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Abstract

In medical processes such as surgical procedures and trauma resuscitations, medical teams 

perform treatment activities according to underlying invisible goals or intentions. In this study, we 

present an approach to uncover these intentions from observed treatment activities. Developed on 

top of a hierarchical hidden Markov model (H-HMM), our approach can identify multi-level 

intentions. To accurately infer the H-HMM, we used state splitting method with maximum a 

posteriori probability (MAP) as the scoring function. We evaluated our approach in both 

qualitative and quantitative ways, using a case study of the trauma resuscitation process. This 

dataset includes 123 trauma resuscitation cases collected at a level 1 trauma center. Our results 

show our intention mining achieved an accuracy of 86.6% in classifying medical teams’ 

intentions. This work is an exploration of unsupervised intention mining of complex real-world 

medical processes.
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I. Introduction

Process mining techniques [1] use activity logs to discover process models and analyze 

process deviations. The process models are often designed as a step-by-step workflow, 

specifying what executions to perform at each step. The limitation of existing studies in the 

process mining domain is that they only focused on the analysis of low-level activities. Most 

medical processes, however, are problem-solving processes, rather than a workflow 

execution process like issuing a driver’s license or submitting an insurance claim in which 

the exact workflow with all steps is precisely specified. Research has found that adverse 

outcomes are most commonly due to process errors that occur when an incorrect intention is 

formed by the team, leading to incorrect actions [2]. In these cases, the input data are 

correctly perceived, but an incorrect intention is formed, and the wrong activity is 

performed. Only monitoring and analyzing low-level process executions can be insufficient 

for understanding medical processes. In this study, we present an approach to mine the 

intentions from low-level medical team executions. We tested our approach on a real-world 

trauma resuscitation process dataset.

Intentions are the thoughts directed towards achieving process goals. We can often infer 

people’s intentions from their activities [3]. For example, during the trauma resuscitation, 

“maintain oxygenation” is a goal. Activities for addressing this goal may include “placing 

oxygen” or “placing an oxygen saturation monitor.” The team may have the goal of 

“maintain oxygenation,” but not have the intention of achieving this goal for several 

minutes. When they do intend to satisfy this goal, their intention may be identified by 

observing the two oxygen-related activities. Previous workflow analyses in process mining 

have focused on the shallow mining of the patterns of observed activities. They did not 

attempt to understand the hidden (or unobservable) intentions behind the observed activities. 

In addition, most previous research has focused on simple processes that include only a 

limited number of activities. Performing these analyses in medical settings is more 

challenging because of the concurrency of associated activities.

Although it is possible to manually perform intention mining, this approach is vulnerable to 

bias. Experienced observers may provide useful domain insights, but may also be prone to 

identifying only familiar or expected patterns while neglecting others. Mining intentions by 

reviewing activity lists based on patient attributes could mitigate this bias, but is an approach 

that is labor intensive. For this reason, a data-driven intention discovery approach is 

attractive for complex processes.

We perform data-driven unsupervised intention discovery by finding patterns in the observed 

activities. our intention discovery is based on the hypothesis that observed activities are 

frequently associated with the underlying intentions. We also assume that activities related to 

the same intention will be temporally associated with each other. We used an HMM 

inference algorithm to extract these associations automatically. In addition, because no 

general criteria are available to assess the quality of trauma resuscitations across patients 

with various injuries and conditions, our intention mining method mainly focuses on 

common process executions rather than the rare pathways.
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Our contributions are:

• A novel intention mining approach using a hierarchical hidden Markov model 

(H-HMM) to represent intentions at multiple levels of granularity. We introduced 

a state-splitting approach that avoids subjective and labor-intensive initialization 

of model parameters (e.g., number of hidden states, transition probabilities).

• A case study on a real-world medical process. We applied our intention mining 

approach on the trauma resuscitation process and extracted a multi-level 

intention model. Our evaluation includes both qualitative reviews from medical 

experts, and a quantitative accuracy of 86.6% with an F1-score of 0.87.

