
Supporting Acceptance Testing in Distributed Software Projects with Integrated
Feedback Systems: Experiences and Requirements

Olga Liskin∗, Christoph Herrmann†, Eric Knauss‡, Thomas Kurpick†, Bernhard Rumpe†, and Kurt Schneider∗
∗ Software Engineering Group, Leibniz Universität Hannover, Germany

Email: {olga.liskin,kurt.schneider}@inf.uni-hannover.de
† Software Engineering, RWTH Aachen University, Germany

Web: http://www.se-rwth.de
‡ University of Victoria, Canada, Email: knauss@computer.org

Abstract—During acceptance testing customers assess
whether a system meets their expectations and often identify
issues that should be improved. These findings have to be
communicated to the developers – a task we observed to
be error prone, especially in distributed teams. Here, it is
normally not possible to have developer representatives from
every site attend the test. Developers who were not present
might misunderstand insufficiently documented findings. This
hinders fixing the issues and endangers customer satisfaction.
Integrated feedback systems promise to mitigate this problem.
They allow to easily capture findings and their context. Cor-
rectly applied, this technique could improve feedback, while
reducing customer effort. This paper collects our experiences
from comparing acceptance testing with and without feedback
systems in a distributed project. Our results indicate that
this technique can improve acceptance testing – if certain
requirements are met. We identify key requirements feedback
systems should meet to support acceptance testing.

Keywords-distributed software development; requirements
engineering; acceptance testing

I. INTRODUCTION

Distributed software development projects are becoming

the normal case nowadays [1]. This trend can be traced

back to three major causes: economical, organizational, and

strategic reasons [2]. However, distributed software devel-

opment entails several challenges. One of these challenges

is conducting acceptance tests [3]. Here, customers system-

atically use the system to determine if it meets all specified

requirements[4], [5].

In this paper we use the term acceptance testing to de-

scribe a concise process that is comparable to an inspection

[6], [7]. Accordingly, the customer can be seen as the

reviewer, the acceptance test agent as the moderator, and

the developer as the author. An acceptance test is executed

interactively with the customer, produces a list of findings,

and a final acceptance decision. Usually, acceptance tests

can only be attended by few representative members of the

project team, as these sessions are mostly carried out at a

customer location. This introduces the challenge of sharing

the customer’s feedback among the team. In distributed

projects this is even more challenging as the developers do

not share a common context that helps them understand the

feedback. Customer feedback is only indirectly transferred to

the development team. Important information may be lost [8]

or insufficiently documented [9]. Usually it is difficult and

time consuming to describe a finding in sufficient detail. The

fact that most findings are only useful and understandable

if enough context information is given leads to our problem
statement: If customer feedback or context information is
lost during acceptance testing and the documentation of

findings, the customer satisfaction is endangered.

One way to alleviate this problem is to integrate a dedi-

cated feedback system into the system under construction to

support and encourage the precise documentation of findings

directly from the customer. However, the feature set of such

feedback systems needs to be selected deliberately to not

confuse or distract customers and to minimize the ambiguity

of findings. To gather insight into requirements for feedback

systems, we evaluated the application of a feedback system

during acceptance testing in a distributed student project.

Contribution: In this paper we report our findings from
a case study in which we used a feedback system for

acceptance testing in a distributed software project.

• We share our experiences and findings from compari-

son with acceptance tests performed without a feedback

system.

• Based on our experiences, we derive requirements a
feedback system should fulfill when used to support

acceptance testing.

In the following section II we give an overview of the

related work in the area of acceptance testing and feedback

systems. In Section III we specify our research questions and

our research method. We present the empirical investigation

of our study in Section IV. Finally, we discuss the require-

ments for feedback systems in Section V and conclude the

paper in Section VI.

II. RELATED WORK

Many tools offer mechanisms to gather information from
users or to share information between them. The variety

is broad, ranging from simple web forums [10] and web

2012 IEEE Seventh International Conference on Global Software Engineering

84

[LHK+12] O. Liskin, C. Herrmann, E. Knauss, T. Kurpick, B. Rumpe, and K. Schneider 
Supporting acceptance testing in distributed software projects with integrated feedback systems: Experiences and requirements 
In: Proceedings of 7th International Conference on Global Software Engineering (ICGSE’12), Puerto Alegre, Brazil, pp.84-93, 2012. 
www.se-rwth.de/publications 



forms [11] to incident reporting tools [12] and integrated

communication channels in software applications [13].

Stevens et al. [13] describe PaDU, an Eclipse plug-in for

gathering information from end users. The tool allows users

to report problems or suggestions within the application.

They can create screenshots, annotate them and attach own

sketches. The approach assumes that developers collect

feedback and maintain a software system. Hartson et al.

[12] describe a method for remote software evaluation in an

external tool. They focus on reporting usability problems.

Çetin et al. [14] analyze how Human-Computer Interac-

tion (HCI) experts can be involved in open source develop-

ment. They identify essential requirements for HCI expert

tools in distributed projects. They argue that these tools need

to be used early in the development process.

Humayoun et al. [15] discuss the tool User Evaluation

manager (UEMan) for the definition and deployment of

experiments. Applied to requirements elicitation and user-

centered design, it allows planning and automating evalu-

ation experiments including code traceability. Due to tight

integration of system and application, developers can see the

results directly in their development environment.

