
Extracting Drug-Drug Interactions with Word and Character-
Level Recurrent Neural Networks

Ramakanth Kavuluru†,*, Anthony Rios*, and Tung Tran*

†Division of Biomedical Informatics, Dept. of Internal Medicine, University of Kentucky, Lexington,
KY

*Department of Computer Science, University of Kentucky, Lexington, KY

Abstract

Drug-drug interactions (DDIs) are known to be responsible for nearly a third of all adverse drug

reactions. Hence several current efforts focus on extracting signal from EMRs to prioritize DDIs

that need further exploration. To this end, being able to extract explicit mentions of DDIs in free

text narratives is an important task. In this paper, we explore recurrent neural network (RNN)

architectures to detect and classify DDIs from unstructured text using the DDIExtraction dataset

from the SemEval 2013 (task 9) shared task. Our methods are in line with those used in other

recent deep learning efforts for relation extraction including DDI extraction. However, to our

knowledge, we are the first to investigate the potential of character-level RNNs (Char-RNNs) for

DDI extraction (and relation extraction in general). Furthermore, we explore a simple but effective

model bootstrapping method to (a). build model averaging ensembles, (b). derive confidence

intervals around mean micro-F scores (MMF), and (c). assess the average behavior of our

methods. Without any rule based filtering of negative examples, a popular heuristic used by most

earlier efforts, we achieve an MMF of 69.13. By adding simple replicable heuristics to filter

negative instances we are able to achieve an MMF of 70.38. Furthermore, our best ensembles

produce micro F-scores of 70.81 (without filtering) and 72.13 (with filtering), which are superior

to metrics reported in published results. Although Char-RNNs turnout to be inferior to regular

word based RNN models in overall comparisons, we find that ensembling models from both

architectures results in nontrivial gains over simply using either alone, indicating that they

complement each other.

I. Introduction

Adverse drug reactions (ADRs) have been a major concern as polypharmacy became more

common in modern medical practice [1]. ADRs may lead to hospitalization and/or extend

the lengths of stay for already admitted in-patients [2]. Drug-drug interactions (DDIs)

represent an important category of ADRs. Specifically, a drug interaction is said to occur

“when the effects of one drug are changed by the presence of another drug, herbal medicine,

food, drink or by some environmental chemical agent” [1]. The result of DDIs can be

unexpected failure of therapy [3] due to reduction in efficacy or more direct harm due to

increase in toxicity of a drug. Although manually curated databases that discuss DDIs exist

[1], [4], most of the up-to-date information is still latent in unstructured text. Thus it is

important to extract such interactions as they are presented as findings in research articles,

HHS Public Access
Author manuscript
IEEE Int Conf Healthc Inform. Author manuscript; available in PMC 2017 October 13.

Published in final edited form as:
IEEE Int Conf Healthc Inform. 2017 August ; 2017: 5–12. doi:10.1109/ICHI.2017.15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

warnings in drug labels, or observations in clinical notes [5]. The 2013 DDI extraction

challenge [6], [7] introduced a new dataset and challenge to extract mentions of such

interactions from free text narratives. A few recent efforts focused on employing deep neural

networks (or deep nets) for extracting DDIs using the SemEval challenge dataset and

demonstrated improvements over linear models. In this paper, we use character-level

recurrent neural networks (Char-RNNs) along with conventional word-level RNNs to extract

DDIs using the 2013 DDIExtraction dataset [6].

II. 2013 DDIExtraction Challenge Dataset

In this section, we briefly outline the characteristics of the dataset used in this task. Two

different databases, Medline abstracts and DrugBank [4] narratives, were used to identify

sentences on the subject of DDIs to create the DDI corpus used for the SemEval 2013 shared

on DDI extraction [8]. Pharmacological substances and four different types of DDI

manifestations in text were annotated for a total of 792 documents. The different types of

interactions annotated in descending order of their frequencies are

1. mechanism, where the pharmacokinetic mechanism is explicitly discussed (e.g.,

“ Ethanol decreases the elimination of abacavir causing an increase in overall

exposure”),

2. effect, where a consequence of an interaction (pharmacodynamic aspect) is

specified (e.g., “the antihypertensive effect of losartan may be blunted by the

non-steroidal anti-inflammatory drug indomethacin”)

3. advice, where suggestions regarding handling a drug interaction are made in text

(e.g., “Patients should be warned of the potential danger of the self-

administration of benzodiazepines while under treatment with Suboxone”)

4. int, where a DDI is discussed without any specific additional information.

All pairs of drugs mentioned in each sentence are separately annotated as either participating

in any of these four types of interactions or simply declared as false indicating there is no

interaction. For this study, following other efforts in DDI extraction, we assume the drug

mention spans are already provided and thus the main task is to classify the type of

interaction (any of the four types above or false if no interaction exists). The total number of

candidate drug pairs in the training dataset is 27,792 out of which ≈ 15% are positive

examples assigned to one of the four classes mentioned earlier. The test set has 5,716

candidate pairs and around 17% are positive examples.

