
Language-Based Process Phase Detection in the Trauma 
Resuscitation

Yue Gu1, Xinyu Li1, Shuhong Chen1, Hunagcan Li1, Richard A. Farneth2, Ivan Marsic1, and 
Randall S. Burd2

1Department of Electrical and Computer Engineering, Rutgers University, Piscataway, NJ, USA

2Trauma and Burn Surgery, Children’s National Medical Center, Washington, DC, USA

Abstract

Process phase detection has been widely used in surgical process modeling (SPM) to track process 

progression. These studies mostly used video and embedded sensor data, but spoken language also 

provides rich semantic information directly related to process progression. We present a long-short 

term memory (LSTM) deep learning model to predict trauma resuscitation phases using verbal 

communication logs. We first use an LSTM to extract the sentence meaning representations, and 

then sequentially feed them into another LSTM to extract the meaning of a sentence group within 

a time window. This information is ultimately used for phase prediction. We used 24 manually-

transcribed trauma resuscitation cases to train, and the remaining 6 cases to test our model. We 

achieved 79.12% accuracy, and showed performance advantages over existing visual-audio 

systems for critical phases of the process. In addition to language information, we evaluated a 

multimodal phase prediction structure that also uses audio input. We finally identified the 

challenges of substituting manual transcription with automatic speech recognition in trauma 

resuscitation.
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I. INTRODUCTION

Surgical Process Modeling (SPM) focuses on modeling surgical workflows, where a process 

phase is defined as a sequence of executable activities [1]. This kind of modeling is used for 

medical education, evaluating team performance, operation planning, and task detection. 

However, to create high-performance decision support systems, it is necessary to have 

contextual awareness of the performed activities in relation to the entire process [2][3][4]. To 

detect and predict process phase, previous research has proposed methods using different 

data sources. To avoid the labor-intensive manual logging of human observations, sensors 

(including cameras, wearable sensors, and machine recordings) have been used for data 

collection. Tool usage recordings [5], medical equipment signals [6], medical event logs [4]

[7], body-worn sensors [3], and multimodal Kinect sensors [1] have previously provided 

input data for surgical phase detection. However, human language has been overlooked as an 
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input data source for process modeling. To our knowledge, no other research used language 

information to support process phase and workflow detection. Verbal communication is 

particularly informative in the trauma resuscitation scenario, where speech contains rich 

communication information necessary for trauma team dynamics, cooperation, and 

leadership [8]. In addition, verbal communication provides direct information regarding the 

performed task, as opposed to tool usage and body movement that are difficult to detect. For 

example, when asked to identify the current phase of the resuscitation process, medical 

experts mainly rely on speech, particularly for activities that do not require use of medical 

tools, such as Airway Assessment and Neurological Assessment, Visual Inspection-N 

(nose), and Visual Inspection-M (mouth).

We designed a long-short term memory (LSTM) deep learning model using verbal 

communication to detect the phase of the trauma resuscitation process. Two shotgun 

microphones were installed in a trauma room to collect speech data, and the audio was 

manually transcribed to verbal communication logs. Trauma experts identified five trauma 

resuscitation phases (pre-arrival, patient arrival, primary survey, secondary survey, and post-

secondary survey). To predict these phases, we first embedded the transcribed sentences into 

word vectors, and used an LSTM to extract sentence representations. Then, each sentence 

representation was sequentially fed into another LSTM to learn inter-sentence contextual 

information and predict the trauma resuscitation phase. We recorded 30 trauma resuscitation 

cases (around 17.5 hours) from the Children’s National Medical Center in the US. This 

study was approved by the Hospital’s institutional review board. We used 24 cases to train 

and the 6 remaining cases to test our model. Our results showed an average 79% phase 

detection accuracy. We also evaluated the potential extensions of our model with multimodal 

inputs and automatic speech recognition. Our contributions are:

• A multi-stage LSTM resuscitation phase prediction model that automatically 

extracts sentence-level representations and inter-sentence contextual information 

from trauma team communications.

• A case study of multimodal (language and speech) phase prediction and 

automatic speech recognition during trauma resuscitations, which uncovered the 

issues that need to be addressed for successful application.

