
Integration Starts on Day One in Global Software Development Projects

Olly Gotel1, Vidya Kulkarni2, Christelle Scharff1, Longchrea Neak3
1Pace University, New York, NY, USA, {ogotel; cscharff}@pace.edu

2University of Delhi, Delhi, India, vkulkarni@cs.du.ac.in
3Institute of Technology of Cambodia, Phnom Penh, Cambodia, longchrea@itc.edu.kh

Abstract

Since 2005, Pace University, Delhi University and

the Institute of Technology of Cambodia have been

partnering to offer students the opportunity to work on

globally distributed software development projects.

The innovative collaborative model has evolved

towards an emphasis on technology mashups for

development and communication, mentoring and

auditing for assuring quality, and team and software

integration for right-sourcing. This paper describes a

project where students working in sub-teams were

required to integrate their sub-components as a single

system for a Cambodian environment. Furthermore, a

well-defined design sub-component was subject to a

competitive bidding process in an attempt to enhance

quality though design diversity. The paper reports on

our findings and summarizes the dos and don'ts

associated with integration. Both team and software

integration needs careful attention from day one on a

project, a finding that has repercussions for

educational and industrial practice.

1. Introduction and Motivation

Within the last decade, advances in technologies

and communications to support software development,

coupled with economical incentives, have facilitated

the global dispersion of activities and the emergence of

global software development as a reality. Software

development now entails mashups of technologies and

is multi-role, multi-zone, multi-site and multi-cultural,

with all the ensuing opportunities and challenges such

scenarios present. Global teams distributed throughout

different continents need to unite and work as one to

integrate components and applications. This not only

requires reaching a consensus on the collaborative

technologies to be used to support development and

communication, but sufficient attention to integration

planning at many levels.

Three years ago, faculty at Pace University, Delhi

University and the Institute of Technology of

Cambodia started collaborating to introduce global

software development projects in their courses

[4,5,6,7]. The setting of the projects was such that

Cambodian students acted as clients and testers, US

students acted as developers and lead contractors, and

Indian students were sub-contractors for a well-defined

component of a larger project (for the Cambodian

context). During this period, the innovative

collaborative model evolved to explore the use and

perception of using different mashups of technologies

for development and communication [5], and to include

a quality assurance focus through mentoring and

auditing [4]. In 2007, the thirty-four students

distributed across the three countries worked together

on a single software development project to be

deployed in Cambodia. The wiki of the project is at:

http://atlantis.seidenberg.pace.edu/wiki/gsd2007. The

project was split up into smaller components that

needed to be worked on independently and eventually

integrated. The goals for orchestrating one large

project, as opposed to many small projects, were to: (a)

Get the students thinking about integration at disparate

levels. The primary motivation was for students to

experience the differences in planning and undertaking

integration activities in co-located settings and the

integration of globally engineered components. In

addition, to experience how to plan for the integration

of future requirements in subsequent releases of a

software; and (b) Get the students distributed across the

three continents working as a single team with a shared

goal, as opposed to working on fragmented projects

with unaligned goals. The intention was to educate

students about the importance of integration at a more

fundamental and social level, both locally and globally,

as a prerequisite for achieving technical integration.

Giving students such global software development

experiences has become a growing trend [2,3]. Less

attention has been paid, however, to multi-site, multi-

cultural set-ups that focus on getting the students to

work on a single project. Our project is a first attempt

at running a single distributed project for students

across countries that are positioned at completely

different levels on the offshore outsourcing field, a

setting that presents very unique integration challenges.

Section 2 provides background to our 2007 project

setting. The points of integration we were concerned

with exploring are presented in Section 3. Section 4

shows our findings from the experience and Section 5

determines a list of dos and don’ts for integration

planning and practice on projects of this nature.

2. Context

This section provides a brief synopsis of the 2007

project set up to provide context for this paper.