II. Trauma Resuscitation Data and Formalization

The collection and use of the data for this study were approved by the Institutional Review 

Board at our hospital. One hundred and twenty-three trauma resuscitation cases were coded 

manually from video recordings collected at the trauma bay of Children’s National Medical 

Center, Washington DC between Aug. 2014 and Apr. 2016. The dataset includes 3058 

resuscitation activities of 17 different types in the secondary survey of the trauma 

resuscitation (a procedure for assessing a patient head to toe for injury) (TABLE I).

The process log O = [O1, …, On]T is a vector of n execution traces. A execution trace is Oi 

= [a1, …, ak]T. where k total activities a of the ith trace are ordered by activity start time. 

Traces of different process executions for trauma resuscitation may have varying lengths due 

to different patient conditions and the treatment strategies adopted.

An intention Ii
(ℓ, p) is defined as a hidden (or unobservable) goal, objective, or motivation 

that can be achieved by a group of activities. Intentions can exist on multiple levels. Low-

level intentions are called subintentions or sub-subintentions. We use l to denote the l-th 

level of intention, i to denote the intention’s index at the l-th level, and p to denote the index 

of a parent intention at the (l–1)-th level. At the highest level (l = l), p = null.

A hidden Markov model λ = (A, B, π, Q, ∑) models the temporal sequences through 

hidden states. A is the state transition probability matrix, so tij ϵ A represents the transition 

probability between states i and j, B represents each state’s observation probability 

distribution, π is a vector of the initialized state distribution, Q = [q1, …, q∣Q∣]T is the vector 

of hidden states, and ∑ = [e1, …, e∣∑∣]T is the emission alphabet (i.e., observed activities). 

During trauma resuscitations, we can directly observe the team activities, but not their 

intentions. The unobservable intentions need to be inferred from the observed activities. We 

used hidden states of an HMM to model these intentions. To model the hierarchical intention 

structure, we adopted a hierarchical HMM. Higher-level intentions (or states) are composed 

of lower-level intentions, and the lowest-levels of intentions are carried out by observable 

activities (Figure 1).
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III. Mining Intentions

We mined intentions by inferring a HMM. To model intentions in a scenario as complex as 

trauma resuscitation, we used an HMM inference model with several enhancements. First, to 

avoid the random guessing of the model topology, we used an advanced model inference 

approach, state-splitting algorithm [4][5][6][7], instead of the Baum-Welch method. Second, 

we used maximum a posteriori probability (MAP) scoring [8] to guide the state-splitting and 

control model complexity. Third, to model intentions at different levels of granularity, we 

introduced a recursive algorithm for hierarchical HMM discovery.

A. MAP State-Splitting HMM

State splitting works by initializing a generic HMM (e.g., a single state) and successively 

splitting states (Eq. 1) until any further splits cannot increase the score (Eq.2). All candidate 

states for splitting are split and the best split found is used in the next iteration i of the 

model:

λi = argmax
λi − 1
q

Score(λi − 1
q , O) s . t . q ∈ Q (1)

where λi − 1
q  is the candidate model obtained by splitting state q in the model λi–1. The 

scoring function Score(λ, O) quantifies how well the model λ fits the observations O, 

balanced against the model complexity penalty [4][5][6]. The algorithm terminates when 

further splitting does not increase the score:

Score(λi, O) ≤ Score(λi − 1, O) (2)

Too many split states may lead to model overfitting, trading representativeness for accuracy. 

Splitting too little may lead to underfitting and less accurate models. We used the maximum 

a posteriori probability [8] scoring function to guide splitting. This method has several 

advantages over existing complexity metrics such as BIC [5], MDL [6], and heuristic 

approaches [6]. In our experiments, other metrics led to either over-penalizing (preventing 

any splitting) or imbalanced splitting (where only a few states retain most emissions). MAP 

does not have these problems as it has a comprehensive penalty over the model complexity, 

penalizing structural complexity and biases in parameter distribution (Eq. 3).

The model prior P(λ) is composed of structure priors P(λS) (i.e., prior probability 

distribution over all possible model topologies specified as a set of states, transitions and 

emissions) and parameter priors P(θλ) (i.e., prior probability distribution of transitions and 

emissions).

P(λ) = P(λs)P(θλ ∣ λs) (4)
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Let P(λG) denote the prior for the global aspect (the number of states) of the model structure 

(i.e., prior probability distribution of a topology with a given number of states). P(λG) is 

assumed to unbiased and can be ignored in the maximization.