• A dataset with audio and transcripts of actual trauma resuscitations available for 

future research.

The paper is structured as follows: Section II introduces related work on process phase 

detection and language research in the medical domain. The data collection and ground truth 

coding are described in Section III. We describe the model structure in Section IV and its 

implementation in Section V. The experimental results are presented in Section VI. We 

provide a discussion of model limitations and future work in section VII. We finally 

conclude in Section VIII.

II. REALTED WORK

With the fast growth of speech technology and with improvements to multimedia systems, 

language modeling has become more popular in clinical applications. Most speech and 
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language related medical research focuses on electronic medical records, parsing and 

mapping patient information to a coded medical ontology or patient records [9][10][11]. 

However, there has been little research using speech to detect, evaluate, improve, and 

support the surgical performance.

Several different strategies have been applied to surgical process modeling. A surgical phase 

detector predicted the laparoscopic cholecystectomy phase by using machine signals 

representing tool usage [5][6]. However, this method is hard to apply in settings such as the 

trauma room, because most of the equipment does not generate digital signals. A passive 

privacy-preserving RFID based approach was used to detect the progress of a surgical 

process [3]. However, these sensors could interfere with the work and impact patient safety. 

Manually recorded activity logs were used to predict the surgical phase by using a decision 

tree structure [4]. However, manual activity logging is subjective, requires expert knowledge, 

and is labor-intensive. In a recent study, a multimodal deep learning structure was introduced 

for predicting the trauma resuscitation phase by using depth video and audio input [2]. The 

results showed adequate performance in phase detection, but the system struggled with 

phases in which teamwork video and ambient sounds appeared similar. Our preliminary 

analysis showed that, although gestures and tool usage appeared similar, verbal 

communication was distinguishable across different phases. For example, the Neurological 

Assessment in Primary Survey and Visual Inspection-M (mouth) in Secondary Survey have 

almost indistinguishable tool usage and visual cues, but very different speech.

To perform phase detection based on language information, sentence understanding is 

necessary. Recent deep learning based techniques showed great performance in sentence 

semantic analysis. A ConvNet structure was first used as a feature extractor to capture local 

dependencies between words [12]. To extend to long-range temporal dependencies between 

words, recurrent neural networks (RNN) and long-short term memory (LSTM) structures 

were used [13][14]. In addition to learning word relationships, semantic understanding on 

the paragraph level was also introduced to document analysis. To represent document 

meaning, CNN-LSTM models were designed for document classification and sentiment 

analysis [15][16].

For the purpose of this project, we installed a shotgun microphone system in an actual 

trauma room to capture speech data and designed a LSTM based deep learning model to 

predict process phase using verbal communication logs. Our model learned both the local 

and long-range dependencies from language within time windows to predict the phase. We 

also evaluated a multimodal combination of audio and text, and explored the issues with 

automatic speech recognition in trauma resuscitations.

III. DATASET

A. Data Collection

The dataset was collected during 30 resuscitations in a trauma room. For safety and 

convenience, instead of using wearable microphones, we installed two fixed NTG2 Battery 

or Phantom Powered Condenser shotgun microphones pointed at the team leader group and 

patient bed area, where most verbal communication takes place (Fig. 1). We recorded the 
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speech to two channels with 16000Hz sampling rate. Finally, we manually transcribed the 

audio data for each case.

B. Ground Truth Coding and Data Preprocessing

Five consecutive phases of the resuscitation process were defined by medical experts: pre-

arrival, patient arrival, primary, secondary, and post-secondary (Table I). The patient 

departure phase used in earlier work [2] was omitted because the trauma team usually does 

not discuss their activities during departure, and because they leave the area covered by 

microphones. For each sentence, medical experts manually coded the corresponding phase 

based on the audio-visual records.