III. Related Work

The DDI extraction task is a special case of binary relation extraction where (subject,

predicate, object) triples are extracted from natural language. In this case both the subject

and object are pharmacological substances and the predicate is the type of interaction

discussed in Section II. The top two teams [9], [10] in the competition used a variety of

techniques but the two commons themes were usage of interesting kernels for support vector

machine (SVM) models and application of negative instance filtering using straightforward

rules (more later). The top team [9] used a two stage approach where a binary SVM

Kavuluru et al. Page 2

IEEE Int Conf Healthc Inform. Author manuscript; available in PMC 2017 October 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

classifier first rules out sentences as “less informative” when they are not expected to

contain valid DDIs. The second stage relation classifier uses a hybrid kernel that combines a

feature-based, a shallow linguistic, and a tree kernel for the SVM model. The second

ranking team [10] also followed the two stage setup (detection followed by classification)

using a majority voting approach involving SVM models with interesting shallow linguistic

and tree kernels. After the competition, Kim et al. [11] used a more involved set of features

including n-grams based on shortest dependency and constituency paths connecting

candidate pairs. They used these features with the one-against-one approach for muticlass

modeling with SVMs using a linear kernel. Using a graph kernel based on the so called

context vectors defined using the dependency graphs of sentences, Zheng et al. [12] used

SVMs to extract DDIs.

Over the past couple of years, the resurgence of deep nets has renewed the interest in using

such methods for DDI extraction, in particular using the DDIExtraction dataset. Here we

outline some of these recent attempts. Liu et al. [13] represent the first team to work along

these lines using a convolutional neural network (CNN) that uses dense word vectors to

represent the document as a matrix that is subsequently convolved over using multiple

convolution filters (CFs). They also used position vectors as additional information for each

word based on its position relative to the two candidate drugs in the sentence. They use max-

over-time pooling and finally predict the interaction type using a softmax output layer. The

same team also extended this initial effort using convolutions over shortest dependency paths

connecting the mentions of the drugs [14]. Zhao et al. [15] trained word embeddings using

the shortest dependency paths and employed a CNN model with word, position, and

additional part-of-speech (POS) tag embeddings. Recently, Suárez-Paniagua et al. [16]

explored CNN architectures with different parameter settings including word and position

vector dimensions and CF sizes. They, however, concluded that their results are not better

than those achieved through more complex deep net models by other published efforts.

All prior efforts we discussed thus far move the state-of-the-art but we identify the following

gaps:

• Although CNNs are powerful, given the inherent sequential nature of sentences

and differences in the relative importances of words closer to the drug mentions,

recurrent neural networks (RNNs) also offer an important alternative. Moreover,

RNNs are already popular for relation extraction in other domains [17], [18] but

it appears there are no prior results on using them for DDI extraction.

• Additionally, the role of Char-RNNs appears completely unexplored for relation

extraction in general, not just for DDIs. Although character-level embeddings are

intuitively more useful for morphologically richer languages unlike English, they

might be more suitable for relation extraction given they can model tense/voice

variations.

• The training process of deep nets with many randomly initialized parameters is

not deterministic in that for a fixed train and test set split of a dataset, different

runs involving building a model with the train set and evaluating it on the test
set do not result in the same performance. Depending on the initial parameters

Kavuluru et al. Page 3

IEEE Int Conf Healthc Inform. Author manuscript; available in PMC 2017 October 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

chosen, one may get (un)lucky in the eventual model's performance. Typically

model averaging is employed to arrive at more stable models and may also be

used to study the average behavior of deep nets' performance. These aspects are

also missing in prior studies on DDI extraction.

In this paper, we address these gaps using the DDIExtraction dataset by exploring both

regular RNN and Char-RNN based hierarchical architectures with model averaging and

bootstrapping to study average behavior.

IV. Introduction to RNNs and LSTMs

Unlike feedforward networks like CNNs, RNNs have cyclical connections and are more

suitable for natural language processing (NLP) tasks where the meaning of a text segment is

naturally dependent on what occurred in the narrative before it. Typically, RNNs recurrently

compose word vectors [19] of a sentence from left to right, effectively letting information

persist from the history of previously seen words. There is usually an input layer, a hidden

layer that is connected to itself, and an output layer. The hidden layer's output is fed back to

itself at consecutive time steps (generally as many times as there are words in the narrative)

and the output at any time step is generally the recurrent composition of information until

that point. Parameter optimization is implemented through the so called back propagation
through time because of the “unfolding” of the cyclical connections in the hidden layer

through different time steps. For a thorough treatment of RNNs, we encourage the reader to

refer to a popular resource by Graves [20, Chapter 3]. In the context of conventional RNNs

for NLP, the input at each time step is the vector corresponding to the next word in the

narrative. The output is the context vector that composes word vectors that include all

previous words and itself using the RNN architecture.

To exploit signals that come from the future part of a sentence in interpreting the current

word, running the RNN from right to left over the input text can yield additional contextual

hints for eventual prediction tasks. This resulted in bi-directional RNNs (BiRNNs) which

essentially have two separate RNNs, each with its own parameters, capturing the context at

each position from both directions. The output at each time step is a combination of output

vectors from both RNNs typically produced via concatenation. To handle the problem of

vanishing gradients [21] in regular RNNs, a more involved hidden layer with the so called

long short-term memory (LSTM) units [22], [23] has become popular, especially for NLP.