P(λ) = P(λG) ∏
q ∈ Q

P λs
(q) λG P θλ

(q) ∣ λG, λs
(q) (5)

where P(λs
(q)) is a prior for the structure associated with state q. and P(θλ

(q) ∣ λG) is a prior for 

the parameters of state q. The structure here includes the non-zero paths (transitions) and 

outputs (emissions) that are associated with state q. The parameters here refer to the 

probability values of transitions and emissions that are associated with state q. We adopted 

the narrow parameter priors defined in [8] for structure (Eq.6) and parameter (Eq.7) of state 

q.

P λs
(q) λG

= pt
nt
(q)

(1 − pt)
∣ Q ∣ − nt

(q)
pe

ne
(q)

(1 − pe)
∣ Σ ∣ − ne

(q) (6)

where nt
(q) is the estimated number of outgoing transitions from state q and ne

(q) is the 

number of its emissions. nt, ne are the expected (i.e., average) number of transitions and 

emissions per state. pt = nt ∣ Q ∣ is the probability of a potential transition’s existence, and 

pe = ne ∣ Q ∣ is the probability of a possible emission.

P θλ
(q) λG, λs

(q)

= 1
B(αt, …, αt)

∏
i = 1

nt
(q)

θqi
(αt − 1) 1

B(αe, …, αe)
∏
j = 1

ne
(q)

θqj
(αe − 1) (7)

where we used Dirichlet distribution as the prior distribution over the model parameters 

(transition probabilities θt
(q) = θq1

, …, θqn
T

 and emission probabilities θe
(q) = θq1

, …, θqn
T

)

in a model structure λs
(q). We chose the Dirichlet distribution because it is a standard prior 

used in multinomial models and because it is mathematical convenient [10]. The 

normalizing constant beta function B(α, …, α) [11] produces more balanced states (i.e., 

states containing similar number of non-zero emissions) and avoids imbalanced states (i.e., 

states that greatly differ in the number of non-zero emissions) in the intention model. We set 

the prior weights αt and αe to 2 in the beta function to guide the model parameters towards 

0.5.
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B. Hierarchical HMM Inference

The hierarchical HMM (H-HMM) can be considered as a tree of HMMs. Each node of the 

tree is a HMM inferred recursively using the MAP-SS inference method, in a top-down 

fashion (Alg.1). The initial HMM topology is set to three states (one for start, one for end, 

and one split-able state in between) (Step 1). At the first level, we infer the first intention 

model λ1 using MAP-SS (Step 2). We then find a subset of observations Oi
s ⊆ O that can be 

emitted from hidden state qi in the intention model λ1. This discovery uses the Viterbi 

algorithm [9], which finds the optimal state sequence associated with the observed activity 

sequence. A lower level intention model λ i
ℓ + 1 is then recursively inferred based on Oi

s (Step 

3). The recursion terminates at levels where the complexity does not allow any more 

splitting. During post-processing, the inferred model λΗ is smoothed to flatten the emission 

probability distribution so that all traces can occur with some probability (Step 4).
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Algorithm 1. Hierarchical HMM Inference

Input: O, ω1, ω2

Output: λH

/* Initialization */

Step 1. Initialize HMM topology λ0 as three states (a single state of observations and two functional states, start and 
end);

/* When intention level l = 1 (top level) */

Step 2. Infer top level of intention model:λ1
 = MAPSS (O, ω1, ω2);

/* When intention level l >1, do recursive inference */

Step 3. λH = RecursiveInference(λ1
, O);

Step 4. Smooth the model: λH = Smoothing(λH);

Step 5. return λH;

Function: RecursiveInference (inferred λl, observation Os)

Step 1. Find subsequence Oi
s ⊆ Os

 that can be observed in hidden state qi, Oi
s = Viterbi Os, λℓ ;

Step 2. for each state qi in λℓ, do

Infer subintention model:λ i
ℓ + 1 = MAPSS(Oi

s, ω1, ω2);

If number of states in subintention model Qi
ℓ + 1 > 3

RecursiveInference(λ i
ℓ + 1, Oi

s);
end if

end for
λH = λH ∪ λℓ ;

Step 3.