Students and courses. The project involved: (a)

thirteen fourth year Computer Science students from

the Institute of Technology of Cambodia (ITC)

(http://www.itc.edu.kh) taking a Software Engineering

course; (b) eight junior and senior Computer Science

students from Pace University (http://www.pace.edu)

taking their capstone Software Engineering course; (c)

six second year Master of Computer Applications

students studying a Database Applications course at the

University of Delhi (http://www.du.ac.in); and (d)

seven graduate students from a Masters Program in

Software Design and Engineering taking a Software

Quality Assurance (SQA) course at Pace University.

Software to be developed. The students were to

collaboratively develop a web-based application, called

MultiLIB, for the management of the library of the

Department of Computer Science at ITC. MultiLIB

was to be used by guests, students, professors, the

secretary/librarian and administrators. It was to replace

an existing Excel-based system.

Sub-systems. The development effort was

partitioned in the following way (a decision imposed by

the Cambodian instructor): (a) Librarian/

Administrator side – for management of the library

policies, resources, accounts and loan transactions; (b)

Guest/Student/ Professor side – to view, reserve, rate

and recommend resources and to consult accounts’

status; and (c) Innovation side – to view electronic

resources, such as e-books, audio and video. This latter

side was to envision innovative features for version 2.0

of MultiLIB to account for other media.

Teams and Responsibilities. The Cambodian

students, split into three sub-teams, four students to

work on the student side, five on the librarian side and

four on the innovation side, acted as the clients and

testers. They were to explore and validate the

requirements, undertake user acceptance testing, and

interact closely with the US sub-teams for iteration.

The US undergraduates, split into two sub-teams of

four students, one to work on the librarian side and the

other on the student side, acted as developers and lead

contractors. They worked separately for the two core

sides at first and then together during integration. They

captured and managed the requirements, proposed

design options, managed a Request for Proposal (RFP)

that involved subcontracting the database design to the

Indian students to leverage their expertise,

implemented the software and tested it. The Indian

students acted as third-party suppliers. The three

Indian sub-teams of two students submitted separate

bids for the outsourced database component and

subsequently collaborated on the selected bid.

Moreover, outside the initial intent of the project, they

decided to develop their own variant of the software

that was then also assessed by the Cambodian client

and compared with the US software. The US graduate

students acted as SQA/integration mentors and SQA

auditors to help improve and assure the quality of the

US undergraduate students’ work. They provided

coaching sessions on software engineering practices,

and reviewed the artifacts delivered and the processes

used to deliver them [4]. One US graduate student was

assigned to each US sub-team to act as a mentor. A

third graduate student was selected as integration

mentor. The auditors were organized into pairs and

assigned to the two US sub-teams.

Process and technologies. All the students

followed the same loose waterfall development process

with feedback and iteration. The client was

continuously available for requirements clarification.

While the three institutions did not have aligned

semesters, they synchronized on the same milestones

with two weeks of setup and team bonding concurrent

with six weeks for requirements, four weeks for design,

and four weeks for coding and testing. The tooling

converged on Eclipse (with JUnit and Subversion) as

the development platform, and java.net for bug

tracking. The communication tooling comprised six

mailing lists (one for each side of MultiLIB and one for

each RFP), chats, blogs and wikis (one for each side of

the MulitLIB and one for integration). Wikis, editable

by US and Cambodian students, contained all the

documents and artifacts produced by the sub-teams,

e.g., process, requirements, design, testing plans, and

code. Wikis were considered as coordination backbone

of the project that increased mutual understanding

productivity, awareness, and quality on the project [5].

3. One System, Multiple Integration Points

Three types of technical integration activity were

planned for this project, in addition to the underlying

social integration that would support this.

Integration of the two core sides. The US

undergraduate sub-teams began by working with the

corresponding Cambodian sub-team to prepare

requirements for each core side of MultiLIB. Two

requirements documents were produced. They then

needed to work together to propose architectural

designs and to instrument the sub-contracting process.

The intention was for the sub-teams to fuse their work,

yet champion the functionality related to their side of

the project within an integrated framework.

