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Word embeddings is a useful method that has shown enormous success in various 

NLP tasks, not only in open domain but also in biomedical domain. The biomedical 

domain provides various domain specific resources and tools that can be exploited to 

improve performance of these word embeddings. However, most of the research related 

to word embeddings in biomedical domain focuses on analysis of model architecture, 

hyper-parameters and input text. In this paper, we use SemMedDB to design new 

sentences called `Semantic Sentences'. Then we use these sentences in addition to 

biomedical text as inputs to the word embedding model. This approach aims at 

introducing biomedical semantic types defined by UMLS, into the vector space of word 

embeddings. The semantically rich word embeddings presented here rivals state of the 

art biomedical word embedding in both semantic similarity and relatedness metrics up 

to 11%. We also demonstrate how these semantic types in word embeddings can be 

utilized. 
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CHAPTER 1

INTRODUCTION

This chapter is dedicated to familiarizing the research related to word embeddings

in open domain, how it has been incorporated in the biomedical domain, and how different

biomedical tools have been utilized in previous research work. This section will provide

information on the following topics below:

• Word Embeddings(Open Domain)

• Biomedical Word Embeddings

• Biomedical Resources

• Unifying biomedical tools and word embeddings

1.1. Word Embeddings(Open Domain)

Word embeddings is an alternative name for feature learning techniques in which 

words and phrases are mapped as multidimensional one-hot encoded vectors. Word embed-

dings are a sub-category of distributional semantics in linguistics. In large sets of linguistic 

language data, word embeddings quantify and classify semantics similarities between lin-

guistic items based on their distributions. This enables the model to capture the context, 

relation, semantic and syntactic similarities with other units in the dataset for effective pre-

dictions. Lavelli et al. [34] studied two different forms of word embedding, one in which words 

are represented as vectors of co-occurring words and second in which words are represented 

as vectors of linguistic contexts in which words occur in the dataset. Neural Networks are the 

most popular and efficient approach to map words to vectors but dimensionality reduction, 

probabilistic models, explainable knowledge base methods can be employed to obtain similar 

results.

Word embeddings have been the focus of research since the early 1990s. However, 

more noticeable results were achieved after 2010 partly due to the advancement in computa-

tional speed and neural networks and partly because of the advances made on the training 

speed of the model and quality of vectors. Bengio et al. [8] provided a neural probabilistic
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language model which was able to learn a distributed representation for words tackling the 

curse of dimensionality. Generalization is achieved easily for continuous variables but for 

discrete spaces, the structure is difficult to obtain as a change in a variable has a drastic im-

pact on the estimated value. N-gram models that obtained generalization by concatenating 

short overlapping sequences in the training set were fairly successful before the boom in Neu-

ral networks. Collobert et al. [14] trained a deep neural network with semi-supervised and 

multitask learning for various NLP tasks such as prediction of part-of-speech tags, named 

entity tags, chunks, semantic roles, etc. Researchers have opted for divide and conquer ap-

proach and divided the implementation process into several subtasks improving the overall 

efficiency one step at a time. Joseph et al. [58] took previously trained word embeddings and 

provided a comparison of these embeddings when used as input features for NLP tasks such 

as named entity recognition and chunking. The result was that learning word features using 

unsupervised learning and integrating them into an existing supervised NLP model produces 

less accuracy compared to a semi-supervised model that learn supervised and unsupervised 

tasks simultaneously. Socher et al. [54] introduced a recursive neural network (RNN) ar-

chitecture based on context-sensitive recursive neural networks for parsing natural language 

and learning vector space representations for variable sized inputs. The networks induce dis-

tributed feature representations for unseen phrases and provide syntactic as well as semantic 

information. Mikolov et al. [39] proposed continuous bag-of-words (CBOW) and skip-gram 

architectures for computing the word vectors from very large data sets. These model architec-

tures provided a significant improvement in accuracy when tested for syntactic and semantic 

word similarities with much lower computational cost, both these models still stand as state 

of the art for training word embeddings. Word2Vec, the product of these models remains the 

most widely used algorithm to produce word embeddings. Recently, a surge of algorithms 

has been proposed in the literature which utilized co-occurrence information and matrix fac-

torization for learning distributed representation of words [36], [47], [45], [49]. Pennington et 

al. [47] introduced GloVe a global log-bilinear regression model for unsupervised learning of 

word representations. They argued that the two main approaches for learning distributional
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word representations, the count-based method, and the prediction based method, both pro-

duce similar results as they probe the underlying co-occurrence statistics of the corpus but 

the count-based method provides better efficiency for global statistics used in GloVe. Al-

though algorithms have different underlying architectures, the resulting embeddings usually 

give similar performance when leveraged for various NLP tasks.

