
Delft University of Technology
Software Engineering Research Group

Technical Report Series

Tool Support for Distributed Software
Engineering

Hans Spanjers, Maarten ter Huurne, Dan Bendas, Bas Graaf,
Marco Lormans, Rini van Solingen

Report TUD-SERG-2006-008

SERG

TUD-SERG-2006-008

Published, produced and distributed by:

Software Engineering Research Group
Department of Software Technology
Faculty of Electrical Engineering, Mathematics and Computer Science
Delft University of Technology
Mekelweg 4
2628 CD Delft
The Netherlands

ISSN 1872-5392

Software Engineering Research Group Technical Reports:
http://www.se.ewi.tudelft.nl/techreports/

For more information about the Software Engineering Research Group:
http://www.se.ewi.tudelft.nl/

c© copyright 2006, Software Engineering Research Group, Department of Software Technology, Faculty
of Electrical Engineering, Mathematics and Computer Science, Delft University of Technology. All rights
reserved. No part of this series may be reproduced in any form or by any means without prior written
permission of the publisher.

Tool Support for Distributed Software Engineering

Hans Spanjers and Maarten ter Huurne
Philips Applied Technologies

The Netherlands
{hans.spanjers,

maarten.ter.huurne}@philips.com

Dan Bendas
University of Oulu

 Finland
dan.bendas@oulu.fi

Bas Graaf and Marco Lormans
Delft University of Technology

The Netherlands
{b.s.graaf, m.lormans}@tudelft.nl

Rini van Solingen

LogicaCMG and Drenthe University
The Netherlands

rini.van.solingen@logicacmg.com
solingen.r.van@hsdrenthe.nl

Abstract

Developing a software system in collaboration with
other partners, and on different geographical locations
is a big challenge for organizations. In this article we
first discuss a system that automates build and test
processes: SoftFab. This system has been successfully
applied in practice in the context of multi-site projects.
Then, we discuss a case where it was applied to a more
challenging type of collaboration: a multi-partner
development environment. Furthermore, we investigate
the underlying concepts of SoftFab and use them to
define a list of features for systems that support
distributed software engineering.

1. Introduction

Many forces make software development more and
more an activity that is distributed over multiple
geographical locations. Examples of such forces are
acquisitions, outsourcing, mergers, time-to-market
(round-the-clock development), and the
(un)availability of a trained workforce [1][2].
Additionally, software is more and more developed in
collaboration with partners located at different
geographical locations. For example, within Philips an
internal prediction was made that within the next five
years, more than 90% of its software development is
done in some form of collaboration. This does not
mean that all software development is outsourced or
done by suppliers, but that less than 10% of Philips'
software will be completely developed internally.

Especially for software the trend towards
engineering on different sites and with different
partners is of interest, because software, compared to
hardware, has negligible reproduction and
transportation cost. Copying software code, reusing it,
and sending it around the globe can be done in a split
second and free of charge in a multi-site and multi-

partner development environment. But as simple as it
sounds, so difficult it is to apply this idea in a world
where cultural and time differences, intellectual
property interests, complex development
environments, confidentiality issues, and so on, make
collaboration difficult, leading to decreased
development performance [3].

A number of problems involved in multi-site
development have been described by Grinter et al. [4].
It appears that software engineering largely builds
upon informal communication. This informal
communication is essential for creating understanding
among developers of what is going on in their software
development processes, also referred to as
awareness [5]. For multi-site development, a lack of
such awareness leads to unexpected results from other
sites, resulting in, for example, misalignment and
rework [4]. Another problem for multi-site projects is
finding the right experts when they are needed. Such
communication problems not only exist for (remote)
multi-site development, they already exist when
developers are apart as little as 30 meters [6].

Beside communication, also technical issues play a
role. The use of different tools and data formats, for
instance, makes it difficult to easily exchange
information and development artifacts [7].

Different types of solutions exist for specific
distributed software engineering (DSE) problems.
Typically improvements can be realized in the
processes, technologies or organization of software
engineering [8]. Some of the difficulties related to
DSE can be addressed by the use of technical
infrastructures that explicitly support DSE. Such DSE
support systems should provide a means to connect the
software development environments of different
development organizations in a way that is both
acceptable and convenient for the collaborating
partners. This not only involves access to the created

SERG Spanjers et al. – Tool Support for Distributed Software Engineering

TUD-SERG-2006-008 1

software development products, but also access to
technical software development resources, such as
tools and test equipment. At the same time the different
development organizations should be able to stay in
control of the work products and resources located at
their site.