Integration of a third-party supplied sub-

component. The US students distributed RFP letters

with timelines, expected responses and selection

criteria to the three Indian sub-teams. The response was

to include a proposed database design for MultiLIB,

including entity relationship diagrams, associated

MySQL SQL scripts and sample data. The Indian

students were directed to the project wiki for the latest

version of the requirements document to prepare their

response. The RFP process allowed for interactions

with the US project leader for clarification, an

opportunity that was underestimated by the Indian

teams. The responses to the RFP were evaluated,

jointly by the project leaders of the US sub-teams, and

either acceptance or rejection letters (with

justifications) were returned. The accepted design was

refined and resubmitted to the US students by the now

integrated team of six Indian students. The US students

were to integrate this work into their own.

Integration of future requirements. The

Cambodian Innovation sub-team was to explore the

latest technologies to disseminate and view electronic

assets and so to identify future requirements for

MultiLIB. The other two sub-teams were to keep

abreast of this work to ensure that the requirements and

designs they were proposing would be able to account

for anticipated future requirements.

Social integration. Culture is often reported as a

challenge in global software development, so

supporting the social side of such projects has received

much recent attention [1,9]. We therefore invested in

socialization to encourage integration at a social level.

Country-specific gifts were exchanged between the

Cambodian and US undergraduates, the US graduates

and the Cambodian students, and the US

undergraduates and Indian students. US and

Cambodian students exchanged videos about their lives

as students. Considerable energy was spent at the

beginning of the project to create a bond between the

students in these two countries. No such attention was

paid to the Indian/Cambodian relationship; this was

intended to be invisible to the clients.

4. Findings

Our findings for each of these integration activities

are discussed here. We used diverse survey instruments

to get feedback from the students and we quote some of

their pertinent responses below.

If you don’t start together, you don’t finish

together, irrespective of location. The US students

started the project as two local sub-teams and worked

independently on the requirements. However, the

stakeholders, library policy, items of the library and

non-functional requirements were common to the two

sub-teams. Starting the design phase, the students

realized that the overall architecture of the system had

to be common, the user interface had to be uniform,

and the RFP was to be managed and decided upon

jointly. At this point, to facilitate integration, a mailing

list (including all the US and Cambodian students) was

created, and a shared integration wiki for common

artifacts was created. There was little trust between

members of the original sub-teams in the quality of

each other’s work, a problem compounded by the

inability to meet as a whole team outside of class time:

“Even at the end of the project specific members

refused to collaborate with what the team, as a whole,

decided in the first place”. Integration at a local level

is an uphill struggle if the members do not start off as a

united team from day one.

Future-proofing does not happen in the future,

it has to we worked in from the start. More globally,

integration to account for the work of the Cambodian

innovation sub-team did not happen at all. While the

US students attempted to keep abreast of what this sub-

team was doing initially, this focus began to slip as

managing the above integration aspects became

paramount. Even though future requirements could be

anticipated from the Cambodian work, they were

eluded for the sake of expediency. This activity should

have been given a more predominant responsibility.

If you want to integrate it, document it. The US

sub-team leaders were the main actors in the RFP

evaluation process. They admitted that they were not

the database experts in their sub-teams, but they were

the most motivated members on the sub-teams and

wanted to be able to respect the deadline for sending

acceptance/rejection letters. The US students verified

that all the deliverables were provided, compared the

three data models, and weighed the pros and cons of

each to inform their final selection. They accepted the

design that was: “well-organized, contained the

required MySQL code, and was well-documented”.

Considering their experience, the Indian students said

they: “felt like real sub-contractors who wanted to get

a contract from a foreign company”.

Design diversity can lead to better designs, but

lack of trust in the process fracture constituents.