The introduction of CBOW and skip-gram architectures led to an exponential growth 

of the applications of word embeddings. Milkov et al. [40] researched several implementations 

to improve the training speed of skip-gram architecture and obtained speedup ranging from 

100 percent to 900 percent on several datasets by sub-sampling similar linguistic terms and 

replacing the hierarchical softmax by Negative sampling. Negative sampling algorithm learns 

accurate representations for frequent words while subsampling resulted in better represen-

tation of uncommon words. Milkov et al. [41] researched vector space word representations 

and found that these are capable of capturing syntactic and semantic similarities in lan-

guage. The study also demonstrated the ability of an RNN to encode similarities between 

pair of words using vector arithmetic, which were termed as linguistic similarities. Levy et al. 

[35] improved on this model and showed that analogous to the neural embedding space, the 

explicit vector space encodes a vast amount of relational similarity that can be recovered 

similarly. This implies that the novel approach in neural word embeddings is not to discover 

patterns but to preserve the patterns in the word-context co-occurrence matrix. A key insight 

to understanding the approach is divide and conquer, by decomposing vector arithmetic into 

a linear combination of three pairwise similarities. Using a modified Optimization Objective 

for the pairwise similarities resulted in significant improvement in performance. The study 

revealed that finding analogies through vector arithmetic under certain conditions performs 

equally as neural word embeddings. Word embedding requires large training sets to predict 

accurately however embeddings for domain-based datasets can be obtained using Domain 

Adaptation. The drawback of open domain pre-trained embedding is that the corpora used 

for training have a significant influence on resulting word representations, Hence it cannot 

be used for domain-specific tasks.
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1.2. Biomedical Word Embeddings

The rapid increase in scientific biomedical literature makes it difficult, even for domain 

experts, to keep the current knowledge updated. Web engines and information retrieval 

(IR) models have made significant advances but fall behind in making accurate predictions 

resulting in many misinterpretations by the general users and these are major causes of 

conditions such as cyberchondria. The need to make biomedical word embeddings a key 

research topic have increased sharply over the years.

The publicly available biomedical literature contains billions of words in abstracts 

and texts waiting to be utilized in statistical models, which are inputs for text classification. 

Similarly, there has been some research for the creation of word embeddings in the biomedical 

domain. Stenetorp et al. [55] were the first to present an analysis of various word represen-

tations in biomedical domain NLP, demonstrating substantial benefit from word representa-

tions trained on in-domain texts compared to out-of-domain texts for entity recognition and 

classification tasks. The manually annotated corpora are dwarfed by unannotated citations 

present in large scale databases such as PubMed literature database. Supervised learning 

algorithms are successful, however, they fail to incorporate the large raw data available and 

thus researchers opt for semi-supervised or support supervised approaches. Stenetorp et al. 

[55] analyzed support supervised methods extrinsically, by studying the capacity of in-duced 

representations to support machine learning-based natural language processing tasks, 

specifically named entity recognition on three different corpora and semantic category dis-

ambiguation on a large automatically acquired corpus.

Pyysalo et al. [43] provided distributional semantic resources for biomedical text pro-

cessing and produced the word representations induced from the entire biomedical litera-

ture. They utilized these resources to preprocess openly available biomedical literature, i.e. 

PubMed and PMC OA, and finally apply word2vec to train word embeddings from these 

preprocessed texts. These word embeddings are openly available and have been used as 

features for various BioNLP studies. This produced a spark in models of meaning with 

unannotated text. Chiu et al. [12] prepared a study on how to train good word embeddings
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for biomedical NLP, and their research provided a comparison on how the quality of word 

embeddings differed based on pre-processing of text, model selection(skip-grams vs CBOW), 

hyper-parameters(sampling, min-count, learning rate, vector dimension, and context window 

size) and corpus selection(PMC, PubMed). The research also concluded that the skip-gram 

model produces better results than the Global Vector model (GloVe) on word similarity task 

and the performance of skip-gram is improved by the usage of higher dimensional vectors. 