We assigned time labels to each sentence corresponding to the time when the last word in 

the sentence was completed. Even though trauma speech is shorter than regular daily speech 

and may contain pauses, we still use the last word as the time label to avoid having 

sentences split over adjacent windows. Next, the sentences were assigned to time windows 

of 20s audio length. There are two reasons for choosing this window size. First, verbal 

communication is not uniformly distributed across the duration of the resuscitation. Trauma 

team members usually speak a lot at the beginning of the primary survey phase, but 

relatively sparsely during post-secondary phase. Therefore, there might be 30 sentences in 

one minute during the primary survey phase, but less than 5 sentences in postsecondary 

survey phase over the same time duration. This fact can also serve as a feature for the phase 

detection. Second, in the future, our model will be combined with the visual and audio data. 

Most multimodal architectures use time windows to process the visual and acoustic data, and 

it would be impossible to assign time window sizes based on a fixed number of sentences

The 20-second time window is shifted through the audio second by second. The sentences 

for which the time labels belong to a given 20-second window will be fed into the system to 

predict the process phase. For example, the sentences with labels from 10s to 30s will be fed 

into the model sequentially to predict the phase at 30s. After this, the same procedure will be 

repeated for predicting the process phase between 11s and 31s. Example sentences with their 

time labels are shown in Table II. Our dataset contained 7784 sentences in total.

IV. METHOD

A. Overview

Our model is composed of four modules including the word embedding module, sentence 

representation module, sentence-sequence representation module, and decision making 

module (Fig. 2):

• Word Embedding: given a sentence, this layer embeds each word using the 

word2vec dictionary [17] and then feeds the word vectors into the sentence 

representation module.

• Sentence Representation: to understand sentence meaning, the word vectors are 

then processed by the sentence representation module to extract sentence 

features.
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• Sentence-sequence (s-sequence) Representation: this module takes the sentence 

representations within the last 20s window and outputs a fixed-length feature 

vector that represents inter-sentence contextual features.

• Decision Making: we use softmax as classifier to predict the process phase based 

on the sentence-sequence representations.

B. Word Embedding Module

We first mapped the words in each sentence into a corresponding word vector [17]. In 

natural language processing, word vectors are widely used to represent semantic associations 

in low-dimensional mappings [17][18]. Each sentence is then represented as a matrix with 

columns of word vectors and rows of words in the sentence. To initialize the word vectors, 

we selected word2vec as the embedding dictionary. We compared other word embedding 

dictionaries, including randomly initialized embedding, Glove word vectors [19], and 

Collobart word vectors [20], but word2vec had the best performance. Each word was then 

embedded into a 300-dimensional word vector and unknown words were initialized 

randomly.

C. Sentence Representation Module

The word embedding layer is followed by the sentence representation module. 

Convolutional neural networks (CNN) and long-short term memory structures were used to 

capture the semantic meaning of the sentence from inter-word dependencies [12][21]. 

Although ConvNets learn spatial features, they do not capture the temporal associations 

between words in sentences. In our model, we used the LSTM structure because of its ability 

to handle sequences of various lengths and capture long-range associations [15][21].

LSTM is a special recurrent neural network (RNN) that allows input data with varying 

length and outputs a fixed-length result [22]. It processes sequence data and overcomes the 

RNN problem of vanishing and exploding gradients [21]. It has been widely used in natural 

language processing [15][21][22]. Three different gates (including input, output, and forget) 

and a memory cell are used to generate the hidden state for each input. Let us define the 

input sequence as X = {x1, x2,..., xt}, where x is input data and t is the input time step. The 

activation output of the input gate is:

It = σ W Ixt + V IHt − 1 + bI (1)

where 𝜎 represents the sigmoid function, 𝐼𝑡 is an input gate, 𝐻𝑡 is the final hidden state, and 

W, V, and b are the learned parameters. The forget gate decides whether the previous 

memory should be considered in the current state:

Ft = σ WFxt + VFHt − 1 + bF (2)

where 𝐹𝑡 is a forget gate. The memory gate combines the old memory state with the forget 

gate and produces the new memory as follows:
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Mt = Ft ⊙ Mt − 1 + It ⊙ tanh WMxt + VMHt − 1 + bM (3)

The final output and hidden state are defined as:

Ot = σ WOxt + VOHt − 1 + bO (4)

Ht = Ot ⊙ tanh Mt (5)

where 𝑂𝑡 is an output gate, 𝑀𝑡 is a memory cell, and ⨀ is elementwise multiplication. For 

each input, the structure considers both the current input 𝑥𝑡, previous memory cell −1, and 

previous hidden state 𝐻𝑡−1.