Several approaches further aim at improving feedback

processes. One aspect is the context in which a user can
provide feedback. Jones et al. [16] and Krabbedijk et al. [17]

propose workshops for multiple users. Their workflows help

users to generate and communicate ideas for future system

development. Another approach is to support feedback while

a user uses a system and experiences drawbacks or has new

ideas. Both, Seyff et al. [18] and Schneider [19] describe

such approaches realized with mobile devices. This paper

focuses on acceptance test session situations. This difference

in the context of use leads to interesting new requirements

as discussed in Section V.

Another aspect is the technical environment for the or-
ganization of user feedback. Castro-Herrera et al. [20] use

forums for user feedback. They support the process by

grouping ideas with data mining techniques and promoting

forums with recommender systems. Lohmann et al. [21]

leverage wikis and let users create and link requirements

themselves. Our approach is not bound to a specific technical

environment. Also, we do not support the organization and

linking of requirements by users themselves. The idea is to

keep the customers’ burden during test sessions as low as

possible.

Acceptance testing still involves sharp subjectivity and

ad-hoc execution [22]. The customer uses the developed

software application in order to determine if it meets the

specified requirements [4], [5], [23]. Buede [24] discusses

what should be tested and also includes noteworthy usability

characteristics for this phase. Gibbs [25] describes checklists

for the different roles involved in acceptance testing of

outsourced projects.

In this paper we use an inspection as a comparable test

procedure as described in [6], [7]. This definition allows

to observe acceptance tests at the end or in the middle of

a project, even to the point of test conduction after each

completed user story in an agile project. Therefore, we try

to discuss acceptance testing in a process agnostic way

and only define the generic roles listed in Table I. Specific

process models and roles can be mapped to these concepts.

III. RESEARCH OBJECTIVE AND QUESTIONS

Our research objective is to apply a feedback system

during acceptance testing in a distributed project and to

evaluate its benefits and drawbacks. We do this by means of

a case study based on the Goal Question Metric paradigm

(GQM, [26]). Based on this research method, we derive the

following research questions (RQ) for ourselves. For each
research question we give the perspective from which we

approach the question and the quality aspects, we consider

relevant for the according perspective (c.f. [26]):

• RQ 1: Does the feedback system improve feedback?

(perspective: developer; quality aspects: understand-

ability, quantity, quality)

• RQ 2: Does the feedback system improve feedback?

(perspective: requirements owner; quality aspects: qual-
ity, time needed)

• RQ 3: Does the feedback system lead to more customer

satisfaction? (perspective: requirements owner; quality
aspects: transparency, appropriateness)

• RQ 4: What are the key requirements for feedback

systems in the context of acceptance testing?

We answer these research questions by performing the

following steps:

• Integrate a specific feedback system into the software

that is developed in a specific distributed project.
• Derive reasonable metrics to answer the research ques-

tions in our specific study design based on the GQM

paradigm [26].

• Use observers (backed up by video), questionnaires,

and interviews to capture metrics during acceptance test

sessions (see Section IV).

• Derive requirements from the observations and discuss

them with participants (see Section V).

For creating a baseline, we divide each acceptance test in

two parts. One part, the control part is performed in a classic
way: The customer performs acceptance tests supported by

quality agents from the development team. The customer

reports findings and the quality agents document these. The

other part, the test part, is performed supported by the

feedback system. The customer uses the feedback system

to type in and submit findings.

A. Specific Feedback System (FS)

To evaluate how a feedback system can affect acceptance

testing in distributed projects, we chose a specific system

85



Table I
ROLES INVOLVED IN ACCEPTANCE TESTING.

Role Description # Location concrete allocation

1. Requirements Owner Can determine to what extend a requirement is fulfilled 2 LUH Academic staff
2. Decision Maker Decides whether a new finding is created
3. Developer Knows existing solution and can estimate the impact of changes 12 RWTH students
4. Acceptance Test Agent Moderates the acceptance test session 5 LUH students

����

���	
����
�
����

���������	
��	
�	�����

�����
�	������
��
�	
�
���������
��	

���
�����

���� ����������

�����
�	������
�

��������

����

�����������
��

������������

Figure 1. Situation and Context of Evaluation visualized in a FLOW Map
(c.f. [29]).

[27]. For our research it is important that it is easy to

integrate into the developed software and that it incorporates

a useful set of features. We chose a tool that was developed

at RWTH Aachen [28] because its features were a good

starting point for our purposes. As the evaluation was mainly

carried out in Hanover, we consider the additional threat to

validity of using a self-made tool to be acceptable.

The FS supports different platforms by providing clients

for applications on the Web, and in Eclipse and Android

frameworks. It allows the user to draw on a web page, take

a screenshot of the result, add comments, and submit this

feedback to a ticket system in the back-end of the feedback

system. Again, different ticket systems are supported. In our

specific configuration we used the JavaScript client for Web

pages and the Trac1 ticket system.

B. Specific Distributed Project

The study was conducted in a lab class distributed over

four German universities (cf. [30]). The given task was to

create a social network for distributed software projects. As

our research questions only cover the customers’, acceptance

test agents’, and developers’ perspectives, we focus on

the sites responsible for requirements analysis, acceptance

testing, and implementation. Figure 1 shows the relevant

parts of the project setup.

Following the waterfall process, requirements engineers

started with requirements analysis and customer interviews.

They wrote use cases and derived acceptance tests from

1trac.edgewall.org

use cases for the specification at the LUH site. Then, the

developers at RWTH implemented the system. The code

resided at the RWTH site. Afterwards, the customers and

acceptance test agents at LUH conducted acceptance tests

and documented the customers’ feedback as Trac tickets and

via the feedback system.