It is observed that larger corpus does not necessarily lead to better performance in biomed-

ical NLP and that optimization of hyperparameters boosts the performance of vectors. In 

conclusion, most of the word embeddings related research in the biomedical domain is re-

stricted to the utilization of openly available biomedical text and analysis studies. Muneeb et 

al. [56] made a comparative study of the latest state of the art architectures, GloVe and 

Word2Vec, on a task to output semantic similarity and relatedness between biomedical texts 

utilizing a corpus of size greater than one million clinical research articles. The performance 

of the models varied with different hyperparameters but the study concluded with Word2Vec 

model performing better and capturing more lexico-semantic similarities than others. Jiang et 

al [27] proposed a domain-specific biomedical word embedding model that chunk and entity 

information present in the corpus. The results showed that domain-specific word embeddings 

outperformed other open domain word embedding models. De Vine et al. [16] compared Skip-

Gram to other benchmark approaches and the results displayed that Skip-Gram performs 

better in capturing the semantic similarities of the biomedical texts in the corpus used and co-

relates closely with expert human assessors.

1.3. Biomedical Resources

The popularly used text data in training word embeddings provides considerable 

accuracy on NLP tasks but lacks the utilization of domain-specific resources to increase the 

accuracy of the existing models. Furthermore, the biomedical domain is rich in semantic 

resources that have been used to improve various tasks such as text classification, named 

entity recognition, information retrieval, Question Answering systems. These biomedical 

tools were developed with the advancement in NLP in the biomedical field and have been
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used directly or indirectly for various NLP tasks. Sarker et al. [50] used MetaMap [5] to 

extract semantic types and concepts from the text for Adverse Drug Reaction (ADR) 

detection. The feature-rich classification approach used resulted in greater F-scores on all 

the test datasets and combining multiple similar corpora resulted in a significant increase 

in the ADR F-scores. The multi corpora approach is useful in imbalanced datasets and 

reduces time and cost to annotate the data. Cao, et al. [10] extracted similar features for 

complex question classification based on topics and created AskHERMES, a clinical question 

answering system to perform robust semantic analysis and output answers in the form of 

extractive summaries.

Weiming et al. [59], Cao, et al. [11] and Hritovski et al. [25] make use of SemRep [48], 

Metamap and UMLS [26] for biomedical question answering system. The United Medi-cal 

Language System (UMLS) Metathesaurus, the largest biomedical thesaurus, provides a 

representation of biomedical concepts semantically classified and both hierarchical and non-

hierarchical relationships among them. MetaMap is an application developed by researchers 

at the National Library of Medicine (NLM) that maps biomedical text to Metathesaurus or 

presents data related to the metathesaurus in the text. Initially developed to improve the 

retrieval of bibliographic materials such as MedLine citations, it is now used extensively for 

data mining and information retrieval and is a key aspect in NLMs Medical Text Indexer.

Hristovski et al. [25] created a web-based application, SemBT, that provides answers 

instantaneously. The application utilizes the semantic relations extracted with SemRep from 

the entire MedLine citations up to 2012 and the instances were organized in a relational 

database from which answers are drawn. Rindflesch et al. [48] described a method for in-

terpreting linguistic structures that encode hypernymic propositions. The method combines 

underspecified syntactic analysis and structured domain knowledge of the ULMS. To en-

sure the compatibility of the two processes, semantic groups from the Semantic Network are 

used. The semantic resources have been a good addition to improve on various NLP tasks, 

however, it remains an underexplored domain in the field of biomedical word embeddings.
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1.4. Unifying Biomedical Tools and Word Embeddings