We used one LSTM layer to extract the sentence features from word vectors outputted by the 

word embedding layer. The final hidden state of this LSTM is used as the sentence 

representation. In our model, the output of the sentence representation module is a 128-

dimensional vector for each sentence. The output vectors are used as the input for the 

sentence-sequence representation module.

D. Sentence-sequence Representation Module

A single sentence considers only the local dependencies, the information at a particular time 

during the resuscitation. However, trauma language and activity contain temporal 

associations across the workflow. These sequence features are lost if we predict phase only 

based on single sentence representations. During trauma resuscitations, the same activity 

sentences may appear in multiple phases; even trauma experts need to check previous 

sentences or videos to determine the current phase during their ground truth coding. Hence, 

learning contextual and temporal information is necessary for phase detection. LSTMs were 

designed to obtain long-distance dependencies that can be considered for capturing 

contextual language information [14]. In our model, we selected 20s as the window size to 

collect the sentences. We first accumulated the sentence representations based on the 

timeline and then fed them in sequence into the LSTM structure to learn context 

information. For each second, the LSTM memory cell slides through the previous 20s 

sentence representations and outputs the last hidden state as the sequence representation. 

This sequence vector represents the semantic meaning of the phases in the corresponding 

20s based on all sentences appearing in the same time duration. We finally connected a 

softmax layer at the end of the sequence LSTM structure to predict the phase. Figure 2 

shows the sentence-sequence LSTM structure and softmax layer.

V. IMPLEMENTATION AND EXTENSIONS

This section has three sub-parts: model training, multimodal structure, and automatic speech 

recognition. We first provide the detailed training information of the proposed LSTM based 
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phase prediction model using language log. We also implemented the model into a 

multimodal prediction structure combining language information with acoustic (audio) 

information. Lastly, we test our phase prediction model using text inputs transcribed by a 

speech recognition engine.

A. Model Training

To train and test the model, we used Keras, a high-level TensorFlow-based neural network 

library [24]. In the word embedding module, we padded all the sentences to the same length 

(maximum length: 69) and used word2vec as the embedding dictionary (for 300-

dimensional embeddings). For both the sentence and the sentence-sequence representation 

modules, we empirically set all the hidden states to be 128dimensional and used the Adam 

optimizer to minimize the loss value, with 0.001 as the initial learning rate and momentum 

parameters 0.99 and 0.999. To avoid overfitting, dropout was applied during training with 

probability 0.5, and we trained the model with independent cases. We used 80% of the 

whole dataset (24 cases) to train and the other 20% (6 cases) to test. The phase was 

predicted based on sentences within 20-second time windows.

B. Multimodal Implementation

As previously mentioned, different collection methods and data sources have different 

advantages during phase detection. In the trauma room, RFID performs well at detecting 

tool usage activities [25]. Visual and audio based multimodal systems perform well at 

patient arrival and departure detection. To make a system that synthesizes all of these 

advantages, we can combine different data sources together. However, we do not currently 

have the video and RFID data corresponding to our shotgun microphone data. To evaluate 

the feasibility and performance of the multimodal text structure, we adapted our model with 

the shotgun microphone audio source to build a multimodal architecture. The noise and 

background sounds proved helpful to phase detection, since the noises and patient voices are 

distinguishable for the pre-arrival, patient arrival, and patient departure phases [2]. Since our 

sentence window size is 20s, we used the same window size for the audio branch and 

applied a ConvNet to extract the audio features, with the same architecture and parameters 

as previous research [26]. We extracted Mel-frequency spectral coefficients (MFSC) from 

audio data to form the audio input map, avoiding the locality-compromising discrete cosine 

transform (DCR) compared with Mel-frequency cepstral coefficients (MFCC) [27]. We 

reshaped the size of each map to 64×256 before feeding them to the ConvNet. It is worth 

mentioning that there are 6 audio input channels, since we have two shotgun microphones 

each with 3 input channels. The detailed structure is shown in Figure 3. We trained the text 

and audio branches respectively and formed joint feature representations by concatenating 

the text branch sequence vectors and audio feature fusion outputs (from Fully-Connected 

Layer2 in audio branch). As suggested [28][29], we trained a three layer neural network 

with a softmax layer as the phase classifier. We used the same 24 cases as training data and 

the other 6 as testing data. The results are shown in section V.