The state representation in an LSTM unit includes an explicit memory cell access to and use

of which is controlled through three gates – first to control how much of the next input to

incorporate in the memory (input gate), second to determine to what extent the current

memory is to be forgotten (forget gate), and third to limit the extent of information from the

current memory cell to propagate to the output state (output gate). These three gates control

the flow of information based on the previous output and cell state via sigmoid outputs ∈ [0,

1]. In this effort, we use BiRNNs with LSTM units (simply termed BiLSTMs) in the hidden

layer as the main neural architecture with specific LSTM details outlined by Goldberg [24,

Section 11].

Kavuluru et al. Page 4

IEEE Int Conf Healthc Inform. Author manuscript; available in PMC 2017 October 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

V. Word and Character-Level RNNs

In this section, we present details of the two RNN architectures used in our study. The main

architecture proposed is shown in Figure 1.

A. Instance Preprocessing

Before we proceed further, we discuss some basic preprocessing steps. Each instance for

classification comes with a particular sentence and a pair of drugs mentioned in it. Given a

sentence might contain more than two drugs, it might contain multiple candidate pairs

(precisely n(n – 1)/2 pairs if n drugs are mentioned) for which classification is needed. We

first convert all the sentences in the dataset into lowercase. Subsequently, we perform so

called entity blinding by replacing the first drug (considered left to right) in the sentence

with the upper case string “DRUGA” and the second drug span with the string “DRUGB”.

All other drug mentions are replaced with “DRUGN”. For example, consider the drug pair

benzodiazepines and subutex in the sentence “Patients should be warned of the

potential danger of the intravenous self-administration of benzodiazepines while under

treatment with suboxone or subutex”. The modified instance passed to the model is:

“patients should be warned of the potential danger of the intravenous self-administration of

DRUGA while under treatment with DRUGN or DRUGB”.

B. Word-Level RNNs with Position Vectors

In this model, the input to the neural network is an input sentence tokenized into N words

including the special drug mention tokens as outlined in Section V-A. Such a sentence is

represented as a sequence of word embeddings, [w1, …, e1, …, e2, …, wN], where wi is the

word embedding for the i-th word and e1 and e2 are the special token vectors for DRUGA

and DRUGB respectively. In addition to word vectors, we use position vectors first proposed

by Zeng et al. [25] for relation classification and found useful by all deep net efforts

discussed in Section III for DDI extraction. The idea is to use low dimensional vectors that

represent the relative positions of a word with respect to the two drug mentions. These are

denoted by pj where j is an integer that represents the positional difference with regards to a

specific drug mention. For each word, we have two position vectors corresponding to its

location with respect to the two candidate drugs. These vectors are concatenated to the word

vector and input to the RNN at each time step. The position vectors are randomly initialized

and are learned along with the word vectors during the training process. For the example

sentence at the end Section V-A, the position vectors for the word “treatment” with respect

to DRUGB and DRUGA are p−4 and p3 respectively. The position vectors concatenated with

word vectors are as outlined in component ① of Figure 1, where ρ(e) ∈ ℤ+ is the position of

the drug mention e. The final set of input vectors passed to the RNN is thus [x1, …, xN]

where

(1)

Kavuluru et al. Page 5

IEEE Int Conf Healthc Inform. Author manuscript; available in PMC 2017 October 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

with wi being the word vector for the word at position i and ‖ denoting the concatenation

operation. We note that wi could be the vector for the tokens DRUGA, DRUGB, or DRUGN

when the corresponding drug mention occurs at the i-th position.

With this setup, we first use a BiLSTM layer at the word level to capture the contextual

information of the sentence with respect to each word. Concretely,

(2)

where h⃗
i, h⃖

i ∈ ℝd and hi ∈ ℝ2d such that d (a network hyperparameter) is the number of

output units at each LSTM time step. Also, Word-LSTM is functionally identical to a

traditional LSTM cell (without peepholes) and the prefix “Word” is used only to indicate

that its input is based on word vectors. This forms the component ② of Figure 1.

Next, we perform a max-pooling operation over all hi vectors to produce the feature vector

 where represents the maximum value across

all N BiLSTM word representations for the dimension i. This corresponds to the component

③ of Figure 1. Finally, we use a fully-connected output layer with m outputs, where m
corresponds to the number of interaction types (here m = 5). The output is computed as

where q ∈ ℝm and q ∈ ℝm×2d and bq ∈ ℝm are additional network parameters. In order to

get a categorical distribution, we apply the softmax function to the vector q to obtain

where pj ∈ [0, 1] is the probability estimate of the label at index j forming the final

component ④ of Figure 1.

C. Character-Level RNNs

Char-RNNs are popular for modeling morphologically richer languages [26] and solving

NLP tasks such as POS tagging for such languages [27] often with substantially fewer

network parameters. Although they were explored for text classification [28], we do not see

prior studies applying them for relation extraction. To address this gap, in this effort, we

assess their effectiveness for the DDI extraction use-case through a hierarchical character

and word based RNN architecture.