The customers were located at LUH, represented by two

individuals, customer A and customer B. Customer A, also
referenced as the main customer, had the business case for

the developed system and wanted to use it for a research

project. The secondary customer, customer B, was also
a contact person for the requirements engineers. Having

knowledge about customer A’s business case, she acted as a
customer proxy and second stakeholder.

Table I shows the concrete allocation inside the project.

Both customers were represented by academic staff with

considerable project experience from several industry

projects. The requirements engineers and acceptance test

agents held a Bachelor’s degree in computer science at the

time of the case study.

C. Study Design

Our GQM goal for this study was to improve acceptance

tests in distributed software projects by using integrated

feedback systems (c.f. [26]). We defined improvement based
on the perspectives of customers and developers.

To reduce learning effects we partitioned the test case

set into four groups (ATG1 - ATG4), Table II. Each test

session included two different runs, one with utilization of

the feedback system (Mode FS) and one without FS as a

control run (Mode CR). In both runs, test agents guided

the customer through the acceptance tests. In each run, a

customer executed two of the acceptance test case groups

(ATGs), so that customers were not confronted with the same

test case twice. Later, the results of the different runs are

compared to each other to identify effects of adding the

feedback system.

Table II
CROSS DESIGN OF OUR STUDY

Acceptance test case group ATG1 ATG2 ATG3 ATG4

Mode FS A D1 B D1 A D2 B D2
Mode CR B D2 A D2 B D1 A D1

86



Table III
MEASUREMENT INSTRUMENTS

Minutes with observations (Minutes-Obs) were taken by two of the
paper’s authors during the acceptance test sessions. They document all
mentioned findings (documented and not documented) and the times of
announcement and documentation of a finding.

A questionnaire for developers (Quest-DEV) was filled out after all
findings had been entered into the Trac system. The developers had
access to the Trac system and answered questions regarding the findings.
Per session six developers participated.

A questionnaire for the requirements owner (Quest-RO) was filled out
after all findings had been entered into the Trac system. The questions
cover the findings, track tickets, and the acceptance test itself. Per test
session one requirements owner participated.

A questionnaire for testing agents (Quest-TA) was filled out after the
acceptance test. Questions about the acceptance of the different test cases
were asked. Per session two to three testing agents participated.

Trac tickets (Trac-analysis) were analyzed after the whole experiment.

Information flows (FLOW-analysis) were analyzed for the different runs.

The session started with the control run (CR) that was

performed without the feedback system. Here, the customers

verbally reported findings and one test agent protocolled the

mentioned findings with pen and paper. Later, a test agent

transcribed the findings from the protocol into Trac tickets.

The second half of the test was performed with the

feedback system (FS). The customer talked to the test agents,

but this time documented findings by herself. For a finding,

the customer filled out a form and optionally used built-in

functions to make a screenshot and draw on it. Submitting

the form with the FS, automatically created a Trac ticket.

In addition, we divided the developers into two groups

(D1 and D2) of three developers. Each group received

findings an ATG exactly once, switching between findings

from the two customers and the two runs. We assume that

test cases are more likely comparable than customers.

In order to improve the internal validity of our study, we

tried to reduce the impact a specific customer, developer, or

acceptance test agent could have on the results. We created

different groups in order to exclude lerning effects. (The

feedback system must be able to support unexperienced

users.) Table III lists the measurement instruments we used

for our study.

IV. EMPIRICAL INVESTIGATION

In this section we describe the empirical investigation

of the first three research questions. Often, an empirical

observation leads to a requirement for feedback systems in

acceptance tests (c.f. RQ 4). We highlight the requirements

and give an overview of all requirements in Section V.

A. Does the feedback system improve feedback from the
developers’ perspective? (RQ 1)

For a developer who did not attend the acceptance test,

good documentation of the feedback is essential. We ap-

proached this research question with the aspects understand-
ability, quantity, and nature of documented findings. Table
IV displays the aspects and their operationalization.

The developers must understand all findings and their

importance because otherwise they do not know what they

have to do. A higher quantity of documented feedback is

desirable to help the developers to improve the software.

Further, critical findings have a higher impact on the final

acceptance and require more attention. We define a finding

as critical if it hinders acceptance of a test case.

1) Measurement: We used a questionnaire to assess

the developers’ perceived understandability. We have four
possible combinations of understandable/not understandable

findings with and without further questions. We computed

the fractions of each group, once for findings documented

with the feedback system (FS) and then for findings docu-

mented manually in the control run (CR). For the quantity of
documented findings we counted and averaged the number

of findings per test case within the Trac system. In a

questionnaire requirements owners stated their perceived

criticality for a finding and divided the findings into test

failures and new defects. Then, we averaged the results.

2) Results: Figure 2 illustrates the perceived understand-
ability of findings. Of the findings documented with the FS,

70% were considered understandable without any further

questions and 23% understandable with further questions.

This means that 93% of the findings were stated generally

understandable. For manually documented findings, 79%

were considered understandable without further questions –

more than for findings documented with the FS. However,

the fraction of all understandable findings (with and without

questions) is only 84%.

The numbers of documented findings, divided by test

sessions, are presented in Figure 3. Generally, with the FS,

6% more findings were documented per test case. However,

the numbers of documented findings strongly deviate for the

different sessions. In session 2A, 67% more findings per test

case were documented with the FS. In session 1B in contrast,
33% more findings were documented during the control run.