At Philips a system that was originally developed to
automate build and test processes, called SoftFab, is
now applied to support multi-site development as well.
Its web interface makes it particularly suited for such
projects. Already 40 projects at Philips have used
SoftFab in a multi-site setup and the results are
promising. Measurements show, for instance, that
projects using SoftFab can reduce the budget required
for testing by 30-35%. Therefore, we decided to take a
closer look at this DSE support system. We asked
ourselves the question: "If projects are so enthusiastic
about this DSE tooling, what are the underlying
concepts that make it successful?" We investigate the
applicability of SoftFab to other types of collaboration
that involve multiple partners, and take a closer look at
it to find out the reasons for its success, with the
intention to formulate them as features a DSE system
should provide.

The remainder of this paper is organized as follows.
In Section 2 we discuss related work. Then, in
Section 3 we provide an overview of SoftFab,
discussing the main parts of the SoftFab infrastructure
and its features that improve distributed software
development. In Section 4 we present a case study
describing experiences with SoftFab and show the
benefits and shortcomings of SoftFab in a multi-
partner environment. An extention to SoftFab, called
SkyFab, is introduced in Section 5 and in Section 6 we
discuss the features a multi-partner DSE support
system, such as SkyFab, should have. We end this
paper with a discussion in Section 7 and some
concluding remarks in Section 8.

2. Related Work

Research in the area of global and distributed
software development mainly addresses the lack of
informal communication in such settings. Proposed
solutions basically follow two strategies: 1) reduce the
need for informal communication, or 2) ease,
stimulate, and support informal communication, often
by the use of Internet technologies.

Grinter et al. [4] follow the first strategy by
proposing an organizational solution. They define
several coordination models for dividing the work
across the different sites. These models use different
dimensions along which to divide the work. The idea is

to co-locate work by the dimensions for which
coordination is most difficult, thus facilitating informal
communication for the coordination along that
dimension. Other types of coordination mechanisms
are then required to deal with coordination along the
other dimensions. Such mechanisms can be either
technical or procedural (processes). Interface
definitions are an example of such a mechanism. The
dimensions they propose are: functional area of
expertise (co-locate experts), product structure
(organization follows software architecture, c.f.
Conway’s Law [9]), and process steps (every site is
responsible for a (series) of development activities).

In practice typically multiple dimensions are
important leading to hybrid models. In the
customization model, for example, one site develops
the core product and other sites add features specific
for a certain customer base. This model divides work
along the process steps as well as the product structure
dimensions.

The distribution of work across different sites
inevitably introduces the need to transfer work
products from one site to the other. Hand-off points
define how and when sites perform these transfers and
also specify the requirements for the involved work
products [4]. Many technical solutions can be found to
support the handling of these hand-off points.

Typically industrial companies develop their own
supporting infrastructure for DSE. Fujitsu, for example
has developed such a system [7][10]. This solution
uses internet technology to allow for remote access to
software development products and resources, within
their company. Their work is focused on the technical
challenges and does not specifically address multi-
partner DSE.

Other research work on tool support for distributed
software engineering often uses standard internet
technologies or groupware technologies, such as peer-
to-peer [11]. Lanubile et al. [12] present a web-based
support system for distributed software inspection that
supports both synchronous and asynchronous
communication between the inspectors.

The tool we present not only allows communication
by sharing of information, but in a sense also alleviates
the need for informal communication by improving
awareness [5] in an alternative way.

Next to an organizational and technological
perspective, DSE problems can also be addressed from
a process-based perspective, i.e. by deploying software
engineering processes that explicitly support DSE. The
CMMI, for instance, addresses some DSE problems in
the process areas: Supplier Agreement Management
and Integrated Supplier Management [13].

Spanjers et al. – Tool Support for Distributed Software Engineering SERG

2 TUD-SERG-2006-008

3. SoftFab: A DSE Infrastructure for
Automated Building and Testing

At Philips a software infrastructure is used to automate
testing and building. This infrastructure, which is
called SoftFab, enables projects to automate the build
and test process, and control them remotely. SoftFab
has been applied already in more than 40 projects.
Figure 1 shows the SoftFab architecture. We call a
SoftFab installation a “factory”; each factory consists
of the following major parts:
1. A Control Center (CC) for managing and

controlling the factory
2. One or more Factory PC’s (FPC’s) capable of

performing one or more tasks
3. A network for connecting the Control Center and

all the Factory PC’s
The Control Center is a central server that manages

all the tasks involved in the test and build process. A
task can be anything as long as it is finite and produces
a result that can be interpreted by the Control Center.
Tasks typically compile source code, execute tests, or
transfer files. All defined tasks are stored in a database.
SoftFab users can interact with SoftFab via a web
interface. This interface allows users to define the
properties of tasks (e.g., location of input files), cluster
tasks that are often used together and schedule jobs for
execution. Jobs execute a single task or a group of
tasks. The web interface makes it possible to control
these processes remotely in multi-site environments.

