Greenbone Networks, OpenVAS, 2005.

[4] Tenable, Nessus, 1998.

[5] Shodan.io, Shodan, 2009. [Online] Available: https://shodan.io. [Accessed
17- Mar- 2018].

[6] Censys.io, Censys, 2015. [Online] Available: https://censys.io. [Accessed
17- Mar- 2018].

[7] Z. Durumeric, and D. Adrian, and A. Mirian, and M. Bailey, and JA. Hal-
derman, A search engine backed by Internet-Wide scanning, Proceedings
of the 22nd ACM Conference on Computer and Communications, 2015,
pp-542-553.

[8] J. Matherly, Complete guide to Shodan. Leanpub, 2017, p.3.

[9] A. Tundis, and W. Mazurczyk, and M. Miihlhduser A Review of Network
Vulnerabilities Scanning Tools: Types, Capabilities and Functioning, Pro-
ceedings of the 13th International Conference on Availability, Reliability
and Security, 2018, pp65:1-65:10.

[10] Z. Durumeric, and F. Li, and J. Kasten, and J. Amann, and J. Beekmen,
and M. Payer, and N. Weaver, and D. Adrian, and V. Paxson, and M.
Bailey, and JA. Halderman, The Matter of Heartbleed, Proceedings of the
2014 Conference on Internet Measurement Conference, 2014, pp.475-488.

[11] K. Simon, and C. Moucha, and J. Keller, Contactless vulnerability
analysis using Google and Shodan, Journal of Universal Computer Science,
volume 23, issue 4, 2017, pp.404—-430.

[12] ZoomEye.org, ZoomEye - Cyberspace Search Engine, 2011. [Online]
Available: https://www.zoomeye.org. [Accessed 17- Mar- 2018].

[13] J. Matherly, Inside the world's most dangerous search engine, ShowMe-
Con, 2014.

[14] E. Bou-Harb, and M. Debbabi, and C. Assi, Cyber scanning: a compre-
hensive survey, IEEE Communications Surveys & Tutorials, volume 16,
issue 3, 2014, pp.1496-1519.

[15] R. Bodenheim, and J. Butts, and S. Dunlap, and B. Mullins, Evaluation
of the ability of the Shodan search engine to identify Internet-facing
industrial control devices, International Journal of Critical Infrastructure
Protection, volume 7, issue 2, 2014, pp.114-123.

[16] V. J. Ercolani and M. W. Patton and H. Chen, Shodan visualized, 2016
IEEE Conference on Intelligence and Security Informatics (ISI), 2016,
193-195.

[17] greynoise.io, Grey Noise Intelligence, 2017. [Online] Available:
https://greynoise.io. [Accessed 17- Mar- 2018].

[18] D. Adrian, and Z. Durumeric, and S. Gulshan, and JA. Halderman,
Zippier ZMap: Internet-wide scanning at 10 Gbps, Proceedings of the 8th
USENIX Conference on Offensive Technologies, USENIX, 2014.

[19] R. Graham, and P. McMillian, and D. Tentler, Mass scanning the
Internet, DEFCON 22, 2014.

[20] R. Graham, Masscan: designing my own crypto, Errata Security Blog,
2013. [Online] Available: https://blog.erratasec.com/2013/12/masscan-
designing-my-own-crypto.html. [Accessed 22- Feb- 2018].

[21] S. Na, and T. Kim, and H. Kim, A Study on the Service Identification
of Internet-Connected Devices Using Common Platform Enumeration,
Advanced Multimedia and Ubiquitous Engineering, 2017, pp.237-241.

[22] S. Na, and T. Kim, and H. Kim, Service Identification of Internet-
Connected Devices Based on Common Platform Enumeration, Journal of
Information Processing Systems, volume 14, issue 3, 2018, pp.740-750.

[23] M. Gawron, and F. Cheng, and C. Meinel, PVD: passive vulnerability
detection, 8th International Conference on Information and Communication
Systems (ICICS), 2017, pp.322-327.

[24] B. Genge, and C. Enachescu, ShoVAT: Shodan-based vulnerability
assessment tool for Internet-facing services, Security and Communication
Networks, volume 19, issue 15, 2016, pp.2696-2719.

[25] LAB. Sanguino, and R. Uetz, Software vulnerability analysis using CPE
and CVE, Computing Research Repository, 2017.

[26] A. Dulaunoy, and P. Moreels, and R. Vinot, cve-search project, 2016.
[Online] Available: https://www.cve-search.org. [Accessed 29- Feb- 2018]

[271 J. O'Hare, Scout, 2018. [Online] Available:
https://github.com/TheHairyJ/Scout. [Accessed 21- Aug- 2018]

[28] N. Antunes, and M. Vieira, Assessing and Comparing Vulnerability
Detection Tools for Web Services: Benchmarking Approach and Examples,
IEEE Transactions on Services Computing, volume 8, issue 2, 2015,
pp-269-283.

[29] N. Antunes, and M. Vieira, On the Metrics for Benchmarking Vulner-
ability Detection Tools, 45th Annual IEEE/IFIP International Conference
on Dependable Systems and Networks, 2015, pp.505-516.

[30] P. Nunes, and I. Medeiros, and J. C. Fonseca, and N. Neves, and
M. Correia, and M. Vieira, Benchmarking Static Analysis Tools for Web
Security, IEEE Transactions on Reliability, volume 67, issue 3, 2018,
pp-1159-1175.

[31] B. Cheikes, and D. Waltermire, and K. Scarfone Common plat-
form enumeration: Naming specification version 2.3. Technical Re-
port NIST Inter-agency Report 7695, NIST, 2011. [Online] Avail-
able: http:// csrc.nist.gov/publications/nistir/ ir7695/NISTIR-7695-CPE-
Naming.pdf. [Accessed 29- Feb- 2018]

[32] S. Huang, and H. Tang, and M. Zhang, and J. Tian, Text Clustering
on National Vulnerability Database, Second International Conference on
Computer Engineering and Applications, 2010, pp.285-299.

[33] B. Genge, and F. Graur, and C. Enachescu, Non-intrusive Techniques
for Vulnerability Assessment of Services in Distributed Systems, Procedia
Technology, volume 19, 2015, pp.12-19.

[34] B. Genge, and C. Endchescu, Non-Intrusive Historical Assessment of
Internet-Facing Services in the Internet of Things, 5th International Con-
ference on Recent Achievements in Mechatronics, Automation, Computer
Science and Robotics, volume 1, issue 1, 2015, pp.25-36.

[35] B. Genge, and P. Haller, and C. Endchescu, Beyond Internet Scanning:
Non-Intrusive Vulnerability Assessment of Internet-Facing Services, Inter-
national Journal of Information Security Science, volume 4, issue 3, 2015.

[36] R. Williams and E. McMahon and S. Samtani and M. Patton and H.
Chen, Identifying vulnerabilities of consumer Internet of Things (IoT)
devices: A scalable approach, 2017 IEEE International Conference on
Intelligence and Security Informatics (ISI), 2017, 179-181.

[37] H. Al-Alami and A. Hadi and H. Al-Bahadili, Vulnerability scanning of
IoT devices in Jordan using Shodan, 2017 2nd International Conference
on the Applications of Information Technology in Developing Renewable
Energy Processes Systems (IT-DREPS), 2017, 1-6.