C. Automatic Speech Recognition

Speech recognition is a potential replacement for human transcription work. In order to 

apply speech recognition to the trauma scenario, we fed the audio data from our shotgun 
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microphones into state-of-the-art speech recognition software to automatically collect the 

speech transcript, and then inputted the speech recognition result into the LSTM model to 

predict medical phase. The purposes of this experiment are:

• To build an automatic process phase detection system that uses speech 

recognition technology to automatically translate the speech signals into text.

• To verify the performance of our proposed model, and to analyze the potential 

extensions and future work for the system.

Instead of using the surgical simulations to test the system performance [3], we directly use 

the audio data from actual cases, since the trauma room simulations cannot account for all 

the real environmental noises, which are key factors for the speech recognition performance. 

We selected 3 cases from the testing dataset that contained relatively clear and loud speech. 

Three different state-of-the-art speech recognition engines were used in our experiment: 

Microsoft Bing Speech (MBS), Google Speech API (GS), and CMU Sphinx (CMUS). The 

MBS and GS required cloud computation, and we could not modify the speech models. 

Therefore, we directly fed the audio clips (each clip has one sentence) into the speech 

engine. CMUS provides the source code to build a custom language and acoustic model 

[30]. We used the trauma transcripts from training data to build the language model and 

applied Maximum Likelihood Linear Regression (MLLR) to adapt the acoustic model to the 

trauma environment [31][32]. We used the same method to feed the speech recognition 

results into the process phase detection model. The results are shown in section V.

VI. EXPERIMENT RESULTS

A. Evaluation of LSTM-LSTM Model

To evaluate the model performance, we compare four different deep learning based textual 

models:

• CNN based sentence prediction model: In this model, the phase is predicted by 

single sentences. The word is embedded by the word2vec dictionary and a 

ConvNet structure is used as the feature extractor. The model is similar to the 

CNN-non-static model [12].

• LSTM based sentence prediction model: In this model, we predict phase by 

single sentences using an LSTM as the sentence feature extractor. The model 

parameters are the same as our sentence representation module.

• CNN-LSTM based model: Using CNN as the sentence feature extractor and 

applying an LSTM structure as the sentence-sequence representation module.

• Our proposed LSTM based sequential predication model (LSTM-LSTM).

Table III provides the performances of different models. The result shows 41.7% accuracy 

for the CNN based sentence prediction model and 44.5% accuracy for the LSTM based 

sentence prediction model. The CNN-LSTM and LSTMLSTM models show significant 

performance boosts over the CNN model and LSTM model. Since both the CNN-LSTM 

model and LSTM-LSTM model consider sequence information and encodes the semantic 

relationships of sentences, it demonstrates that using the contextual information to predict 
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the phase is effective. LSTM-LSTM model had 79.1% accuracy, better than the 76.4% of the 

CNN-LSTM model. We also found that the LSTM model had better performance than CNN 

in representing sentence meaning.

To further evaluate the proposed LSTM-LSTM model, we provide the corresponding 

confusion matrix in Table IV. The confusion matrix shows that our model does well at 

predicting the pre-arrival and secondary survey. Our model achieves around 72% and 81% 

accuracy, outperforming previous work using visual and audio data (48% and 38%) [2]. As 

we mentioned before, using visual and audio data has advantages at distinguishing pre-

arrival, patient arrival, and patient departure phases, since the head count, patient bed area, 

machine sounds, and trauma medical team positions are very different at these stages. 

However, the depth images have limited visibility during the primary and secondary survey. 