Table V displays the findings’ nature. 58% of the findings

from the FS were considered critical. For manual documen-

Table IV
OPERATIONALIZATION OF RQ 1

Quality Aspect Method

Understandability of findings documented in Trac
Is the finding understandable? Quest-DEV
Are there further questions regarding the finding? Quest-DEV

Quantity of findings documented in trac
Number of findings documented in Trac Trac-analysis

Nature of findings documented in trac
Is the documented finding critical? (yes/no) Quest-RO
Type of finding (failed test / new defect) Trac-analysis

87



�������	��	
���
���

�������
��������� ����
���������

�������	��	
���
���

�������	
���
�����������

Figure 2. Perceived Understandability of Findings

Figure 3. Findings per Test Case

tation, the critical fraction is slightly higher (67%). At the

same time, 60% of the findings from the FS and only 42%

of manually documented findings reveal new defects.

3) Discussion: With the feedback system, acceptance

tests are more user driven and more user interface oriented.

This can have positive effects but also requires attention.

Findings from the FS were generally more understandable

than those documented manually. However, at the same time,

developers had more questions to FS-documented findings.

We assume that questions to non-understandable findings

aim at better understanding the findings whereas questions

to understood findings aim at clarifying further details.

Accordingly, the GUI centered documentation might have

encouraged the developers to ask more clarifying questions.

We do not have qualitative data on the question content

though and therefore only can speculate.

The user interface orientation also influences distraction

from the actually tested functionality. Acceptance tests focus

Table V
NATURE OF FINDINGS

(n=51 documented findings) With FS Without FS

Percent of documented findings that are
critical

58% 67%

Percent of documented findings that de-
scribe new defects

60% 42%

on attesting main aspects of the software. Compared to

manual documentation, the documentation with the feedback

system however produced fewer critical findings and more

newly spotted defects. This result emphasizes how important

it is to support the requirements owner in focusing on the test

cases. Nevertheless, the ability to reveal new misconceptions

before deploying a new feature is valuable as well.

Another problem was revealed by the high variability of

the number of documented findings. Documentation with

the FS is more user centered but at the same time depends

more on the user and her ability to judge a product. The

sessions 1A and 2A were both performed by customer
A, session 1B by customer B. While customer A was the

main customer and had produced the requirements during

analysis, customer B was only a secondary customer for the

product. During the experiment, we observed that customer
B was undecided whether her findings were bugs or customer
A’s desired features. As a result, she mostly documented her
findings only when the moderating test agent told her to. As

described by Rumpe et al. [31], the customer’s willingness

and ability have a major impact on the project in general.

4) Derived Requirements: We are confident that good

tool support could make the testing process better. Such a

tool should fulfill the following requirements:

• Req-1: Allow to reference a test case when document-

ing a finding.

• Req-2: Provide information about the test case cur-

rently executed.

• Req-3: Allow to decide upon the test case acceptance

based on a set of collected findings.

• Req-4: Encourage users to explicitly assign criticality
to a finding.

B. Does the feedback system improve feedback from the
customer’s perspective? (RQ 2)

When participating in acceptance tests, the customer

needs an efficient way to make an acceptance decision and

communicate findings. Every involved person should know

which test cases are accepted or not, as in certainty regarding
acceptance. The aspects recall, directness, perceived quality
of feedback, and duration address the efficient creation and
communication of findings. Table VI shows the relevant

aspects for this research question.

A high recall of feedback means that many of the

mentioned findings are documented and can be retrieved.

Mentioned feedback that is not documented might not

reach the distant developers. Directness addresses a similar

problem. Indirect feedback that has been processed by

different persons might include misunderstandings and loss

of information.

1) Measurement: We used questionnaires to ask all par-
ticipants (divided by roles) about the acceptance status of

the test cases and their certainty regarding these anwers. We

identified for which fraction of test cases all participants had

88



Table VI
OPERATIONALIZATION OF RQ 2

Certainty regarding acceptance
Is the test case accepted? Quest_DEV,

Quest_RO,
Quest_TA

How sure are you regarding the acceptance status
of this test case?

Recall of feedback
Ratio of documented findings to all findings
(documented and not documented)

Minutes_Obs,
Trac_Analysis

Directness of creating findings
How many stations exist where information can
be lost or falsified

FLOW_analysis

Duration of creating a finding
Time to create a ticket for a finding Minutes_Obs,

Trac_AnalysisTime to document a finding

Perceived quality of findings
How well are the findings captured in the docu-
mentation?

Quest_RO

Is the criticality of the finding captured correctly?

the same understanding. Another questionnaire assessed the

customers’ perceived quality of the resulting findings in trac.

We took minutes of the test sessions and documented

all verbally mentioned findings and the timestamps of their

documentation (start and end of documentation in the feed-

back system). We compared the verbally stated findings with

the findings actually documented in trac tickets. Further, we

retrieved the ticket creation timestamps from trac.

To visualize the directness of feedback we created an in-

formation flow diagram (FLOW, [32]) of the two acceptance

test situations. A connection illustrates an information flow

between two points. At every new point, information can get

lost or falsified.

2) Results: Figure 4 illustrates the certainty aspect. The
stated certainty (first diagram) is always higher for the

control run. Most values are close to 5.5 (on a scale from 1

(very uncertain) to 6 (very certain)) with customers having

the highest certainty. While testing agents’ certainty was

slightly higher for the control run, their opinions actually

conformed to the customer’s opinion slightly less often

during this run (second diagram). The absent developers

show the highest differences, indicating better understanding

of the acceptance status for the control run.