Kavuluru et al. Page 6

IEEE Int Conf Healthc Inform. Author manuscript; available in PMC 2017 October 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

The architecture of Char-RNNs we use is identical to that of the word based model (Figure

1) except the word vectors are derived using an LSTM on character embeddings instead of

using pre-trained word embeddings. That is, the word embeddings are composed of

embeddings for the constituent characters. Specifically, let the word

where is the j-th character of word wi and l(wi) is its length (number of characters). For

wi, we feed its character embeddings into a forward LSTM with k (equal to the

dimensionality of word vectors) output units such that

where is the output at time step t and Char-LSTM is a regular LSTM but indicates

the particular instance that processes character embeddings in contrast with word level

BiLSTM in equation (2). The output state at the last step encodes the left-to-right

context accumulating at the last character and is used as the word embedding

(3)

for concatenation with position vectors in right hand side of equation (1). This is conveyed

in step on the left bottom portion of Figure 1. Thus instead of pre-trained word vectors,

component of Figure 1, we use randomly initialized character embeddings, which are

modified during the training process, to form word vectors. Except for these changes, the

rest of the architecture of the end-to-end Char-RNN deep net for DDI extraction is identical

to the components ② – ④ in Figure 1 with details as in Section V-B. This particular

architecture is motivated by the hierarchical LSTM model (https://github.com/tensorflow/

fold/blob/master/tensorflow_fold/g3doc/blocks.md) of the Tensor-Flow Fold framework

[29]. As such, our setup is different from traditional approaches where Char-RNNs are used

for language modeling or sequence tagging [26], [27].

VI. Experiments and Results

Next we describe our experimental setup and present results obtained using architectures

described in Section V.

A. Negative Instance Filtering

All prior results from Section III on the DDI dataset (Section II) use some form of negative

instance filtering. This is natural given a few straightforward types of drug pair mentions do

not constitute DDIs. For example, when describing hypernymic relations using the construct

Kavuluru et al. Page 7

IEEE Int Conf Healthc Inform. Author manuscript; available in PMC 2017 October 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://github.com/tensorflow/fold/blob/master/tensorflow_fold/g3doc/blocks.md
https://github.com/tensorflow/fold/blob/master/tensorflow_fold/g3doc/blocks.md

“DRUGA such as DRUGB”, it is clear that this particular instance does not represent an

interaction between the drugs. However, prior studies outline only general guidelines for

filtering without unambiguously specifying all rules in an exhaustive manner. This hinders

replicability for other follow-up efforts. In our current effort, we conduct experiments

without any filtering and also apply some minimal filtering fully specified by the following

patterns that capture certain coordination structures, hypernymic relations, and other

constructs inspired from a prior effort by Kim et al. [11].

“^DRUGA :”, “^DRUGB :”,

“DRUGA, DRUGB”, “DRUGB, DRUGA”,

“DRUGA (DRUGB)”, “DRUGB (DRUGA)”,

“DRUGA, DRUGB, and DRUGN”,

“DRUGB, DRUGA, and DRUGN”,

“DRUGN, DRUGB, and DRUGA”,

“DRUGA, DRUGN, and DRUGB”,

“DRUGN, DRUGA, and DRUGB”,

“DRUGN, DRUGB, and DRUGA”,

“DRUGA such as DRUGB”,

“DRUGB such as DRUGA”,

“DRUGA such as DRUGN or DRUGB”, and

“DRUGB such as DRUGN or DRUGA”

The idea is to automatically classify any instance as false if it matches one of these patterns.

However, this could lead to misclassification of some positive instances leading to false

negatives (FNs). However, these specific rules weed out many more potential false positives

(FPs) than the number of new FNs they incur. Table I shows the exact numbers of instances

we have in the dataset before and after applying the filters. As we can see, these rules result

in a major reduction in negative instances while incurring a very small dip in positive

instances.

B. Model Configuration Details

The following are the implementation choices made for the regular word based RNN model

based on experimentation and best practices from other efforts. This architecture was

implemented using the Theano [30] library.

• We ran Google's word2vec [19] system on Medline citations (2014 PubMed

baseline) to obtain 300-dimensional pre-trained word vectors, which are used as

Kavuluru et al. Page 8

IEEE Int Conf Healthc Inform. Author manuscript; available in PMC 2017 October 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

initial vectors to populate a sentence matrix. The tokenizer used is a simple

splitter on non-word characters (those excluding the English alphabet, ten digits,

and underscore symbol). For words in the training dataset that do not have pre-

trained word vectors, we initialized each of their elements randomly by drawing

from a uniform distribution with values ranging between the minimum and

maximum values for that element among pre-trained vectors. The special tokens

for DRUGA, DRUGB, and DRUGN were randomly initialized using the same

approach.

• The position vector dimensionality was set to 32 with each element initialized

from the uniform distribution U(0, 0.01). The number of position vectors was

determined based on the maximum position variation observed in the training

sentences. Positions with respect to DRUGA (DRUGB) that are beyond those

observed during training were assigned the vector corresponding to the farthest

position encountered during training for DRUGA (DRUGB).

• The output dimensionality of each LSTM is 512, leading to 1024 features input

to the softmax layer given there are two LSTMs. The BiLSTM weight matrices

and the weight matrix q were initialized to values drawn from a normal

distribution with mean 0 and standard deviation where the input

size is 364 (300 for word vectors and 32 each for two position vectors) for the

LSTMs and 1024 for the softmax layer. The bias vector bq was initialized to the

zero vector and the LSTM bias vectors were initialized to [1, …, 1].

• AdaGrad [31] was used for optimization with an initial learning rate of 0.01. The

mini-batch size was set to 50 instances and sentences were zero padded at the

end based on the length of the longest sentence in the training dataset. The

number of epochs used was 25 with an early stopping criterion where we stopped

training if there were five consecutive epochs in the training procedure that did

not increase the validation micro F-score. The dropout parameter was set to 0.5.