The results of build and test tasks are also available via
the web interface, giving all sites access to reports and
log files. Role-based access rights ensure that selected
users can manage or operate the SoftFab, while others
are only allowed to track the status of jobs.

Figure 2 shows the execution queue in the main
view of the SoftFab web interface. It contains a list of
recent jobs that are either waiting, currently in
execution, or finalized. Jobs are composed from
individual tasks, which are simple, atomic activities,
performed on Factory PC’s. The progress of a job can
be tracked by its tasks in the “status” column of the
execution queue, where individual tasks are
represented as vertical bars. A coloring scheme is used
to indicate the status of a job. As tasks are completed,
their color changes from white (waiting), via blue
(executing), to green (complete success), orange
(success with warnings) or red (failure). Failure of a
task can prevent other tasks from executing, for
example if a build fails then there is nothing to test.

Each executed job is stored together with all its
configuration parameters, task results and reports,
which can be inspected later. Figure 3 shows this job
view for a specific job. It shows involved tasks, inputs,
and links to the generated reports. This view represents
a single line (job) from the job list in Figure 2 and can
be opened by simply clicking that line.

A Factory PC is capable of performing one or more
tasks. As such, it can be seen as a software
development resource offering a specific set of
capabilities. The Factory PC’s in a factory are

Figure 1. SoftFab architecture

SERG Spanjers et al. – Tool Support for Distributed Software Engineering

TUD-SERG-2006-008 3

connected via a network to the Control Center for
exchanging information. Factory PC’s are connected
via standard network protocols, making it irrelevant
where they are located and straightforward to set up a
distributed factory.

Via Factory PC’s, the SoftFab infrastructure
interacts with the actual test and build tools. These
tools are used as plug-ins in the SoftFab architecture.
For the integration of specific tools and test equipment
(SUT) it is necessary to develop glue-ware (wrappers)
to allow SoftFab to interact with them. Besides tools,
also test equipment can be made available via Factory
PC’s. As such, the capabilities a Factory PC offers are
determined by what software is installed on it and what
hardware is connected to it. On the other hand, a task
defined on the Control Center requires a certain set of
capabilities. The Control Center uses these capabilities
to assign tasks to appropriate Factory PC’s.

Besides the web interface, a Control Center also
offers a programmable interface (API) that makes it
possible to automate the control of a SoftFab. This
makes it possible to integrate SoftFab in existing
automated processes.

The Control Center is implemented in Python and
the software that runs on the Factory PC is
implemented in Java. It can be deployed on various
operating systems, even multiple operating systems
within a single factory. Furthermore, it is based on an
open architecture: wrappers allow any tool that has a
programmable interface (command line, COM, SOAP,
etc.) to be integrated in SoftFab, enabling usage of
both off-the-shelf development tools and in-house
developed tools. Many wrappers are already available
for mainstream development tools including Make,
Doxygen, and JUnit. New ones can be developed by

users, making SoftFab an effective backbone for tool
interoperability.

Features of SoftFab that improve distributed
software engineering include:
• The execution view displays the current activities

at other locations, informing about the status of
work and thereby increasing awareness.

• Engineers at different sites have access to the
same reports and log files through their web
browsers, facilitating communication.

• Work products and resources can be accessed,
regardless of location, local time, language or
availability of human resources.

• The Control Center coordinates tasks involving
distributed resources, such as tasks involving
building and testing executed on different
computers, possibly on different sites.

• An overview of build and test procedures (tasks)
is available on the Control Center. All details of
the procedures are contained in the wrappers. This
makes implicit knowledge explicit, facilitating
new employees’ training and allowing procedures
to be easily transferred to other project teams.

• In-depth knowledge of a task is only required for
initial implementation and for maintenance of
associated wrappers, not for their execution.
Therefore, tasks can be run by any user, without
depending on the availability of an expert.

4. SoftFab Experiences

SoftFab’s possibilities for DSE support can best be
illustrated by a real-life example. In Finland we
conducted a case study to investigate the applicability

Figure 2. Main view Figure 3. Job view

Spanjers et al. – Tool Support for Distributed Software Engineering SERG

4 TUD-SERG-2006-008

of SoftFab in collaborations that involve multiple
partners. Due to, for example, intellectual property
interests and confidentiality issues such collaborations
pose extra requirements to DSE support systems
compared to single-company, multi-site projects. We
use this case study to explain the problems that are
encountered in such a collaboration, and how SoftFab
is setup and used. The case study involved three
partners, each on a different development site:
• System integrator. Develops environment aware

applications for smartphones.
• COTS supplier. Sells a database management

system for mobile and embedded applications.
• Testing subcontractor. A research group at a

university, which is specialized in software
testing.