Because of time and implementation constraints, the

US students went on to design and develop a simplified

database design based on the three original Indian

designs. They learned the value of exploring design

options and different perspectives prior to converging

on a solution. However, it led to the following

passionate responses from the Indian students: “I would

like to know why they did not integrate our database

design as they themselves found it the best”; “This is

strange and unfair”; “This is quite unprofessional and

moreover if they had any issues then we should have

been made aware of it so that we could have given our

support”; “It is difficult to understand the design of

other students. But it is a kind of violation of the whole

concept of global software development”. It can be

difficult to teach students to delegate; to relinquish

some control requires not only trust, but also a
prepared framework in which to integrate the

contribution. The consequence was that these negative

feelings triggered a competitive situation and a stronger

sense of unity in the Indian team.
The team that communicates, respects each

other and shares a purpose, integrates. The six

Indian students organized themselves to develop a

separate version of MultiLIB, such that two students

worked on the guest/student side, two worked on the

professor side and two worked on the

librarian/administrator side. They decomposed the

work this way because they felt an imbalance in the two

original core sides. The Indian students preferred

working with two separate requirements documents: “It

was good to have two separate requirements

documents since it helped [identify] the requirements

more clearly. But at times we faced some issues

regarding the inconsistency in the common parts of the

two documentss”. The differences between the way in

which the US and Indian students were introduced to

the project impacted the teams’ unity.

Integration potential deteriorates with

communication bottlenecks. The fact that the students

were all working on one single project, were dependent

upon each other and operating according to different

schedules, meant that answers to questions and

feedback on work was not always as timely as

expected. For instance, the Indian students were

waiting anxiously for the requirements document. They

experienced delays in getting answers to questions sent

by email when mediated through the US students and,

since some doubts they had were not resolved entirely,

they had to make assumptions about the database

design. This situation reflects the difficulty developers

experience when working solely with written

requirements in isolation from the client.

Integration requires a backbone. The sub-teams

were provided with separate wikis at the start of the

project for instructor visibility. These wikis served as

the communication backbone on the global project [5].

However, attempting to create a specific shared

integration wiki later in the project to share project

materials was a good step too late. Although updated

by the US students on the shared wiki, the Indian

students waited for emails regarding any changes and

did not check the shared wiki regularly. Shared

resources do not imply shared awareness. The

technology support for projects of this nature need

careful design and process education before the first

document on the project is even drafted.

Integration requires a champion. The local

integration of the student and librarian sides of

MultiLib proved more challenging in the US than in

India. This was partially due to competition between

the two US sub-teams arising from the initial sub-

division. For instance, they competed on the user

interface look and feel. Also, they would occasionally

neglect to notify each other of changes. The two project

leaders, helped by the mentors, did an admirable job of

the overall system integration, but this should have

been explicitly tasked and planned from day one.

Integration needs its leader. The Indian students, in

contrast, worked together in a harmonious way with

shared responsibilities.

Team integration must be nurtured and

sustained at the social level; trust comes from

respect. Students on this project had difficulties in

trusting each other at times. The distributed sets of

students considered themselves more as local teams

than as a single global team. Moreover, the co-located

US teams found it difficult to re-establish themselves as

a single local team after having started out with

separate purposes, whereas the Indian team united even

after having started out as competition rivals. The

Cambodian client teams never fully engaged with the

US development team after the requirements phase had

completed. With two sub-teams competing for their

approval and seemingly not always providing a united

from to the client, issues surrounding perceived respect

came to the forefront. The lack of communication

during the RFP process prevented the Indian team to

integrate with the US team. Despite some of the

challenges, the students all cited a positive experience:

“Learning about Cambodia was the best thing for me. I

love learning about different cultures and I really think

I will stay friends with the students from Cambodia for

a long time”. We created the right environment, but we

did not sustain the effort; what the individual students

took away was directly proportional to what they

individually put in.

5. Integration Dos and Don’ts

In this section, we consolidate our findings into a

table of dos and don’ts for integration in global

software development projects (see Table 1).

Table 1. Integration Lessons.

DO DON’T

Plan integration from day one

(or preferably much earlier).

Underestimate integration issues

and think it can be introduced

on the fly.

Focus on the team as a whole

and on the overall architecture

of the system before dividing the

work.