Recall of feedback is illustrated in Table VII. At two

sessions the customers mentioned findings that were not

persisted. The recall of findings for session 1A is 82% with

FS and 85% in the control run. For session 1B the recall is

41% with the feedback system and 53% without.

The two acceptance test modes are illustrated in the

FLOW diagram in Figure 5. With the FS the requirements

owner directly creates the persistent finding. In contrast, in

the control run the requirements owner tells a finding to the

test agent who notes it down in a report. Only then findings

are persisted from the report’s notes.

A related aspect is the time to create findings in Table

Figure 4. Certainty of Acceptance

Table VII
RECALL OF FEEDBACK

Average percentage of mentioned findings
that were documented as a ticket. n=71 men-
tioned findings

With FS Without FS

acceptance test session 1A 82% 85%
acceptance test session 1B 41% 53%
acceptance test session 2A 100% 100%

VIII. The time for ticket creation (:= time difference between

creating an empty findings-form and saving the completed

finding) was two minutes faster with FS. The total time to

document a finding (:= time difference between the mention

of a finding and the saving of the completed finding) was on

average 51 seconds with FS and more than eight hours for

manual recording and a (potentially delayed) transcription

by the test agent.

The quality of the tickets as perceived by the requirements

owners is illustrated in Figure 6. Regarding the question how

well the message was represented by the tickets from the FS,

the customers on average answered 3.1 on a scale from 1

��������	
�	
�


���	����
���

��
��

�������
���

��������
�

����� ����	���
�

�	
�	
�

�������
���

��������
��

��������	
�	
�

����������
���������������


���	����
���

��
��
����	���
�

�	
�	
�

�

�
�������	��
����

���
��������
������

�������	��
����

������
��������
������

� �

Figure 5. Directness of Creating Findings

89



Figure 6. Perceived Quality of Findings

(very badly) to 4 (very well). The criticality was represented

correctly for only 27% of the findings. For the tickets created

manually in the control run, the average quality vote was 2.6.

About 50% of the findings had correct criticality.

3) Discussion: With the feedback system tickets are

persisted faster and created more directly by the customer

herself without any intermediaries. Especially directness is

important for communication in distributed environments

where information can easily be lost or falsified. Fittingly,

customers rated the quality of their directly written tickets

higher than of the other tickets. However, the results reveal

that recall of feedback and certainty regarding test case

acceptance were better for the control runs without FS.

For manual documentation in the control run, the test

agent had more freedom to include helpful information into

tickets. The test agent grouped all findings by test case and

included the acceptance state of each test case into the trac

tickets. We assume that this improved the understanding

of the acceptance status and the participants’ certainty. In

contrast, the FS form did not encourage the customer to

document a finding’s criticality, its test case, or the overall

acceptance status of test cases. The criticality was even set

to the misleading value critical for every ticket and therefore
was wrong for 73% of the tickets (see Figure 6).

According to the recall of findings not all comments are

persisted - interestingly, even when the customer documents

findings by herself. This suggests a filtering process that

separates true findings from simple comments, as illustrated

by the crossed-out connectors in the FLOW diagram in

Figure 5. With the feedback system the customer directly

decides which comments should be persisted. Otherwise this

decision is in the hands of the testing agent.

In session 1B, relatively few findings were recorded at

all. We believe this happened because customer B was not

a requirements owner for the product, like discussed in RQ
1. Due to uncertainty about the requirements, customer B

Table VIII
DURATIONS OF CREATION AND DOCUMENTATION OF FINDINGS

(n=51 documented findings) With FS Without FS

Avg Time to Create Ticket for Finding 0:37 mins 2:37 mins
Avg Time to Document Finding 0:51 mins 520:26 mins

Table IX
OPERATIONALIZATION OF RQ 3

Seriousness
Did you feel taken seriously throughout the ac-
ceptance test?

Quest_RO

How sure are you that all mentioned findings
have been protocolled?

Perceived bindingness of overall acceptance test
How binding do you assess the acceptance test? Quest_RO

Figure 7. Customer Satisfaction

mainly made simple comments instead of declaring them as

findings to be persisted.

4) Derived Requirements: Besides the finding itself fur-
ther information is required to make findings more un-

derstandable and provide a better overview. The feedback

system enriches findings with screenshots, but also needs

to support adding criticality, acceptance information, and

linked test cases, as stated in the following list.

• Req-2: Provide information about the test case cur-

rently executed.

• Req-5: Allow the assignment of a criticality value to a

finding.

• Req-6: Display the acceptance status of a test case.
• Req-7: Display the overall acceptance of the test.

C. Does the Feedback System Lead to More Customer
Satisfaction? (RQ 3)

Table IX shows the relevant aspects for this research

question. Acceptance tests are an important and official part

in the development lifecycle that must have a professional

appearance. A customer should always feel that she and her

feedback are taken seriously. The acceptance decision and
the findings must have a high bindingness, indicating that
the revealed misconceptions will actually be changed.

1) Measurement: In a questionnaire right after the test

sessions the customers stated their subjective overall opinion

about the two session parts – the control run without FS and

the part with FS.

2) Results: The results for this questionnaire are listed in
Figure 7. The average results are all between 4 and 6 on a

scale from 1 (strong disagree) to 6 (strong agree). For all

three questions the customers indicated a higher satisfaction

for the control run.

3) Discussion: In a subsequent interview with the cus-

tomers we found out that the contact with the test agent

90



gave them the feeling of being heard and taken seriously.