In our case study the system integrator replaces a
certain layer of one of its mobile products with the data
management solution developed by the COTS supplier.
The testing subcontractor provides services related to
the validation of the integrated product by executing
tests and measuring performance for different software
configurations. This migration project uses SoftFab as
infrastructure.

One SoftFab factory is distributed over the COTS
supplier and system integrator to share the releases of
the COTS components. Another SoftFab factory is
distributed over the integrator and the testing
subcontractor. The first collaboration focuses primarily
on the sharing of work products. The latter also allows
the integrator to use the resources of the subcontractor.
In the remainder we will focus on the latter as this
application is more complex.

For deploying the SoftFab infrastructure a couple of
activities need to be done at every site:
• Training of employees and analyzing the existing

building and testing procedures.
• Installation and configuration of the SoftFab

software on Control Center and Factory PC’s.
• Development of scripts to automate several tasks

previously preformed manually (e.g., retrieving
configurations, or deploying installation packages
to target devices).

• Development of wrappers linking existing
automated tasks to SoftFab.

For the collaboration between the testing
subcontractor and the integrator a testing facility is
build at the subcontractor’s site, which is connected to
the integrator’s site using SoftFab. The SoftFab
Control Center is situated at the integrator’s site, in a
demilitarized zone (DMZ) that is accessible from
outside of the company’s intranet, and also acts as a

bridge for transferring files over the firewall. One
Factory PC is available at the same location, having
access to company specific assets and tools. A
computer at the subcontractor is connected as a second
Factory PC. Its capabilities are limited to importing
files from other locations and deploying and executing
applications on target devices.

Via SoftFab the testing subcontractor can use
Factory PC’s at the integrator’s site to build
components from arbitrary versions of the source code,
which can be used to build and test any version of the
system. At the other site, the integrator can remotely
execute tests at the subcontractor’s site, using different
versions of target hardware. Without SoftFab this
would have required the integrator to request a test
from the subcontractor. Then, the subcontractor has to
wait for the right version of the application to be send,
after which it can be tested and the test results
returned. This illustrates that SoftFab can speed up the
integration process significantly.

The mobile application is built at the integrator site
from source code stored in their configuration
management system, using their tools, licenses and
scripts. The parameters for this task, such as product
versions, library versions, and hard-coded constant
values can be specified. After the application is built
and packaged as a binary installation file, it is
encrypted and exported to the subcontractor’s Factory
PC. In the final phase the install package is deployed
on a target device via a Bluetooth link, after which the
application can be executed for testing. This complete
scenario can be controlled from a single (remote)
location using SoftFab’s web interface.

The testing subcontractor and the integrator used
different types of tools that were easily plugged into
the local SoftFab infrastructure by writing wrappers
using their command line interface.

The benefits of this setup were especially visible
during one specific experience at the subcontractor
during a complete build-deploy-run cycle. This
operation failed at the point where the binary should
have been transferred outside from the integrator’s
intranet to the test equipment at the subcontractor’s
site. SoftFab’s job view (see Figure 3) revealed that
one of the engineers at the integrator’s site was already
re-executing some of the tasks involved in this job. So,
somebody already noticed the problem and was busy
fixing it. No telephone or email was required to
understand the situation, to see latest progress, or to
know that a solution was on the way.

This example shows that SoftFab increases
developers’ awareness, without the need for informal
communication. Partners are able to understand the

SERG Spanjers et al. – Tool Support for Distributed Software Engineering

TUD-SERG-2006-008 5

situation based on the information shown by SoftFab
and take action if needed.

We have used SoftFab in this case study in a multi-
partner collaboration. This is a different type of
collaboration than for which SoftFab was developed
until now. Obviously, the partners involved also
identified some shortcomings:
• All partners have the same level of access to all

resources. Some partners wanted to have more
control over their own Factory PC’s. This is
especially important when a project has to deliver
to multiple customers.

• All partners have access to all work products. In
general, however, partners require more control on
sharing of work products, for instance, the ability
to allow sharing between Factory PC’s within one
partner, but to limit sharing between different
partners.

• Implementation details of processes of one partner
are visible for all partners. It might take several
tasks to produce a particular work product. This is
not relevant for other partners; only the final
product is. The processes of each partner need to
be encapsulated, hiding its inner workings. Each
partner should be able to control which of its tasks
and work products are visible from the outside for
reasons of sensitivity (IP) and clarity (abstracting
from implementation details).