Step 4.

Step 5.

Step 6.

Step 7.

Step 8.

end Function

Function: Smoothing (inferred model λH)

Step 1. for each λ in λH, do
for each state qi in λ, do

Let ∣ Σ ∣ denote the number of emissions in qi;
for each emission e in qi, do

if B(e) ≠ 0, do
B(e) = B(e) ⋅ (1 − 0.003) + 0.003 ∣ Σ ∣ 0.003 is
selected based on three‐sigma rule of thumb;

else
∣ B(e) = 0.003 ∣ Σ ∣ ;

end if
end for

end for
return λh;

Step 2.

Step 3.

Step 4.

Step 5.

Step 6.

 

Step 7.

Step 8.

Step 9.

Step10.

Step 11.

Step12.

end Function
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the source code is available at https://github.com/allen9408/IntentionMining

C. Parameter Selection

ω1is the weight (or hyperparameter) that controls the inferred model’s complexity and 

topology. ω1 is 1 by default. A smaller ω1 leads to larger, deeper models (Figure 2). As ω1 

increases, the depth of the intention model drops, the total number of states and transitions 

decreases, and the average number of activities per lowest-level state increases. We favor a 

hierarchical model that is smaller, simpler, and easily-interpretable for labeling purposes.

IV. Empirical Study

We evaluated our intention mining system from two aspects. First we evaluated the 

discovered intention model, checking whether our data-driven approach can discover 

meaningful intentions. We also assessed the accuracy of the intentions classified by our 

method versus the ground truth labelled by medical experts.

A. Experimental Metrics

We adopted accuracy and multi-class weighted-average F1 score to measure the compliance 

between algorithm-derived intention and human-labelled intention. Specifically, the 

accuracy measures the percentage of correct intention estimation based on all estimations 

made. Another metric, the multi-class weighted-average F1 score, calculates metrics 

(precession and recall) for each class and finds their average, weighted by the support ∣Ci∣/n 
(the percentage of true instances in class ci out of all instances).

F1 = 2 ⋅ precision ⋅ recall
precision+recall (8)

with multi-class weighted-average precision defined as:

precision = ∑
i = 1

l ∣ ci ∣
n ⋅

tpi
(tpi + fpi)

(9)

and multi-class weighted-average recall as:

recall = ∑
i = 1

l ∣ ci ∣
n ⋅

tpi
(tpi + fni)

(10)

where l is the number of multi-classes ci (1 ≤ i ≤ l). tpi are true positives for ci, tni are true 

negatives, fni are false negatives, and fpi are false positives. Compared with accuracy, the 

weighted-average F1 score takes class imbalance into account.
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B. Intention Model Evaluation

We discovered the intention model in an unsupervised way, under the assumption that 

sequential relationships between the observed activities are correlated with medical team 

intentions. To validate our assumption and evaluate our intention model, we conducted two 

different experiments. First, we asked medical experts whether they were able or not to 

manually assign the discovered intentions (Figure 3, Figure 5) with meaningful labels. 

Second, we provided medical experts with 40 randomly selected cases that include 1074 

activities and asked them to manually label the activities with top-level (level-1) intentions 

(Figure 5). We then compared the manually-derived labels to algorithm-derived labels.

1) Qualitative Evaluation—From an engineering perspective, the emission distribution 

of low-level intentions is sparse (matrix in Figure 5). This phenomenon is a result of the 

nature of our trauma resuscitation data. Many resuscitation activities have a strict or strong 

association with certain intentions. For example, activity “left-spine-bk” (Figure 5) is only 

associated with intention I13
(2, 5) “assessment of lumbar spine.” For other activities, a strict or 

strong association with a specific intention is not observed. For example, “palpation-head” is 

not only correlated with level-1 intention “assessment of head and face” but also the level-1 

intention “assessment of back and posterior aspect of the head and extremities.” This 

happens because the back of the head is exposed once, when the medical team turn the 

patient to assess the back. Assessing the back of the head allows the examining provider to 

complete the head exam without excessive force to the neck or cervical spine. The medical 

experts commented that the intention model (Figure 6) correctly captured the intentions 

associated with medical tasks. Associated activities grouped by the model were largely in 

line with the expectations of medical experts. In addition, the model correctly identifies the 

sequential correlations of related intentions. For example, head → neck → chest → 
abdomen, which reflects the same resuscitation execution order that medical experts usually 

perform.