When they only typed-in their findings into a system and

pressed a button, they missed this contact. Especially the

lack of a concluding message about what will happen to the

feedback was perceived as unsecuring.

4) Derived Requirements: The system must indicate the

act of testing and provide the current acceptance status.

The submission must be emphasized. Feedback regarding

the processing of a finding is essential to articulate its

bindingness. We derive the following concrete requirements:

• Req-6: Display the acceptance status of a test case.
• Req-7: Display the overall acceptance of the test.
• Req-8: Pursue high transparency of the processing

status of findings throughout their life cycle.

• Req-9: Provide an overview of the reported findings.

• Req-10: Provide feedback on what happens to a sub-
mitted finding.

• Req-11: Display explicitly to the customer that a test
is being executed.

D. Threats to Validity

In this section we discuss threats to validity. By this,

we want to support the correct interpretation of our results.

We would classify our empirical investigation as applied
research. According to Wohlin et al. [33], we set the highest
priority on achieving good internal validity. Therefore, we

explicitly addressed internal validity when we planned the
experiment and describe the related activities with the study

design in Section III-C.

1) External Validity: In our study, developers and test

agents were graduate students. Both customers were aca-

demic staff instructed to always play the customer role when

communicating with the students. The main customer had

a real business case for the system under construction. He

intended to use the system in his research projects and

wanted a working system that fulfilled as many requirements

as possible. The secondary customer had only limited deci-

sion power. The students had good background knowledge

in software engineering but limited experience. This setting

is typically encountered in an industrial setting. The main

difference is the lack of possible monetary loss in our setting.

Still, the students had an interest in passing the class.

2) Construct Validity: Our students can be seen as tomor-
row’s IT specialists. They grew up with feedback systems

integrated in social software. They have domain knowledge

and a general understanding on how web based social

networks are used. The main customer was interested in a

positive outcome. We prevented co-location with actual dis-

tribution between customers and developers. Our setup also

prohibited additional information flows between customers

and developers.

3) Conclusion Validity: In our evaluation, we did not try
to achieve a statistical significance. We cannot guarantee that

replicating our experiment will lead to similar results.

The questionnaires after the test sessions hold the risk that

only subjective impressions are mentioned, but this holds for

both modes. Only findings with a high criticality will be kept

in mind by the customer (Quest_RO). The questionnaire of

the developers (Quest_DEV) has the same condition for both

modes, because the findings were presented in the same way

to the developers.

Our results show that customers strongly influence the

outcome. In our study we had two customers that repre-

sent two relevant customer types: the main customer was

both requirements owner and decision maker, whereas the

secondary customer was only decision maker. We think

that both customer types are realistic in software projects.

In addition, having two customers reduced our threats to

internal and external validity.

V. REQUIREMENTS FOR FEEDBACK SYSTEMS

Our results suggest that feedback systems can positively

impact distributed acceptance tests. However, distributed

acceptance test situations imply new requirements. In this

section, we present the requirements derived from our case

study in more detail and give guidelines on how to overcome

the problems. We group the requirements by requirement

types and discuss them together. Table X presents the

mapping between requirement and requirement type.

1) Background information about findings: To raise a

finding’s understandability, its context should be provided.

We differentiate between product context and execution

context. Product context collects information of the tested

product, like application and web browser version, screen-

shot, or finding description. Execution context describes the

situation that led to a finding, like the test case, the executing

person, the number and nature of identified findings.

Feedback systems should support generating context with-

out burdening the users to enter much additional informa-

tion. For example, if the customer chooses the current test

case from a list before executing it, the feedback system

can automatically link all findings to that test case. Further,

customers should be able to attach annotated screenshots as

known from other HCI studies [14] and end user feedback

tools [11]. Findings should include a reference to the deci-

sion maker. Knowing who created a finding helps developers

to better understand it and contact the creator in case of

questions.

2) Criticality: Having a finding’s criticality assigned by
the customer helps to understand its importance. Customers

should be encouraged to specify the criticality for each

finding. A specific criticality field within a finding’s form

could advert to this necessity.

3) Reference to test case: The test case is part of a find-
ing’s context and increases understandability. Additionally,

it should be presented to the customer by the feedback

system. Seeing the current test case helps the customer

understand the tested requirements and focus on what should

91



Table X
REQUIREMENTS MAPPED TO REQUIREMENT TYPES

Req-No Description Type

Req-1 Allow to reference a test case when documenting a finding Reference
Req-2 Provide information about the test case currently executed Reference, Background
Req-3 Allow to decide upon acceptance based on a set of collected findings Status
Req-4 Encourage users to explicitly assign criticality to a finding Criticality
Req-5 Allow the assignment of a criticality value to a finding Criticality
Req-6 Display the acceptance status of a test case Status
Req-7 Display the overall acceptance of the test Status
Req-8 Pursue high transparency of the processing status of findings throughout their life cycle Transparency
Req-9 Provide an overview of the reported findings Status, Transparency
Req-10 Provide feedback on what happens to a submitted finding Transparency
Req-11 Display explicitly to the customer that a test is being executed Status, Background, Reference

be assessed. Later, links from a test case to its findings

help the customer assess the test case’s acceptance status,

as described in the following section.

4) Acceptance status of current test case: Throughout the
test, the acceptance status should be visible. We suggest a

summary of the whole test and a separate status for each test

case. Seeing all findings of one test case helps the customer

determine its acceptance status. The customer might reject

a test case due to critical findings, but also if there are too

many minor findings. The feedback system should support

to explicitly set a test case’s acceptance status.