5. SkyFab: A Support System for Multi-

Partner DSE

It turned out that the application of SoftFab in a
collaborative environment with multiple companies
was more difficult than collaboration within a single
company. This suggests that there are different types
of collaboration possible that might require specific
support from a DSE infrastructure. Table 1 presents
three collaboration levels and summarizes what is
shared at each level. The levels are ordered according

to their scope of sharing: the larger the sharing scope,
the more difficult the collaboration.

A standard SoftFab setup, as discussed earlier,
easily shares several resources, data, and procedures
(e.g., via test scripts). Typically, every project
implements its own factory. At Philips, SoftFab has
also been used to share resources between projects. In
such a case, each project owns a factory and the
Factory PC controlling the resource is listening to the
Control Centers of both projects, sharing the unique
resource transparently for the end-user. The most
challenging level of sharing, the collaboration between
multiple partners (companies, universities, and so on),
requires some additional features. A Multi-Partner
DSE (MP-DSE) support system providing those
features is currently being implemented as an extended
version of SoftFab, and is called SkyFab.

The involvement of multiple partners makes
software development more complex, for instance,
when partners have their own policies on security and
protection of intellectual property. To address this
SkyFab will allow each partner to implement its own
local factory behind a corporate firewall. A globally
shared SkyFab Control Center is placed in a DMZ and
is connected to the Control Centers of the local
factories, thus forming a hierarchy of SoftFabs. Now
one can run a job of which the tasks are executed in
different partners’ factories using the local available
resources without breaking the partner’s security rules.
Figure 4 shows the architecture of a SkyFab factory.
The setup of our case study can be seen as an
intermediate step towards this architecture.

6. Features of a MP-DSE Support System

Below we list a set of desirable features for MP-
DSE support systems. These features not only follow
from the case study discussed above, but also from the
experience of using SoftFab in about 40 different
projects at Philips. Some of these features are
supported by SoftFab; others are not supported by
SoftFab, but appeared to be desirable in practice.
These will be implemented in SkyFab.

6.1. Work product sharing

When software is developed collaboratively, work
products (designs, documents, test results, code,
executables, etc.) need to be shared among the
different development sites. In our case study, for
instance, the testing subcontractor can only test the
application when the executable binaries, compiled at
the integrator’s site, are provided. This does not mean,
that everything needs to be shared, it means that

Scope Terminology Sharing and collaboration

multi-
site SoftFab

• ‘standard’ SoftFab benefits
• test equipment, tools, test

cases, test data
multi-
project

inter factory
resource sharing

• software licenses
• equipment

multi-
partner SkyFab

• software development
processes and procedures,

• test equipment, tools, test
cases, test data

• protection of IP
• respecting firewalls

Table 1. Collaboration scope

Spanjers et al. – Tool Support for Distributed Software Engineering SERG

6 TUD-SERG-2006-008

sharing of work products needs to be decided upon and
organized, i.e. handoff points [4] need to be defined.
Sharing can be downloading or uploading of work
products.

In SoftFab sharing of work products is already
arranged both explicitly and transparently (and as
extension to SoftFab, SkyFab has this ability as well).
On the one hand, it is possible to explicitly define tasks
that have the purpose of retrieving information from,
e.g., a configuration management system and deliver
the result via the web interface. On the other hand,
tasks can be configured to require input from the site
of a partner. During task execution this input is then
retrieved transparently for the user.

6.2. Development resource sharing

Each partner typically has its own development
tools and equipment, which are often even different
between sites of one partner. Especially for embedded
software development it can be difficult and expensive
to replicate test environments on different sites, which,
in turn, makes it difficult to reproduce test results on
the different locations. In our case study, for instance,
a testing facility was only available at the testing
subcontractor’s site. DSE support systems must be able
to deal with these different technical environments
without requiring technical expansions on other sites.
In a collaborative environment, especially in the case
of a multi-partner collaboration, one cannot expect
other partners to rigorously change or expand their
technical development environment.

Therefore, in some cases, collaborating partners
should be able to start and control tasks such as
compiling, building, testing, code generation, static

analysis, etc. at other sites. This does not mean that
every task must be fully remotely accessible or
controllable, but it means that a dedicated selection of
these tasks should be externally executable. As such,
the testing subcontractor was able to compile a specific
version of the application to test using the integrator’s
build environment remotely. The configuration of the
tasks and their required tooling is the responsibility of
the site where a task runs. Executing a task typically
produces a work product, which again can be shared.