One limitation is that the model only provided a limited description of provider intentions. It 

is unable to distinguish between deviations and novel process executions. For example, 

medical experts were unable to assign some level 2 and level 3 intentions under the level 1 

intention of “assessment of back and posterior aspect of the head and extremities.” Most of 

the activities that occur under this intention take place while the patient is rolled to the side 

exposing the back. Given this context, medical experts were unable to determine why the ear 

examination using otoscope was included because it is typically performed while the patient 

is supine. The lack of an available explanation, however, should not be considered evidence 

of no association. Future work is needed to clarify data-driven results.

2) Quantitative Evaluation—The intention labeling (algorithm vs. manual) results 

(Figure 4) show high intention mining accuracy of 86.6% and F1-score of 0.87, indicating 

the feasibility of data-driven algorithms for intention mining. The misclassification mainly 

occurs at the cells (1), (2) and (3). Cells (1) and (2) represent activities of assessment of head 

& face (“H”) and assessment of extremities (“Ex”), which were misclassified into intention 

assessment of neck, chest & ears (“N”). The most likely cause of this misclassification is the 

proximity of one body region to another. The head, neck and shoulders (upper extremities) 
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are located close to each other and providers will frequently move between these regions 

during an assessment. When multiple intentions occur simultaneously or interact with each 

other, it can be challenging for the algorithm to accurately identify the current intention. Cell 

(3) shows the activity of “H” misclassified as “Bk” (assessment of back). This confusion can 

be understood because the head and back exams as the back of head are commonly assessed 

during the back exam.

V. Related Work

Our study aims to design a decision support system to monitor and analyze the trauma 

resuscitation process in real time. We were able to automatically collect low-level activities 

using sensors. Process mining techniques [1][3] can discover process errors by checking the 

compliance between the activity sequence and expert-based workflow models. While some 

process errors arose from erroneous performance, others were found to be triggered by 

incorrect intentions formed by the medical team [2][12][13][14].

Research in intention mining is still in its infancy and mainly lies in the domain of 

information retrieval [15][16][17][22]. Jethava et al [15] presented a generic framework for 

learning the multi-dimensional representation of user intent from the query words. Ricardo 

et al and Markus et al [16][17] developed some approaches for the identification of user’s 

interest in an automatic way, based on the analysis of query logs. Other applications have 

also been proposed, e.g. human-computer interaction [18][20][21] and content analysis [19]. 

Kim et al [18] proposed a deep intention estimation and recommendation system by 

understanding human attention from gestures. Mei et al [19] presented a novel method to 

model and mine the captured intentions of camcorder users based on digital video recorders 

and home video data. Oliver et al [21] developed a generic model including connections 

between intentions, actions, and sensor measurements through a Hybrid Dynamic Bayesian 

Network. In contrast to these studies, we attempted to mine the intention from activity logs 

collected from a medical process. To our best knowledge, intention mining has not been 

applied in medical process analysis. Most research based on activity logs has been from a 

research single group [23][24]. This group has presented a supervised and an unsupervised 

intention mining approach, termed the Miner Method (MMM). They applied their methods 

on software usage activity logs to uncover user intentions. Compared to our hierarchical 

model, their work models only a single level of attention, and requires a predetermined 

number of intentions.

VI. Conclusion

We present a process intention mining method and applied it on the real-world process. We 

used a hierarchical hidden Markov model to mine multi-level intentions from low-level 

process executions performed by the medical team performing the process of trauma 

resuscitation. To accurately infer the hierarchical hidden Markov model, we adopted state-

splitting inference and selected maximum a posteriori probability as the inference-guiding 

objective function. The inferred intention model is simple and interpretable. The hierarchical 

structure with small models at each node allows easier bottom-up interpretation and 

analysis. We evaluated our method in two different ways, requesting feedback from medical 
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experts and quantifying the intention mining accuracy. We have shown that the discovered 

intention groupings aligned with medical expert knowledge.
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The MAP State-splitting (MAP-SS) HMM Inference: Given: A set of observed 

process traces O = [O1, …, On]. Objective: Successively splitting states to find an HMM 

topology λ that maximizes the posterior probability P (λ∣O):

λ MAP(O) = argmax
λ

P(λ ∣ O) = P(λ)
ω1P(O ∣ λ)
P(O) (3)

where P(O∣λ) is observation sequence probability, solved with the forward algorithm [9]. 