In previous work [2], the depth image comes from one side of the patient bed. During the 

primary and secondary survey, there are several team members surrounding the bed, 

occluding the camera’s view of the patient area. Since the trauma team members and 

movements are very similar in depth images during the primary and secondary survey, this 

occlusion makes activity and phase detection difficult. Audio data also faces the same 

problem. The machine noise is almost the same during the primary and secondary survey. 

Compared with the visual and audio data, speech is independent of occlusion, and the 

examining provider typically reports all primary and secondary survey findings out loud as 

they are completed. Recognizing this speech should therefore provide more reliable 

information during these phases. Our results also demonstrate that language information 

performs well at primary and secondary survey prediction, but performs poorly at patient 

arrival phase. After further analyzing the transcript, we found that the language information 

is not very clear during arrival; usually, there is a lot of noise as the patient comes in and 

multiple people speak at the same time. It is very difficult to capture speech at this stage. 

Compared with the other phases which have relatively fixed speech content, patient arrival 

has less language information, and the content is very similar to the pre-arrival and primary 

survey. For example, the trauma team may discuss the patient weight or patient statue 

summary during pre-arrival. To fix this problem, we believe we can use relatively obvious 

visual and audio features (patient entering or exiting).

Our proposed model approaches or exceeds the performance of some existing models for 

similar scenarios (Table V). Compared with using medical machine signals [5], human 

language is more general and does not need specific medical equipment. Wearable sensors 

and RFIDs are inconvenient and may interfere with the operation [3]. Our model only uses 

language as input; the hands-free microphones do not interfere at all. Instead of wearing the 

RFID readers, a wearable microphone may capture better data and require less human 

attention. Unlike in work [30], our two shotgun microphones automatically capture speech 

and do not require staff to stand and record information in the surgical room. Our confusion 

matrix results also show the great improvement on primary phase and secondary phase 
detection compared with the results of previous work [2].
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B. Evaluation of Multimodal Application

The multimodal structure that uses text and speech as input data achieved 82.20% accuracy, 

which is higher than the models that only use text input. The results demonstrate that our 

LSTM model can be applied in combination with different data sources. The multimodal 

structure improves the performance of process phase detection in the trauma room. We 

believe there are several factors deciding the accuracy. First, audio data indeed indicates 

some distinguishable features for phase detection, and combining text and audio features 

enables accuracy improvements. Furthermore, we did not find significant improvement from 

combining different data sources as in previous work [2], since our microphones were 

shotguns pointed at two specific areas. As mentioned in section III, shotgun microphones 

deduct the volume from other areas and enhance the sound from a specific direction, 

meaning we may miss some audio information from the trauma room as a whole. Most of 

the data is actually either human voices or patient crying. This reduces the impact of the 

audio features, because talking always happens throughout the entire resuscitation except 

patient departure. Finally, the duty shift of the trauma team may influence the accuracy. The 

trauma members are on different teams, which means the audio features are different. For 

example, female voices are more common than male voices. Because the main composition 

is human voice in our audio data, the different person’s voices may be extracted as features. 

However, it will not be useful for phase detection.

C. Speech Recognition Exploration

We provide the results of phase prediction using speech recognition from different speech 

engines. We show the engine type, word error rate (WER), and phase prediction accuracy in 

Table VI. 903 sentences with the corresponding audio clips have been applied to the speech 

engines. The best performance is from the Bing speech API, with 56.37% word error rate. 

However, it has issues identifying some specific medical terminologies. For example, Bing 

has difficulty recognizing “Bair Hugger”, “CT Scan”, and “C-spine”. CMU Sphinx4 

provides us a method to build our own language model that overcomes the terminology 

problem. It is obvious that all the WERs were high, meaning all the three engines could not 

correctly recognize the trauma room speech.