In a multi-site SoftFab setup, this is supported via
the access to and control over the Factory PC's in other
sites. Each Factory PC declares its capabilities
explicitly: it declares which tasks it is able to perform
and which output it is able to produce based on which
inputs. In SkyFab a hierarchy of SoftFab factories will
be introduced, enabling one partner to execute tasks in
the local factory of another partner. This allows a
partner to share its development resources, without
releasing all control over them (see also Sec. 6.3).

6.3. Product and resource access control

Although it is necessary to share work products and
resources between partners, not everything needs to be
shared. A specific partner will need to allow access
certain work products and resources. However, due to
confidentiality issues, every partner needs to be in
control of the accessibility of their work products and
resources. Especially, when considering distributed
development with different partners this is an
important issue, as intellectual property or business
interests, for instance, need to be protected. In our case
study, for example, the source code of the product
under test was not disclosed to the testing partner.

FPC

Local So ftFab C C

SU T
Tools

SU T
ToolsTools

AP I

Local So ftFab Factory

SkyFab C C

Local Facto ryLoca l FactoryLocal Facto ry

F ile server

D MZ

Figure 4. SkyFab architecture

SERG Spanjers et al. – Tool Support for Distributed Software Engineering

TUD-SERG-2006-008 7

The role-based access rights mechanism in SoftFab
currently defines three fixed roles. This is not
sufficient for multi-partner collaborations, where a
specific partner wants to control access to his local
factory for each partner separately. In SkyFab access
rights will be more fine-grained and will be managed
per individual user. SkyFab uses a local SoftFab
factory per partner. Each local Control Center serves
as a kind of gatekeeper to the working environment at
a specific site. Certain processes and work products
can be shared with the other partners, while others
remain private. It allows the other partners to execute
operations on certain data and retrieve the results,
without the need to access the data directly.

6.4. Heterogeneous environment support

Each partner has its own software development
infrastructure. Some of the differences originate in the
different role each partner plays in the collaboration,
requiring different technical solutions.
Homogenization of systems is not a solution: it would
disrupt established ways of working and invalidate
past investments, in addition to ignoring the fact that
the diverse skills of the different partners are key to
making a collaboration perform better than a single
partner could. Thus, DSE tools should be based on an
open architecture, allowing interaction with different
systems from multiple vendors running on different
platforms. This is especially important for MP-DSE.

SoftFab supports this by storing results in the native
format of a tool. For example, test results are stored in
the test report format of the specific test tool, typically
a plain text, HTML or PDF. The result document is
then accessible to other sites, for instance, via a web
server. Other sites do not need to have licenses for
these other tools but still are able to create and access
the results. Furthermore, SoftFab enables a partner to
execute test processes that use tools and equipment at a
remote partners' site. One partner, for example, can test
software in the test environment of other partners,
without having the licenses for the involved tools.

6.5. Real-time status updating

Collaboration between sites and especially between
partners requires a continuous insight in status of work
and work products. In non-distributed settings this
awareness is created by informal communication via
email, telephone and in face-to-face meetings. DSE
support systems should compensate for the lack of
informal communication between remote locations and
enable transparency in work carried out and the work
products being produced, in order to increase

developers’ awareness. An example of tool-mediated
awareness was presented in Section 4.

SoftFab supports this by providing on-line insight
into the work carried out at other sites, showing status
and result overviews of tasks carried out (see again
Figure 2 and Figure 3). Depending on users’ access
rights (see also Sec. 6.3), they are able to access these
overviews to find out what has been done and what the
result are of the tasks executed. As developers can see
for themselves what is going on, there is no need to
consult other sites just to know the current status. They
do not need to ask; SoftFab simply shows it.

Naturally, for more complex tasks, such as
analyzing a difficult bug, direct communication
between partners is still required. In such cases,
SoftFab helps by providing a clearly labeled status
overview of the tasks that were executed on all sites,
and by providing access to all reports and log files to
all developers involved. This avoids
misunderstandings (“which version are we talking
about?”) and allows engineers to focus on the problem
only.

6.6. Consistency and timeliness management

In our case study, the testing subcontractor needed
to run its regression tests against the latest release of
the product as well as against previous versions. As
such, the subcontractor needs the correct versions of
the application to be easily available.

If operations on software development data can be
remotely executed, the need to physically distribute
that data disappears. Sites are able to acquire work
products when needed. Version checks will not be
necessary, because the tested product is directly and
remotely built from the configuration management
system at the development site. Differences and delays
due to development at different continents and time
zones are overcome when a DSE support system is
able to manage consistency and timeliness of work
products automatically.

In SoftFab consistency is supported by ensuring
that the actual developer or maintainer of a work
product has it physically on its own site and allows
sharing it with others. In case of sharing of resources,
consistency and timeliness is managed by ensuring that
the owning site also develops and maintains its
resources. Additionally, the automation of tasks makes
developers independent of the presence of people at
other sites.