With the steady rise in the utilization of Electronic Health Records (EHRs) by the 

medical community, there is a possibility of better health care through the data obtained 

from the EHRs because these records provide important information related to patients 

which can be used across health care applications. This has been a driving factor for re-

search in the biomedical Text Classification and Question Answering systems. With the 

increasing population, the workload of clinicians has increased significantly. Online biomed-

ical corpora have answers to clinic questions when utilized properly. Jonnalagadda et al. [28] 

studied the feasibility of an automatic summary generating model for topics, composed of 

sentences extracted from the MedLine database. Although individual research has been con-

ducted in the area of word embeddings to solve BioNLP problems and utilization of domain 

knowledge to improve various BioNLP tasks, there remains a large gap of research in the 

area of word embeddings utilizing semantic resources in the biomedical domain. Some of the 

research involving both is done by Yu, et al. [62], Cohen, et al. [13] and Abdeddaim, et al. [2] 

who have made use of UMLS/Mesh lexicon to improve word embeddings. Cohen et al. [13] 

proposes the Embedding of Semantic Predications (ESP), a probabilistic approach for 

encoding predications, a variant to their Predication-based Semantic Indexing (PSI). ESP 

has better performance for lower dimensionalities and exhibits comparable correlation with 

human judgment across the dimensionalities tested. PSI provides better performance when 

retrieving explicit relationships in larger dimensionality datasets like the SemMedDB. Yu et 

al. [62] introduced a semantic similarity measure utilizing both the biomedical taxonomy and 

vector space word representations to determine the degree of semantic and syntactic 

similarity between words. Their results displayed that the ’retrofitting model’ proposed by 

Faruqui et al. [21] that incorporated information from semantic lexicons into word represen-

tations such that similar words have similar word representations produces higher correlation 

with the judgment of doctors compared to other existing techniques. Abdeddaim, et al. [2] 

proposed a MeSH gram neural model that is a variant of Skip-Gram model and utilizes 

the Medical Subject Headings (MeSH) descriptors instead of words. Implementation of the
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model resulted in the performance equal to state-of-the-art models and techniques. Our

paper is unique in utilizing SemMedDB information and constructing new biomedical word

embeddings which are semantically rich and more useful compared to previous biomedical

word embeddings.

The remainder of this paper’s chapters discuss the preparatory research, background,

method, and results of this thesis. Chapter 2 is dedicated to the preliminary research that

was conducted and how through those findings I arrived to my final thesis research. Chapter 3

provides background information, tools, the implementation of those tools and resources that

were used in this approach. Chapter 4 delves into word embedding design and efficiency.

Chapter 5 discusses the dataset used for experiments and the results of the evaluation.

Chapter 6 concludes the research and gives way to future work.
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CHAPTER 2

PRELIMINARY RESEARCH

This chapter provides information for the initial research that was carried out and

how it helped in arriving at my final thesis approach. The initial research focus was a

Biomedical Question Answering System. However, through the progression of this research,

we encountered many failures and learnings that directed this research towards biomedical

semantic embeddings, which resulted into the final thesis. This chapter provides literature

on biomedical question answering and question classification, which is of interest to many

researchers in the NLP and biomedical domain. This chapter details the preliminary research

and how I arrived at final thesis, it is divided into the following sections:

• Biomedical Question Answering

• Question/Text Classification

• Transition to biomedical semantic embeddings

2.1. Biomedical Question Answering

A Question Answering(QA) system takes the search engine to the next level, by

providing exact answers as output for a given natural language question. Such a system is

built by making efficient use of Natural Language Processing, Information Retrieval, and

Machine Learning techniques. The answers are generated by querying through a knowledge

base like Wikipedia or specific web pages on the World Wide Web.

QA systems are broadly classified as open or closed domain based on the knowledge

base. Closed domain systems answer questions that are specific to particular topics like

baseball, medicine and sometimes have constraints on the type of question that can be given

as input. These exploit domain-specific knowledge formalized in ontologies and academic

text. Open-domain systems do not have any constraints on the type of question that can be

asked and as a result, have a very broad knowledge base covering a huge chunk horizontal

domain.
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In QA systems, it is convenient for a user to input a question in Natural Language but 

this increases the complexity of the model as it has to identify the correct question among the 

several types and extract the answer accordingly. There are several methods to accomplish 

this task. Extracting information from the question is the first step in any QA systems, which 

involve tasks like question classification(question type identification) or Keyword extraction. 

After keyword extraction and question type identification, an information retrieval system 

is used to retrieve documents based on the information extracted in the first step. Once the 

relevant documents are retrieved, top relevant paragraphs are selected from these documents 

and finally, candidate answers are selected from these paragraphs. Finally, several techniques 

are used to validate the candidate answers and a score is assigned to each one based on 

relevance to the question’s context. The answer with the highest score is chosen, converted 

into a presentable form using parsing and is produced as output by the system. Galitsky et al. 