Also, a system should support the customer to determine

the overall acceptance status. The feedback system could

offer a shopping cart for findings. The cart summarizes
all reported findings and allows to edit them and their

criticality. To finish the test the customer would have to

explicitly checkout, confirm all findings, and specify an

overall acceptance statement.

5) High transparency of acceptance test: Transparency

can increase a customer’s feeling of being taken seriously.

The customer should be able to follow her findings’ life

cycle and see if findings are fixed or dropped. Laurent and

Cleland-Huang [10] state that users are interested in exactly

this process of how findings are handled. In addition, a

confirmation of the receipt of findings is very important,

especially when the customers interact with a system instead

of a person.

VI. CONCLUSION

The increasing number of distributed software projects

raises the communication need between project participants.

We evaluated the application of an integrated feedback sys-

tem in such a project. We focused on how feedback systems

can support acceptance testing, especially by tackling the

problem of lost feedback or context information. We covered

the perspectives of different roles involved in this test. We

found encouraging and also surprising results. The results

point to the existence of several difficulties in acceptance

testing. Especially the discussion of the results leads to

interesting insights. Based on the experiences we identified

11 requirements for feedback systems. We grouped them

into five different types and discussed possible solutions and

concepts for feedback systems.

Our study shows that there is potential for using integrated

feedback systems to support acceptance testing in distributed

projects. Based on our insights, we plan to implement the

new requirements in our feedback system. Then, another

empirical investigation could lead to new valuable insights.

Future research should focus on reducing the vulnerability

of the process. The experiences and requirements presented

in this paper are a good starting point for such efforts.

ACKNOWLEDGMENT

We thank academic staff from LUH, RWTH, TUC, and

TUM (c.f. [30]) for organizing and their Students for partic-

ipating in this distributed student’s project and for providing

clarifications when needed.

This work was partially funded by a Research Grant from

the State of Lower Saxony, Germany.

REFERENCES

[1] P. J. Ågerfalk, B. Fitzgerald, H. H. Olsson, and E. O.
Conchúir, “Benefits of Global Software Development: The
Known and Unknown,” in Proceedings of the International
Conference on Software Process (ICSP’08). Berlin, Heidel-
berg: Springer-Verlag, 2008, pp. 1–9.

[2] C. Bartelt, M. Broy, C. Herrmann, E. Knauss, M. Kuhrmann,
A. Rausch, B. Rumpe, and K. Schneider, “Orchestration of
Global Software Engineering Projects - Position Paper,” in
Proceedings of the 4th International Conference on Global
Software Engineering (ICGSE’09). Washington, DC, USA:
IEEE Computer Society, 2009, pp. 332–337.

[3] J. Murphy, S. Howard, K. Kjeldskov, and S. Goschnick, “Lo-
cation, location, location: Challenges of Outsourced Usability
Evaluation,” in Proceedings of the Workshop Improving the
Interplay of Usability Evaluation and User Interface Design
of NordiCHI 2004, 2004, pp. 12–15.

[4] G. J. Myers, The Art of Software Testing. New York, NY,
USA: John Wiley & Sons, Inc., 1979.

[5] I. Sommerville, Software Engineering, ser. International com-
puter science series. Addison-Wesley, 2007.

[6] M. Fagan, “Design and Code Inspections to Reduce Errors
in Program Development,” IBM Systems Journal, vol. 38, no.
2/3, pp. 258–287, 1999.

92



[7] A. A. Porter, L. G. Votta, Jr., and V. R. Basili, “Comparing
Detection Methods for Software Requirements Inspections:
A Replicated Experiment,” IEEE Transactions on Software
Engineering, vol. 21, no. 6, pp. 563–575, 1995.

[8] E. Bjarnason, K. Wnuk, and B. Regnell, “Requirements are
Slipping Through the Gaps – A Case Study on Causes &
Effects of Communication Gaps in Large-Scale Software
Development,” in Proceedings of the 19th International Re-
quirements Engineering Conference (RE’11). Washington,
DC, USA: IEEE Computer Society, 2011, pp. 37–46.

[9] N. Bettenburg, S. Just, A. Schröter, C. Weiss, R. Premraj, and
T. Zimmermann, “What Makes a Good Bug Report?” in Pro-
ceedings of the 16th ACM SIGSOFT International Symposium
on Foundations of software engineering (SIGSOFT ’08/FSE-
16). New York, NY, USA: ACM, 2008, pp. 308–318.

[10] P. Laurent and J. Cleland-Huang, “Lessons Learned from
Open Source Projects for Facilitating Online Requirements
Processes,” in Proceedings of the 15th International Working
Conference on Requirements Engineering: Foundation for
Software Quality (REFSQ’09). Berlin, Heidelberg: Springer-
Verlag, 2009, pp. 240–255.

[11] D. M. Nichols, D. McKay, and M. B. Twidale, “Participatory
Usability: supporting proactive users,” in Proceedings of 4th
ACM SIGCHI NZ Symposium on Computer-Human Interac-
tion (CHINZ’03). New York, NY, USA: ACM, 2003, pp.
63–68.

[12] H. R. Hartson and J. C. Castillo, “Remote evaluation for
post-deployment usability improvement,” in Proceedings of
the working conference on Advanced Visual Interfaces (AVI
’98). New York, NY, USA: ACM, 1998, pp. 22–29.

[13] G. Stevens, V. Pipek, and V. Wulf, “Appropriation Infrastruc-
ture: Supporting the Design of Usages,” in Proceedings of
the 2nd International Symposium on End-User Development
(IS-EUD’09). Berlin, Heidelberg: Springer-Verlag, 2009, pp.
50–69.