6.7. Knowledge transfer

The knowledge and experience of developers is
incorporated in the work products they produce. The

Spanjers et al. – Tool Support for Distributed Software Engineering SERG

8 TUD-SERG-2006-008

same applies to automated scripts used in a DSE
support system. As such, the tasks that are
incorporated in a DSE support system should hide
complexity from their users. When this is done
correctly, the transferability of work processes and
sometimes of complete projects increases. When tasks
are not automated, not archived and not documented in
a standardized way, transferability of work products is
only feasible face-to-face by teaching and handing
over. By putting the knowledge in a standardized way
into scripts, users can (remotely) control and execute
these work processes without the need to understand
their content. As such, complexity is hidden,
increasing the transferability of work.

SoftFab supports this by standardized scripts
(wrappers) that can be executed remotely, but are
maintained locally.

7. Discussion

A set of features for MP-DSE has been introduced
in Section 6 of this paper. The need for each individual
feature differs for each application of MP-DSE.
Naturally, the ability to share information is a
necessary condition for any collaboration. However,
many solutions offer that feature, a simple FTP-server
would suffice. The other features are more specifically
aimed at support for distributed software engineering.

For instance, the ability to share technical software
development resources — together with work product
sharing the most important feature of SoftFab —
solves a number of practical problems often
encountered in multi-site development project, such as
the difficulty of replicating build and test environments
on multiple sites. The ability to share both work
products and resources, sets SoftFab apart from many
other systems that can be used to support distributed
software development, such as groupware systems.

Support for heterogeneous development
environments is obviously only necessary in situations
where the technical environments used at the different
sites in a collaboration are actually different. A similar
argument holds for fine-grained control of access to
work products and resources, which is primarily
relevant in cases were intellectual property is an issue.

Real-time status updates and consistent and timely
access to work products are features that are not
absolutely necessary, but they are very useful to
increase the awareness of developers at different sites.

Finally, support for transfer of work processes
makes it easier to hand-over a project to another site or
to a customer, for instance, when a product has been
delivered and enters the maintenance phase of the

software life-cycle. Thus, indirectly such a feature
improves its maintainability.

The need for the above features potentially exists in
every phase of the software life-cycle, not only for
building and testing. Currently, SoftFab mainly
supports the build and test phases of a software
project. Support for other phases is constrained by one
limitation: if it cannot be controlled remotely (so at
least partly automated), SoftFab cannot deal with it.
Therefore, the applicability of SoftFab to other
development phases strongly depends on the usage of
automated tools in those phases. Previous research
shows that in the early phases of the life-cycle, i.e.,
requirements engineering and architecture
development, tool support is still limited [14]. During
later phases usage of automated tools is more common.
As SoftFab builds upon remote control and access, it
largely builds upon automated tooling. So it seems that
the applicability and benefit of SoftFab lies in later
phases of the life-cycle.

However, more tools are expected to be used in
earlier phases as well. For instance, if we consider the
trend of model-driven development, and OMG’s
model-driven architecture (MDA) [15] in particular,
we see that tool vendors develop more and more tools
to be applied during architecture development. These
tools automate development tasks, such as model
transformation and code generation.

Also in the area of requirements engineering some
software engineering activities are amenable for
support by SoftFab. One of them is coverage analysis:
determining the extent to which requirements are
covered by other (downstream) work products. Tools
for doing this automatically are being developed, e.g.,
[16]. By connecting such tools, a DSE support system
could help to provide up-to-date status views of the
requirements coverage of a software system under
development. The underlying (potentially confidential)
information does not have to be shown in a shared
report, but it can be used for generating the coverage
view. This way the actual progress of a project in
terms of addressed requirements can constantly be
monitored during the life-cycle.

SoftFab and SkyFab support such future
developments by sharing the control and results of
automated software engineering tasks. However, it
should be remembered that even when the features
discussed in this paper are all fully supported by a DSE
support system, successful collaboration cannot be
guaranteed. The success lies in the way the DSE
support system is used, which is largely determined by
the willingness of companies to collaborate, and their
openness towards and confidence in each other.

SERG Spanjers et al. – Tool Support for Distributed Software Engineering

TUD-SERG-2006-008 9

8. Conclusions

DSE support is of large interest for today's industry.
Software has an intrinsic power due to its relatively
cheap reproduction and transportation cost. To fully
benefit from this strength, DSE support systems need
to be deployed, even across company borders. The
SoftFab infrastructure discussed in this paper is based
on industrial multi-site practice. It has been applied
many times to full satisfaction of the involved partners.
Furthermore, we discussed SkyFab based on the
application of SoftFab as a MP-DSE support system.