From further analysis, we believe there are three main reasons: position of shotgun 

microphone, the cocktail party problem, and speaking rate. Even with our shotgun 

microphones directly pointing to the main areas in the trauma room, some operation noises, 

patient crying, and speaking direction still heavily influence the audio quality. Vital sounds 

and operation noises occur throughout the entire resuscitation. Since patients are children, 

crying noises are very common, covering speech from the trauma team. The direction of the 

shotgun microphones is fixed, so the speech sounds are weakened when the staff speaks at 

the side or back of the microphone. The cocktail party problem is a big issue for the trauma 

scenario [33]. Around 80% of our speech overlaps during the trauma resuscitation and 40% 

have heavy cocktail party problems. This makes speech hard to recognize, since multiple 

people speak at the same time with similar volumes. From our results, speech recognition 

engines have a very hard time with this. Only around 5% of speech that have cocktail party 

problem were recognized correctly by the engines. Speaking rate is another issue. The speed 

of trauma speech is much faster than that of daily conversation. The average speaking rate in 
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the trauma room is 3.983 wps, much faster than 2.667 wps for broadcasts and 2 wps for the 

general conversation. Considering most speech engines were trained on broadcast and daily 

conversation audio data, it is reasonable to get low accuracy in our scenario. For speech 

recognition based phase prediction, the highest accuracy was 41.2% from the CMU 

Sphinx4. We believe the medical terminologies have a great impact on the accuracy 

compared with the 39.32% from Bing Speech API.

VII. DISCUSSION AND FUTURE WORK

Our results demonstrate that our language log model performs well in phase detection during 

the primary and secondary surveys. However, it still has inherent limitations. First, it is hard 

to detect some phases that do not contain a lot of language information. For example, the 

patient arrival accuracy is only 22.12% (Table IV), since it has very little language 

information. Trauma staff seldom use speech to indicate patient arrival. Even for those cases 

that have patient arrival language information, it is usually just a single sentence. The 

contextual language information of the patient arrival varies by case and overlaps with the 

primary survey, making it very hard to detect in our model. The patient departure [2] is also 

difficult to identify by the language information. Patients are moved outside when the 

trauma team is ready. The position of the trauma team is changed during the patient 

departure phase. They do not stand around the patient bed or Mayo stand, making it difficult 

for the microphone to collect data. To improve the system performance, a multimodal deep 

learning structure consisting of a video, audio, and text branch should be considered. Patient 

arrival and departure have obvious visual features, and it has already been demonstrated that 

visual deep learning approaches work well for these phases [2]. Environmental noise also 

can be used to improve the accuracy of the patient arrival and departure phases, as there are 

often distinctive movement sounds.

Furthermore, the fusion of different data sources still poses a challenge. Our results 

demonstrate that our model can be easily combined with the audio branch and improves the 

performance of phase detection. Several steps should be considered next. More microphones 

should be added. Instead of focusing on two specific areas, collecting sound from the entire 

room provides more information. A multimodal model using all branches together, rather 

than respectively, should also be considered in our scenario. For example, the CNN-LSTM 

based deep learning structure is a potential method for our scenario [34]. In next, we must 

build a dataset that involves text, audio, and video together. We only recorded the text and 

audio data, but a video branch should be considered for the next step.

Lastly, automatic speech recognition must be improved for the trauma scenario. We used 

manually transcribed resuscitation verbal communication logs. To make a real-time or online 

system, automatic speech recognition is necessary. In our current stage, we used two hands-

free shotgun microphones to collect the speech data. However, the speech recognition 

accuracy based on these data is low due to the noisy environments and the cocktail party 

problem. A more complicated automatic speech recognition system including hands-free and 

wearable microphones, a speech device selection model, voice activation function, noise 

reduction function, and custom language model should be considered. Instead of just using 

two microphones pointed to the patient bed area and team leader group area, more shotgun 
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microphones will improve the data collection and system performance. Even though trauma 

experts seldom move during the resuscitation, we found the Jr. Resident, who is the most 

important person in patient bed area and reports the surgical information during entire 

resuscitation, may move to the right side of the patient or end of the patient bed to check the 

patient. This causes language collection problems for our current system that suppresses the 

sound from side and back. More shotgun microphones from different angles should be 

considered to completely capture the sound. To improve the audio quality and avoid the 

cocktail party problem, we could place wearable microphones for important roles that have 

the most meaningful speech, such as Jr. Resident and Charge Nurse. Unlike single 

microphone systems, multiple microphone systems need a device selection strategy to 

choose the clearest sound source from multiple channels and use speech activation to detect 

silence and divide the sentences. As mentioned in section V, it is necessary to build a custom 

language and acoustic model to overcome the medical terminology, background noise, and 

speaking rate problem. This is all potential feature work.