[23] worked on QA system design and proposed a multi-agent system in which each domain is 

represented by an agent which tries to answer questions of that domain. A meta-agent 

controls the co-operation between the agents and chooses the most optimal answers. By this 

process, the system provides the preciseness of a vertical domain model and the breadth of a 

horizontal domain model. A common issue that affects the accuracy of QA systems are 

questions which combine two or more domains. The presence of meta-agent and multiple 

agents ensures that questions combining several domains are answered adequately.

Biomedical QA is a domain-specific system where the model tries to answer questions 

specific to the biomedical domain. Need for such a system arises from the availability of an 

enormous amount of biomedical literature in several databases like MeSH, Metathesaurus, 

PMC open access subset, MEDLINE and its use by various users to answer questions related 

to biomedical research. Majority of the current Biomedical QA systems are used for clinical 

question answering.There has been an increase in research in building various biomedical 

QA systems [7], [1], [11], [59], [25], [24], [3]. Some of the major ones are discussed below:

• Cao et al. [11] created AskHERMES, a clinical question answering system, tested by 

physicians on ease of usage and accuracy of answering questions. It was trained using
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MEDLINE, eMedicine, PubMed and Wikipedia documents. The model was built on

semantic analysis of words and focused on retrieval of semantic content. The main

process of answering questions in AskHERMES is Question Analysis, Document

Retrieval, Passage Retrieval, and Summarization, in that exclusive order. Testing

over several parameters resulted in AskHERMES performing on equal footing as

state of the art models like Google and UptoDate.

• Abacha et al. [1] proposed MEANS, a semantic QA system for the medical domain. 

The system integrated NLP techniques and semantic web technologies for deep 

analysis of questions and documents in the MEDLINE knowledge base. The overall 

performance of the system was improved using query-relaxation. The process of 

answer generation follows NL question processing followed by answer search and 

ranking using query relaxation and semantic search. The paper successfully tackled 

automatic question-answering in Biomedical NLP.

• Hristovski et al. [24] launched SemBT, which uses MEDLINE citations extracted 

using SemRep as its knowledge base. The semantic instances extracted using Sem-

Rep collectively formed a database and the system answered questions by searching 

through this database. The system was released as a web-based application that 

provided an accuracy of 68%.

• Weiming et al. proposed a QA system based on ULMS relations. The system 

generated phrase-level answers after searching through the knowledge base. SemRep 

was used to identify relations in the database but failed to completely extract all 

the relationships. comparison with other model shows that this system produced 

high precision and recall.

The first step in building a QA system is question processing to extract information

that will be used by other components of the system. Lexical Answer Type(LAT) is one of the

most significant information that should be identified from a question, which can significantly

reduce the number of documents to be retrieved for a given question and quickly help find

sentences that contain answers to the question. Although, there has been an increase in
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research in building various biomedical QA systems, very less work has been done that 

focuses on the LAT Prediction component. Therefore, my initial research focus was to 

improve the question classification which would help in improving the overall performance 

of a Question Answering system.

2.2. Question/Text Classification

Answer type prediction is the first step in a Question Answering(QA) System design, 

aiming to predict answer types with a goal of reducing the number of documents searched 

to find an answer for a natural language question. Lexical Answer Type(LAT) information 

can also be used to rank the list of possible answers generated for a question. Answer Type 

prediction is a text classification problem that provides useful information, which is used by 

QA systems.

Although, there has been an increase in research in building various biomedical QA 

systems, very less work has been done that focuses on the LAT Prediction component. Related 

work on this task includes Yang, Zi et al. [60], who provided a series of features such as tokens, 

semantic types, head tokens, etc. for question classification that were inspired from Li and 

Roth [37]. Also, they used UMLS semantic types to label questions. Cao, Yong-gang, et al. [10] 

and Kobayashi and Shyu [33] have also used UMLS semantic types to improve question 

classification, but they used it in a different context [18], with the aim of classifying questions 

into Biomedical topics and Taxonomies [20] rather than LATs. Most open domain QA systems 

make use of resources such as WordNet [42], to improve QA systems. But for biomedical 

question answering, mastering domain knowledge in QA becomes a necessity and challenge 

due to its richer domain-dependent terminologies and definitions.