Based on Philips’ experience, using a system such
as SoftFab to connect the development environments
of partners that develop software in collaboration,
while they maintain self-control, has great potentials to
speed up software development. As such, we conclude
that the road towards profitable, faster and more
reliable software development lies in collaboration.
DSE support systems are needed for that, preferably
developed and build upon industrial best-practices.

We consider following to be our main
contributions:
• We discussed SoftFab, an infrastructure for

automating the build and test process.
• We illustrated the possibilities of SoftFab in a case

study, revealing the strengths and the weakness of
SoftFab in a multi-partner setting.

• We proposed an extended version of SoftFab,
SkyFab, that addresses the issues revealed in the
multi-partner case study, and identified three
levels of collaboration that are relevant for MP-
DSE support systems

• We introduced and analyzed seven features of a
MP-DSE support system, giving a good overview
of the requirements for developing or selecting
such a support system.

In future research we will expand and implement
the SkyFab concept. Currently, we are further evolving
SoftFab into SkyFab. In this industrial case study we
implement the features we identified to overcome the
difficulties we encountered when applying SoftFab as-
is in a multi-partner environment. After that we will
investigate how to extend SkyFab to support other
software development phases, as discussed in Section
7. We are already developing an application for
analyzing and monitoring requirements in a distributed
software development setting.

Acknowledgements

We would like to thank the ITEA organization and
the national public authorities for enabling and
supporting MERLIN (http://www.merlinproject.org/).

Partial support was obtained from NWO Jacquard,
project Reconstructor.

References

[1] Erran Carmel. Global Software Teams: Collaborating

Across Borders and Time Zones. Prentice Hall, 1999.
[2] James D. Herbsleb and Deependra Moitra. Global

Software Development. IEEE Software, 18(2):16-20,
March 2001.

[3] James D. Herbsleb and Audris Mockus. An Empirical
Study of Speed and Communication in Globally
Distributed Software Development. IEEE Trans.
Software Engineering, 29(6):481-494, June 2003.

[4] Rebecca E. Grinter, James D. Herbsleb, and Dewayne
E. Perry. The Geography of Coordination: Dealing with
Distance in R&D Work. Proc. Int’l Conf. Supporting
Group Work (GROUP'99). ACM Press, 1999.

[5] James Chisan and Daniela Damian. Towards a Model of
Awareness Support of Software Development in GSD.
Proc. 3rd Int’l Workshop Global Software Development
(GSD2004), pp. 28-33, 2004.

[6] Thomas J. Allen. Managing the Flow of Technology:
Technology Transfer and the Dissemination of
Technological Information within the R&D
Organization. MIT Press, 1977.

[7] Jerry Z. Gao, Fukao Itaru, and Y. Toyoshima. Managing
Problems for Global Software Production – Experience
and Lessons. Information Technology and Management,
3(1-2):85-112, January 2002.

[8] W.S. Humphrey. Managing the Software Process.
Addison-Wesley, 1989.

[9] Melvin E. Conway. How Do Committees Invent?
Datamation, 14(4):28-31, 1968.

[10] Jerry Z. Gao, Cris Chen, and David K. Leung.
Engineering on the Internet for Global Software
Production. IEEE Computer, 32(5):38-47, May 1999.

[11] F. Lanubile. A P2P Toolset for Distributed
Requirements Elicitation. Proc. 2nd Int’l Workshop
Global Software Development (GSD 2003), pp. 12-15,
2003.

[12] Filippo Lanubile, Teresa Mallardo, and Fabio Calefato.
Tool Support for Geographically Dispersed Inspection
Teams. Software Process Improvement and Practice,
8(4):217-231, October 2003.

[13] Mary Beth Chrissis, Bart Broekman, Sandy Shrum, and
Mike Konrad. CMMI: Guidelines for Process
Integration and Product Improvement. Addison-Wesley,
2003.

[14] Bas Graaf, Marco Lormans, and Hans Toetenel.
Embedded Software Engineering: The State of the
Practice. IEEE Software, 20(6):61-69, November 2003.

[15] OMG. MDA, http://www.omg.org/mda/, 2006.
[16] Marco Lormans and Arie van Deursen. Reconstructing

Requirements Coverage Views from Design and Test
using Traceability Recovery via LSI. Proc. Int’l
Workshop Traceability in Emerging Forms of Software
Engineering (TEFSE'05), November 2005.

Spanjers et al. – Tool Support for Distributed Software Engineering SERG

10 TUD-SERG-2006-008

TUD-SERG-2006-008
ISSN 1872-5392 SERG