Next we discuss empirical implementation choices made for the Char-RNN based

hierarchical LSTM model discussed in Section V-C and implemented using TensorFlow

Fold [29].

• Given word representations are based on character embeddings in this model, we

don't have pre-trained word embeddings to incorporate. We used 128 ASCII

characters and embedded them as 250 dimensional vectors. Although it is

atypical to have the dimensionality to be higher the vocabulary size, our

experiments indicated that higher dimensionality was essential to achieve

reasonable performance. The dimensionality of Char-LSTM output was set to

250, which thus also becomes the word vector size given the setup in equation

(3). The Word-LSTM output dimensionality was determined to be 250 and hence

we have 500 input features for the softmax layer. All parameters were initialized

according to TensorFlow's recommended guidelines based on the input size

(https://www.tensorflow.org/api_docs/python/tf/

uniform_unit_scaling_initializer).

Kavuluru et al. Page 9

IEEE Int Conf Healthc Inform. Author manuscript; available in PMC 2017 October 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://www.tensorflow.org/api_docs/python/tf/uniform_unit_scaling_initializer
https://www.tensorflow.org/api_docs/python/tf/uniform_unit_scaling_initializer

• The position vector dimensionality was set to 32 and positions farther than those

observed during training were handled in the same way at test time as we

outlined earlier for regular RNNs.

• We used AdaGrad [31] for optimization with initial learning rate of 0.5 and

initial gradient accumulator value of 0.1, the default value in TensorFlow. The

mini-batch size was set to 50 instances and zero padding was not necessary given

the dynamic computations allowed by TensorFlow Fold. We used 30 epochs and

stored the best model that has the best micro F-score on the validation dataset.

The dropout parameter was set to 0.2.

C. Bootstrapped Model Averaging

As discussed toward the end of Section III, due to large number of local minima owing to

larger parameters spaces, a single end-to-end deep net tends to converge to different

solutions under different parameter initializations. Although the error rates may be similar,

the actual errors made might differ among the resulting models. Hence it is well known that

ensembling several models built from the same architecture results in higher performance

than using the constituent individual models [32], [33]. In our prior efforts in text

classification with deep nets, we consistently observed performance gains with ensembling

via voting [34] or through model averaging [35], [36]. In model averaging, we predict the

final class based on the average of the class probability estimates of multiple (typically 10–

20) deep net models trained using the same architecture but with different parameter

initializations.

In this study, we build 20 regular RNN models and 20 Char-RNN based hierarchical models

with different parameter initializations and subsets of the training data using 10% of it for

validation and 90% for actual model building. To study the stability (and variance) of the

model averaged ensembles, we randomly considered 10,000 such ensembles of ten models

each from Char-RNN models, regular RNN models, and their union where five were

selected from each group. Note that the number of combinations for ten models for the

individual architectures is 20C10 and for the mixed setup is (20C5)2. The mean precision,

mean recall, and mean micro-F score (MMF) with 95% confidence interval along with its

standard deviation are shown in Table II. Among all ensembles, the table also shows the

maximum and minimum F-scores achieved per ensemble type.

We first make two interesting observations from Table II:

1. The standard deviation σ of micro F-scores is < 0.5 except for row five where it

is just over 0.5. This indicates that ensemble models are highly consistent in their

performance.

2. The widths of the 95% confidence intervals (CIs) around the MMFs are also very

small (mostly < 0.01). This indicates that the true MMFs are expected to lie in

extremely tight intervals around the corresponding sample MMFs. This implies

the sample means are very reflective of the average behavior of ensemble

models.

Kavuluru et al. Page 10

IEEE Int Conf Healthc Inform. Author manuscript; available in PMC 2017 October 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Rows 5–6 when compared with rows 2–3 show that negative instance filtering (from Section

VI-A) consistently improves performance given the corresponding CIs do not overlap for

Word-RNNs and the combined ensemble type. For the same reason, with or without

filtering, we also observe consistent improvements when building ensembles with both

character and word level models over those built just with either type. Furthermore, word

model ensembles are better than their character counterparts, which is not surprising given

direct representation of words is known to better capture their semantics at the expense of a

large set of parameters to learn. Nevertheless it is interesting to see that by just using 128

character embeddings we are able to achieve scores close to those achieved by models where

each word has its own representation. Also noteworthy is the ability of Char-RNNs to

complement word based models in building better joint ensembles. From the last two

columns we observe that the F-score values have a range of 3 to 4 points even if σ is small.

Thus there could be better ensembles in the short tail portion. For instance, the best MMF

value we have is 70.38 corresponding to the last row but the best micro F-score achieved for

that ensemble type is 72.13 which is close to 2 points away from the mean.

In Table III, we compare our models with others described in Section III. The first two rows

represent models that participated in the original competition and were blinded to the test set

completely. The remaining rows represent efforts after the competition when the full dataset

was released. We note that the winning team's entry [9] still has a high recall of 65.60

compared with rest of the subsequent attempts. Rows 1–4 are based on classical methods

involving SVMs and different types of kernels while the rest deal with deep net models. Our

models are shown in the last four rows of the table.