Divide the work without first

creating the larger team and

environment in which these

contributions will play a role.

Invest on socialization for team

cohesion, e.g., scheduled chats,

exchange of gifs, and

announcements of respective

holidays.

Tolerate disrespect based on

ignorance and differences.

Ensure awareness through

efficient communication, e.g.,

mailing lists and wikis.

Use communication silos, e.g.

different wikis that eventually

need to be integrated.

Publicize the role of everybody

on the project to create an

environment of equal

partnership.

Isolate anybody and ignore the

feelings of others.

Use of a common set of

consensual technologies across

location.

Impose technologies without

account of their perception and

without training.

Use a process that involves the

client, allocates time for

feedback, feedback response

and diversity at diverse levels.

Use a process that is very rigid.

Create a trustful environment

supporting work delegation.

Think one person can do it all.

Have integration leaders for

development, communication

and socialization.

Misjudge the importance of

integration leadership at

disparate levels.

Clearly and concisely document

the sub-components, interfaces

and the integration process.

Go blind without documentation

of the artifacts and integration

process.

6. Conclusions

Integration, whatever the context and level, is not

easy. By its very definition, it implies the bringing

together of disparate pieces into a whole. The factors

that serve to either support or jeopardize this process in

the context of global software development need to be

articulated and shared. Most of these factors are

activities that need to be attended to from day one

(preferably earlier). This paper has been an attempt to

provide an initial list of integration dos and don’t for

educational and industrial settings based on the

experiences of running an integration-critical project.

7. Acknowledgements

This work is supported by a National Collegiate

Inventors and Innovators Alliance grant (#3465-06),

“Incubating the Next Generation of Global Software

Development Entrepreneurs” (2006-2008). We thank

all the students who were involved in this project.

8. References

[1] Moe, N. B. and Smite D. “Understanding lacking trust in global

software teams: A multi-case study”. Proc. Conference on Product

Focused Software Process Improvement (PROFES 2007), LNCS

4589:20-34 Riga, Latvia, 2007.

[2] Damian, D., Hadwin, A., and Al-Ani, B. “Instructional design

and assessment strategies for teaching global software development:

a framework”. Proc. Conf.on Software Engineering (ICSE2006),

Shangai, China, 2006.

[3] Damian, D., B. Al-Ani, D. Cubranic, and L. Robles. “Teaching

requirements engineering in global software development: a report

on a three-university collaboration, Proc. Workshop on

Requirements Engineering Education and Training, Paris, France,

2005.

[4] Gotel, O., Kulkarni, V., Neak, L. and Scharff, C.. “Students as

Partners and Students as Mentors: An Educational Model for Quality

Assurance in Global Software Development”. Submitted to Conf. on

Software Engineering Approaches For Offshore and Outsourced

Development (SEAFOOD 2008).

[5] Gotel, O., Kulkarni, V., Neak, L. and Scharff, C. “Working

across borders: Overcoming culturally-based technology challenges

in student global software development”. Proc. Conf. on Software

Engineering Education and Training (CSEET 2008), Charleston,

USA, 2008.

[6] Gotel, O., Kulkarni, V., Neak, L., Scharff, C. and Seng, S.

“Introducing global supply chains into software engineering

education”. Proc. Conf. on Software Engineering Approaches For

Offshore and Outsourced Development (SEAFOOD 2007), Zurich,

Switzerland, 2007.

[7] Gotel, O., Scharff, C. and Seng, S. “Preparing computer science

students for global software development”. Proc. IEEE Conf. on

Frontiers in Education (FIE 2006), San Diego, USA, 2006.

[8] Herbsleb, J. D. “Global software engineering: The future of

socio-technical coordination”. In Proc. Conf. on Software

Engineering – The Future of Software Engineering (ICSE-FASE

2007), Minneapolis, USA, 2007.

[9] Proc. of the Workshop on Supporting the Social Side of Large

Scale Software Development (SSSLSSD 2006) at Computer

Supported Cooperative Work (CSCW 2006), Banff, Canada.