VIII. CONCLUSION

In conclusion, we presented a long-short term memory based deep learning model to predict 

the surgical phase using resuscitation verbal communication logs. The results show that our 

model achieves 79% average accuracy, comparable to the existing medical systems. Our 

model improves the accuracy of primary and secondary survey phases in the trauma 

resuscitation, which are hard to be detect with other sensor based models and systems. 

Compared with models that only consider local information, our model combines local and 

contextual information together to improve phase prediction accuracy. Because we do not 

cover any specific medical terminology during the modeling, our model is applicable to any 

medical area. We also demonstrated that our model can be easily extended to a multimodal 

structure, which uses audio and text together. The speech recognition experiments indicate 

that a custom automatic speech recognition system with noise reduction, wearable or close 

distance microphones, and custom language model should be considered for automatic 

process phase detection.
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Fig. 1. 
Our Hardware Configuration in the Trauma Room. Top Left: Shotgun microphone 

configuration in the trauma room. Top Right: NTG2 Battery Condenser Shotgun 

Microphone. Bottom: Trauma room layout and clinical member positions.
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Fig.2. 

The proposed LSTM based deep learning model structure. Sw
t : S represents sentence and t is 

the corresponding number, w represents words in the sentence. Note: we pad all the 

sentences into the same length.
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Fig.3. 
ConvNet Architecture of Audio Branch
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Table I.

TRAUMA RESUSCITATION PHASE DEFINITION

Phase Definition

Pre-arrival From the start of the audio recording until patient arrival

Patient Arrival From patient arrival into the trauma room until the first primary survey activity starts

Primary Survey From the start of primary survey activity until the first secondary survey activity starts

Secondary Survey From the start of secondary survey activity until the summary report of the resuscitation

Post Secondary Survey From the summary report of the resuscitation until the end of the audio data
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Table II.

SAMPLE SENTENCE DATA AND TIME LABEL

Phase Time Label(s) Sentence

Pre-arrival 115 What’s our weight estimate?

Patient Arrival 1193 Alright patient is here.

Primary 1310 Pulse is equal bilaterally.

Secondary 1992 Any stepoffs or deformities you can tell me?

Post Secondary 2278 Is x-ray ready?

IEEE Int Conf Healthc Inform. Author manuscript; available in PMC 2018 October 21.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Gu et al. Page 20

Table III.

THE ACCURACY OF FOUR DIFFERENT MODELS

Model CNN LSTM CNN-LSTM LSTM-LSTM

Accuarcy 41.7% 44.5% 76.4% 79.1%
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Table IV.

THE CONFUSION MATRIX OF LSTM-LSTM MODEL (PERCENTAGE)

Prearrival Patient Arriva Primary Secondary Post-Secondary

Pre-arrival 80.71 14.28 0 0 5.01

Patient Arrival 25.88 22.12 31.76 20.23 0

Primary 9.27 3.12 72.48 15.12 0

Secondary 1.26 1.28 8.43 81.61 7.41

Post-Secondary 9.15 3.17 0 15.37 72.31
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Table V.

THE COMPARISION OF SOME EXISITING MODELS IN SURGICAL SCENARIO

Model Data used Accuracy

Modeling and online recognition of surgical phase using hidden markov models [5] Medical machine signals 83%

Phase recognition for surgical procedures using embedded and body-worn sensors [3] Wearable sensors 77%

Activity recognition for contextaware hospital applications [29] Observation log 75%

Online process phase detection using multimodal deep learning [2] Video and audio 80%

Our model Language log 79%
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Table VI.

PERFORMANCE OF PROCESS PHASE DETECTION MODEL BASED ON SPEECH RECOGNITION 

RESULT

Speech recognition engine WER Phase prediction accuracy

Google speech API 63.12% 37.28%

Bing speech API 56.37% 39.32%

CMU Sphinx4 57.35% 41.13%
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