All teams used some form of negative instance filtering. But this process is subjective and

the filtering rules differ from team to team and are often not fully specified. In some cases

the counts after the filtering are not disclosed [13], [14]. Although Zhao et al. [15] present

counts after filtering, it is not clear how the two rules they discuss lead to filtering 56% (over

2800) of the negative test instances while removing only 8 positive instances. Our rules

(from Section VI-A) filter only 14% of negative instances while also removing 3 positive

instances. If not implemented with few generic patterns, this process can be tedious and can

result in rules that are potentially too specific to work for other datasets. Thus we wanted to

assess the best we can do without any rule based filtering given the confusing variations

noticed in earlier efforts. Rows 8 and 9 of Table III correspond our results in this scenario.

Our mean F-score here 69.13 is already better or comparable with other models that filter

negative instances. However, it trades off some recall for gains in precision to do that. Our

best ensemble without filtering beats all models but has the same F-score as the model by

Liu et al. [14].

Our ensemble performances with the mildly filtered dataset (see Section VI-A) are shown in

the final two rows. Our mean performances in this case are better than reported by most

other efforts that use elaborate yet underspecified negative instance filtering schemes. Our

best ensemble with filtering achieves superior results when compared with prior results on

the 2013 DDIExtraction dataset. However, we believe the mean measures are more reflective

of the expected performance on new test sets given the best model was obtained by simply

attempting various ensembles on the test set. This we believe is the common problem of all

Kavuluru et al. Page 11

IEEE Int Conf Healthc Inform. Author manuscript; available in PMC 2017 October 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

prior studies surveyed in this paper on the DDI extraction task. Without exception, all such

efforts do not report their architecture's average behavior based on different instantiations of

network parameters. In this context, it is not clear whether the results will be consistent

when a different initialization is used. Hence, we refrain to follow suit and report both the

best model's results and also the average behavior, which in our case turns out to be

consistent with tight confidence intervals.

VII. Concluding Remarks

In this paper, we took a deliberate approach to evaluate the potential of word and character-

level RNNs for DDI extraction. We used a small set of fully specified patterns that filter

certain obvious types of negative instances. We conducted experiments to assess the utility

and consistency of model averaging and the complementary aspects of regular and Char-

RNNs. We demonstrated that our models are superior or on par with prior results even when

considering average behavior with minimal filtering. As such, we believe, our effort throws

new light on evaluating deep neural architectures. The following are some limitations of our

current study discussed along with future research plans.

• In this paper, we do not report any qualitative error analyses of our results in

terms of patterns found in FPs and potential reasons for FNs. Furthermore, it is

not clear why and how Char-RNNs complement regular RNNs. While we notice

the effect, the underlying linguistic insights are not apparent. We wish to pursue

attention incorporated architectures to analyze these phenomena based on our

prior experiences [35].

• Although we considered 10,000 model averaging ensembles, we trained only 20

models for word based and Char-RNN based hierarchical architectures. So the

variety of models within the ensembles is limited and we plan to increase it by

training more models per architecture to generate more diverse ensembles.

• The main focus of this paper was on classifying the type of interaction between a

pair of drugs including the case when there is no interaction captured by the false
class (in addition to the four specific types). However, it might be more useful

just to detect the interaction without having to identify the specific type.

Although this is a simpler binary classification problem, it nevertheless warrants

a separate architecture tuned to maximize the detection F-score, which is going

to be part of our future work.

• We are aware of more complex neural architectures that combine RNNs and

CNNs [17], employ hierarchical attention over the three sentence segments

separated by the entity pair [18], and use Tree-RNNs (also known as recursive

neural networks) [37] for relation classification. Our initial attempts in using

these did not improve over results in this paper. We will take a more thorough

approach in evaluating the suitability and assessing the modifications needed to

adapt them to the DDI extraction task.

Kavuluru et al. Page 12

IEEE Int Conf Healthc Inform. Author manuscript; available in PMC 2017 October 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Acknowledgments

Research reported in this publication was primarily supported by the National Library Of Medicine of the National
Institutes of Health under Award Number R21LM012274. Additional support is provided by the National Center for
Advancing Translational Sciences through grant UL1TR001998 and the Kentucky Lung Cancer Research Program
through grant PO2 41514000040001. The content is solely the responsibility of the authors and does not necessarily
represent the official views of the National Institutes of Health.

References

1. Preston, CL. Stockley's drug interactions: A source book of interactions, their mechanisms, clinical
importance and management. Pharmaceutical Press; 2016.

2. Pirmohamed M, James S, Meakin S, Green C, Scott AK, Walley TJ, Farrar K, Park BK,
Breckenridge AM. Adverse drug reactions as cause of admission to hospital: prospective analysis of
18 820 patients. BMJ. 2004; 329(7456):15–19. [PubMed: 15231615]

3. Davies EC, Green CF, Taylor S, Williamson PR, Mottram DR, Pirmohamed M. Adverse drug
reactions in hospital in-patients: a prospective analysis of 3695 patient-episodes. PLoS one. 2009;
4(2):e4439. [PubMed: 19209224]

4. Law V, Knox C, Djoumbou Y, Jewison T, Guo AC, Liu Y, Maciejewski A, Arndt D, Wilson M,
Neveu V, et al. Drugbank 4.0: shedding new light on drug metabolism. Nucleic acids research.
2014; 42(D1):D1091–D1097. [PubMed: 24203711]

5. Percha B, Altman RB. Informatics confronts drug–drug interactions. Trends in pharmacological
sciences. 2013; 34(3):178–184. [PubMed: 23414686]

6. Herrero-Zazo M, Segura-Bedmar I, Martínez P, Declerck T. The ddi corpus: An annotated corpus
with pharmacological substances and drug–drug interactions. Journal of biomedical informatics.
2013; 46(5):914–920. [PubMed: 23906817]

7. Segura-Bedmar I, Martínez P, Herrero-Zazo M. SemEval-2013 task 9 : Extraction of drug-drug
interactions from biomedical texts (DDIExtraction 2013). Second Joint Conference on Lexical and
Computational Semantics (*SEM), Volume 2: Seventh International Workshop on Semantic
Evaluation. 2013:341–350.