The model prior P(λ) can be considered as model complexity penalty. The weight 

(hyperparameter) ω1 is used to control model complexity. Observation P(O) is fixed for a 

given data point, so it can be ignored in the maximization.
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Figure 1. 
An example of hierarchical intention model with three levels. Higher-level intentions are 

composed of lower-level intentions. The lowest levels of intentions are carried out by 

observable activities.
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Figure 2. 
Model topology and complexity changes according to hyperparameter ω1. The features of 

model toplogy include the depth of the inferred hierarchical HMM (blue), the number of 

states (orange) in the model, the avg. num. of activities (green) per lowest-level intentions 

before smoothing, and the number of transitions in the model.
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Figure 3. 
Part of a discovered multilevel intention model. Each box represents an unnamed intention 

as a group of subintentions or observable activities.
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Figure 4. 
Confusion matrix for algorithm-derived (predicted) intentions vs. hand-labelled (actual) 

intentions. The five intentions are the level 1 intentions in (Figure 5).
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Figure 5. 
Multi-level intentions (left) labeled by medical experts and the corresponding emission 

matrix (right) of the intention model (Figure 6). The column of the matrix represents activity 

type and the row represents the lowest level of intentions. The size and color of the dots in 

the matrix represents the value of emission probability.
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Figure 6. 
Discovered intention model. The model is trained based on sample data with 17 secondary 

survey activities in 123 resuscitations. The transition probabilities for low-level intentions 

are not shown. The emission probabilities for low-level intentions (blue circles) are shown in 

(Figure 5). Thick transitions highlighted are the most dominating outgoing transitions 

(excluding self-transitions) between first level intentions.
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Algorithm 1. Hierarchical HMM Inference

Input: O, ω1, ω2

Output: λH

/* Initialization */

Step 1. Initialize HMM topology λ0 as three states (a single state of observations and two functional states, start and end);

/* When intention level l = 1 (top level) */

Step 2. Infer top level of intention model:λ1
 = MAPSS (O, ω1, ω2);

/* When intention level l >1, do recursive inference */

Step 3. λH = RecursiveInference(λ1
, O);

Step 4. Smooth the model: λH = Smoothing(λH);

Step 5. return λH;

Function: RecursiveInference (inferred λl, observation Os)

Step 1. Find subsequence Oi
s ⊆ Os

 that can be observed in hidden state qi, Oi
s = Viterbi Os, λℓ ;

Step 2. for each state qi in λℓ, do

Infer subintention model:λ i
ℓ + 1 = MAPSS(Oi

s, ω1, ω2);

If number of states in subintention model Qi
ℓ + 1 > 3

RecursiveInference(λ i
ℓ + 1, Oi

s);
end if

end for
λH = λH ∪ λℓ ;

Step 3.

Step 4.

Step 5.

Step 6.

Step 7.

Step 8.

end Function

Function: Smoothing (inferred model λH)

Step 1. for each λ in λH, do
for each state qi in λ, do

Let ∣ Σ ∣ denote the number of emissions in qi;
for each emission e in qi, do

if B(e) ≠ 0, do
B(e) = B(e) ⋅ (1 − 0.003) + 0.003 ∣ Σ ∣ 0.003 is
selected based on three‐sigma rule of thumb;

else
∣ B(e) = 0.003 ∣ Σ ∣ ;

end if
end for

end for
return λh;

Step 2.

Step 3.

Step 4.

Step 5.

Step 6.

 

Step 7.

Step 8.

Step 9.

Step10.

Step 11.

Step12.

end Function
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the source code is available at https://github.com/allen9408/IntentionMining
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TABLE I.

DATA SAMPLE (A) AND STATISTICS (B)
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