[14] G. Çetin, D. Verzulli, and S. Frings, “An Analysis of Involve-
ment of HCI Experts in Distributed Software Development:
Practical Issues,” in Proceedings of the 2nd International
Conference on Online Communities and Social Computing
(OCSC’07). Berlin, Heidelberg: Springer-Verlag, 2007, pp.
32–40.

[15] S. R. Humayoun, Y. Dubinsky, and T. Catarci, “UEMan: A
Tool to Manage User Evaluation in Development Environ-
ments,” in Proceedings of the 31st International Conference
on Software Engineering (ICSE’09). Washington, DC, USA:
IEEE Computer Society, 2009, pp. 551–554.

[16] S. Jones, P. Lynch, N. Maiden, and S. Lindstaedt, “Use and
Influence of Creative Ideas and Requirements for a Work-
Integrated Learning System,” in Proceedings of the 16th
International Requirements Engineering Conference (RE’08).
Washington, DC, USA: IEEE Computer Society, 2008, pp.
289–294.

[17] J. Kabbedijk, S. Brinkkemper, S. Jansen, and B. van der
Veldt, “Customer Involvement in Requirements Management:
Lessons from Mass Market Software Development,” in Pro-
ceedings of the 17th International Requirements Engineering
Conference (RE’09). Washington, DC, USA: IEEE Computer
Society, 2009, pp. 281–286.

[18] N. Seyff, F. Graf, and N. Maiden, “Using Mobile RE Tools to
Give End-Users Their Own Voice,” in Proceedings of the 18th
International Requirements Engineering Conference (RE’10).
Washington, DC, USA: IEEE Computer Society, 2010, pp.
37–46.

[19] K. Schneider, “Focusing Spontaneous Feedback to Support
System Evolution,” in Proceedings of 19th International
Requirements Engineering Conference (RE’11). Washington,
DC, USA: IEEE Computer Society, 2011, pp. 165–174.

[20] C. Castro-Herrera, J. Cleland-Huang, and B. Mobasher, “En-
hancing Stakeholder Profiles to Improve Recommendations
in Online Requirements Elicitation,” in Proceedings of the
17th International Requirements Engineering Conference (RE
’09). Washington, DC, USA: IEEE Computer Society, 2009,
pp. 37–46.

[21] S. Lohmann, P. Heim, and K. Lauenroth, “Web-based Stake-
holder Participation in Distributed Requirements Elicitation,”
in Proceedings of the 16th International Requirements Engi-
neering Conference (RE’08). Washington, DC, USA: IEEE
Computer Society, 2008, pp. 323–324.

[22] P. Hsia, D. Kung, and C. Sell, “Software requirements and
acceptance testing,” Annals of Software Engineering, vol. 3,
pp. 291–317, 1997.

[23] IEEE, “IEEE Standard for Software Verification and Valida-
tion Plans,” IEEE Std 1012-1986, 1986.

[24] D. M. Buede, The Engineering Design of Systems: Models
and Methods. Hoboken, NJ, USA: John Wiley & Sons,
Inc., 2009.

[25] R. D. Gibbs, Project Management with the IBM Rational
Unified Process: Lessons from the Trenches. Upper Saddle
River, NJ, USA: IBM Press/Pearson plc, 2007.

[26] R. van Solingen and E. Berghout, The Goal/Question/Metric
Method: A Practical Guide for Quality Improvement of
Software Development. McGraw-Hill Publishing Company,
1999.

[27] C. Herrmann, T. Kurpick, and B. Rumpe, “Agile User-
Feedback and its Management through the SSELab
Feedback System,” RWTH Aachen, Tech. Rep. AIB-2012-
11, 2012. [Online]. Available: http://aib.informatik.rwth-
aachen.de/2012/2012-11.pdf

[28] “Feedback System Service,” February 2012. [Online].
Available: https://sselab.de/lab0/doc/feedback/

[29] K. Stapel, E. Knauss, K. Schneider, and N. Zazworka,
“FLOW Mapping: Planning and Managing Communication
in Distributed Teams,” in Proceedings of 6th International
Conference on Global Software Engineering (ICGSE’11).
IEEE Computer Society, 2011, pp. 190–199.

[30] C. Deiters, C. Herrmann, R. Hildebrandt, E. Knauss,
M. Kuhrmann, A. Rausch, B. Rumpe, and K. Schneider,
“GloSE-Lab: Teaching Global Software Engineering,” in Pro-
ceedings of 6th International Conference on Global Software
Engineering (ICGSE’11). IEEE Computer Society, 2011, pp.
156–160.

[31] B. Rumpe and A. Schröder, “Quantitative survey on extreme
programming projects,” in Third International Conference on
Extreme Programming and Flexible Processes in Software
Engineering (XP2002), 2002, pp. 26–30.

[32] K. Stapel, E. Knauss, and K. Schneider, “Using flow to
improve communication of requirements in globally dis-
tributed software projects,” in Workshop on Collaboration and
Intercultural Issues on Requirements: Communication, Un-
derstanding and Softskills (CIRCUS 09), at RE’09, Atlanta,
USA, 8 2009.

[33] C. Wohlin, P. Runeson, M. Höst, M. C. Ohlsson, B. Regnell,
and A. Wesslén, Experimentation In Software Engineering:
An Introduction. Boston / Dordrecht / London: Kluwer
Academic Publishers, 2000.

93