8. Segura-Bedmar I, Martínez P, Herrero-Zazo M. Lessons learnt from the ddiextraction-2013 shared
task. Journal of biomedical informatics. 2014; 51:152–164. [PubMed: 24858490]

9. Chowdhury MFM, Lavelli S. FBK-irst: a multi-phase kernel based approach for drug-drug
interaction detection and classification that exploits linguistic information. Second Joint Conference
on Lexical and Computational Semantics (*SEM), Volume 2: Seventh International Workshop on
Semantic Evaluation. 2013:351–355.

10. Thomas P, Neves M, Rocktäschel T, Leser U. Wbi-ddi: drug-drug interaction extraction using
majority voting. Second Joint Conference on Lexical and Computational Semantics (*SEM),
Volume 2: Seventh International Workshop on Semantic Evaluation. 2013:628–635.

11. Kim S, Liu H, Yeganova L, Wilbur WJ. Extracting drug–drug interactions from literature using a
rich feature-based linear kernel approach. Journal of biomedical informatics. 2015; 55:23–30.
[PubMed: 25796456]

12. Zheng W, Lin H, Zhao Z, Xu B, Zhang Y, Yang Z, Wang J. A graph kernel based on context
vectors for extracting drug–drug interactions. Journal of biomedical informatics. 2016; 61:34–43.
[PubMed: 27012903]

13. Liu S, Tang B, Chen Q, Wang X. Drug-drug interaction extraction via convolutional neural
networks. Computational and mathematical methods in medicine. 2016; 2016

14. Liu, S., Chen, K., Chen, Q., Tang, B. Bioinformatics and Biomedicine (BIBM), 2016 IEEE
International Conference on. IEEE; 2016. Dependency-based convolutional neural network for
drug-drug interaction extraction; p. 1074-1080.

15. Zhao Z, Yang Z, Luo L, Lin H, Wang J. Drug drug interaction extraction from biomedical literature
using syntax convolutional neural network. Bioinformatics. 2016; 32(22):3444–3453. [PubMed:
27466626]

16. Suárez-Paniagua V, Segura-Bedmar I, Martínez P. Exploring convolutional neural networks for
drug–drug interaction extraction. Database. 2017; 2017 bax019.

Kavuluru et al. Page 13

IEEE Int Conf Healthc Inform. Author manuscript; available in PMC 2017 October 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

17. Vu NT, Adel H, Gupta P, Schütze H. Combining recurrent and convolutional neural networks for
relation classification. Proceedings of the 2016 Conference of the North American Chapter of the
Association for Computational Linguistics: Human Language Technologies. Jun.2016 :534–539.

18. Xiao M, Liu C. Semantic relation classification via hierarchical recurrent neural network with
attention. Proceedings of COLING 2016, the 26th International Conference on Computational
Linguistics: Technical Papers. 2016:1254–1263.

19. Mikolov T, Sutskever I, Chen K, Corrado GS, Dean J. Distributed representations of words and
phrases and their compositionality. Advances in Neural Information Processing Systems.
2013:3111–3119.

20. Graves, A. ser Studies in Computational Intelligence. Vol. 385. Springer; 2012. Supervised
Sequence Labelling with Recurrent Neural Networks.

21. Pascanu R, Mikolov T, Bengio Y. On the difficulty of training recurrent neural networks.
Proceedings of the 30th International Conference on Machine Learning. 2013; 28:1310–1318.

22. Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural
computation. 2000; 12(10):2451–2471. [PubMed: 11032042]

23. Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997; 9(8):1735–
1780. [PubMed: 9377276]

24. Goldberg Y. A primer on neural network models for natural language processing. Journal of
Artificial Intelligence Research. 2016; 57:345–420.

25. Zeng D, Liu K, Lai S, Zhou G, Zhao J. Relation classification via convolutional deep neural
network. Proceedings of COLING 2014, the 25th International Conference on Computational
Linguistics: Technical Papers. 2014:2335–2344.

26. Kim, Y., Jernite, Y., Sontag, D., Rush, AM. Proceedings of the Thirtieth AAAI Conference on
Artificial Intelligence. AAAI Press; 2016. Character-aware neural language models; p. 2741-2749.

27. Santos CD, Zadrozny B. Learning character-level representations for part-of-speech tagging.
Proceedings of The 31st International Conference on Machine Learning. 2014:1818–1826.

28. Zhang X, Zhao J, LeCun Y. Character-level convolutional networks for text classification.
Advances in neural information processing systems. 2015:649–657.

29. Looks M, Herreshoff M, Hutchins D, Norvig P. Deep learning with dynamic computation graphs.
Proceedings of International Conference on Learning Representations. 2017

30. Bergstra J, Breuleux O, Bastien F, Lamblin P, Pascanu R, Desjardins G, Turian J, Warde-Farley D,
Bengio Y. Theano: a CPU and GPU math expression compiler. Proceedings of the Python for
Scientific Computing Conference (SciPy). Jun.2010 oral Presentation.

31. Duchi J, Hazan E, Singer Y. Adaptive subgradient methods for online learning and stochastic
optimization. Journal of Machine Learning Research. Jul.2011 12:2121–2159.

32. Rokach L. Ensemble-based classifiers. Artificial Intelligence Review. 2010; 33(1):1–39.

33. Huang G, Li Y, Pleiss G, Liu Z, Hopcroft JE, Weinberger KQ. Snapshot ensembles: Train 1, get M
for free. Proceedings of International Conference on Learning Representations. 2017

34. Rios, A., Kavuluru, R. Proceedings of the 6th ACM Conference on Bioinformatics, Computational
Biology and Health Informatics. ACM; 2015. Convolutional neural networks for biomedical text
classification: application in indexing biomedical articles; p. 258-267.

35. Tran T, Kavuluru R. Predicting mental conditions based on “history of present illness“ in
psychiatric notes with deep neural networks. Journal of Biomedical Informatics. 2017

36. Rios A, Kavuluru R. Ordinal convolutional neural networks for predicting RDoC positive valence
psychiatric symptom severity scores. Journal of Biomedical Informatics. 2017

37. Ebrahimi J, Dou D. Chain based rnn for relation classification. Proceedings of the 2015
Conference of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies. 2015:1244–1249.

Kavuluru et al. Page 14

IEEE Int Conf Healthc Inform. Author manuscript; available in PMC 2017 October 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fig. 1. Word and Character-Level RNN for DDI Extraction

Kavuluru et al. Page 15

IEEE Int Conf Healthc Inform. Author manuscript; available in PMC 2017 October 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Kavuluru et al. Page 16

Table I
Counts before and after negative instance filtering

Class
Training Test

Before After Before After

Total Pairs 27792 23338 5716 4872

Negative DDIs 23772 19342 4737 3896

Positive DDIs 4020 3996 979 976

Mechanism 1319 1309 302 301

Effect 1687 1676 360 358

Advise 826 824 221 221

Int 188 187 96 96

IEEE Int Conf Healthc Inform. Author manuscript; available in PMC 2017 October 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Kavuluru et al. Page 17

Ta
b

le
 II

M
ea

n
sc

or
es

 o
f

10
,0

00
 d

if
fe

re
nt

 t
en

 m
od

el
 e

ns
em

bl
es

 o
n

th
e

D
D

IE
xt

ra
ct

io
n

20
13

 t
es

t
se

t

N
eg

 F
ilt

er
E

ns
em

bl
e

T
yp

e
M

ea
n

P
M

ea
n

R
95

%
 C

I
of

 M
M

F
M

M
F

 σ
M

in
 F

M
ax

 F

✗

C
ha

r-
R

N
N

s
77

.5
6

60
.3

2
67

.8
6

±
 0

.0
08

32
00

.4
2

66
.2

8
69

.4
0

W
or

d-
R

N
N

s
74

.9
0

62
.4

6
68

.1
1

±
 0

.0
07

68
00

.3
9

66
.6

7
69

.3
1

B
ot

h
R

N
N

s
77

.7
8

62
.2

1
69

.1
3

±
 0

.0
09

19
00

.4
7

67
.0

9
70

.8
1

✓

C
ha

r-
R

N
N

s
75

.8
0

61
.3

4
67

.8
0

±
 0

.0
08

85
00

.4
5

66
.2

5
69

.4
5

W
or

d-
R

N
N

s
76

.0
2

64
.4

4
69

.7
5

±
 0

.0
11

03
00

.5
6

67
.7

9
71

.2
2

B
ot

h
R

N
N

s
78

.5
6

63
.7

6
70

.3
8

±
 0

.0
09

63
00

.4
9

68
.2

8
72

.1
3

IEEE Int Conf Healthc Inform. Author manuscript; available in PMC 2017 October 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Kavuluru et al. Page 18

Table III
Comparison with prior efforts

Team Precision Recall F-score

FBK-irst [9] 64.60 65.60 65.10

WBI [10] 64.20 57.90 60.90

Kim et al. [11] – – 67.00

Zheng et al. [12] – – 68.40

Liu et al. [13] 75.70 64.60 69.75

Liu et al. [14] 78.24 64.66 70.81

Zhao et al. [15] 72.50 65.10 68.60

Our mean scores (¬F) 77.78 62.21 69.13

Our best ensemble (¬F) 79.34 63.94 70.81

Our mean scores (+F) 78.56 63.76 70.38

Our best ensemble (+F) 79.68 65.88 72.13

IEEE Int Conf Healthc Inform. Author manuscript; available in PMC 2017 October 13.

	Abstract
	I. Introduction
	II. 2013 DDIExtraction Challenge Dataset
	III. Related Work
	IV. Introduction to RNNs and LSTMs
	V. Word and Character-Level RNNs
	A. Instance Preprocessing
	B. Word-Level RNNs with Position Vectors
	C. Character-Level RNNs

	VI. Experiments and Results
	A. Negative Instance Filtering
	B. Model Configuration Details
	C. Bootstrapped Model Averaging

	VII. Concluding Remarks
	References
	Fig. 1
	Table I
	Table II
	Table III