2.2.1. Method

My preliminary research involved utilizing UMLS resources to improve biomedical 

QA performance, in particular, utilizing Semantic Network and SemMedDB provided by 

UMLS to generate better features for LAT prediction. A generalization of semantic types 

was done into general labels and SemMedDB was used for feature engineering.
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Semantic Types(label) Generalization: Most existing methods directly use semantic 

types as labels for prediction in classification model. However, due to complexity of poten-

tial answers and lack of training data in reality, this may not be a good choice. In my work, 

I choose to cluster relevant UMLS semantic types potentially associated with the answers 

and use a grouping of such clusters as labels for question classification.

Feature Engineering: The features previously used in question classification are bag of 

words (BOW), bigrams, Part-of-Speech (POS), semantic types, head words, etc. In this re-

search new features were created from Semantic Network(SemNet) and SemMedDB(SemMed). 

These features were generated based on the idea that if a question contains a concept be-

longing to one particular semantic type, then it is more likely that the user is asking about 

the information carried by concepts belonging to its closely related semantic type(s).

2.2.2. Results

Drug Questions Data Set: I have used the dataset provided by BioASQ [57], 

containing questions, in English, along with gold standard answers constructed by a team 

of biomedical experts. BioASQ organizes challenges on biomedical semantic indexing and 

question answering (QA). A set of 170 drug-related questions, including 107 factoid questions 

and 63 list questions were gathered and used for classification and analysis. Factoid questions 

refer to those that have single concepts as answers and list questions are questions that have 

a list of concepts as answers. My initial research interest was to answer drug questions which 

would be beneficial and helpful for common public. With this focus unrelated questions was 

filtered out by setting up MetaMap to maintain question and answer pairs that contain 

concepts belonging to the semantic type [pharmacologic substance] in either question or 

answer sentence. This has resulted in 170 drug related questions.

BioMedLAT Questions Data Set: BioMedLAT corpus is provided by Neves, et 

al. [44]. This corpus consists of 643 list/factoid questions from BioASQ training data and 

the class labels of these data are semantic types from UMLS. We have taken those questions 

which have at least 10 instances for each class label. This leads to 515 questions with 15 

class labels from the BioMedLAT corpus.
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Experiments: To analyze the significance of proposed features, different models 

were created using different combinations of possible features and the results are presented in 

Table 2.1. Logistic Regression(LR), Support vector Machine(SVM) and Multi Layer 

Perceptron(MLP) were used to train models and the average accuracies were calculated using 

10 fold cross validation. For Correlation analysis, I compared the performance of using single 

features, including the bag-of-words(BOW), semantic types(Sem), feature generated from 

Semantic Network(SemNet), feature derived from SemMedDB (SemMed), features derived 

by using both Semantic Network and SemMedDB (here SemNet+SemMed refers to the 

feature vector combining features from SemNet and SemMed). It can be seen that other than 

the content-based feature (which is also domain independent), i.e., the BOW feature, within 

the choices of domain specific features, a newly proposed features, SemMed, significantly 

performs better than using semantic types (Sem) feature. In particular, the SVM model 

trained on SemMed gave 80.00% accuracy which has a 9.42% increase from using Sem, and 

the MLP model trained using SemMed achieved an accuracy of 81.76%, an 8.24% increase 

from using Sem. This shows proposed new features are good additions to the list of domain 

specific features that can be used for LAT prediction in biomedical QA systems, compared 

with the work done by Cao, et al. and Kobayashi and Shyu where the Semantic Type feature 

is the only domain specific feature that has been designed.

To further demonstrate the power of these domain specific features, Support Vector 

Machine based model was trained on a set of 515 questions from the BioMedLAT corpus. It is 

evident in Table 2.2 that new proposed features performed consistently well with this larger 

dataset. When SemMed and SemNet features were added to commonly used features, such as 

bag-of-words(BOW) and semantic types(Sem), there have been a significant improvement of 

performance (14.48% and 8.3% increases compared with using BOW and BOW+POS+Sem, 

respectively) This is also consistent with the findings from Cao, et al. and Kobayashi and 

Shyu related to topic classification, where they claim that when combining text based features 

with additional domain specific features, the system performance can be improved. It is 

evident from these results that features created from Semantic Network and SemMedDB
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BOW Sem Se-

mNet

Se-

mMed

Se-

mNet

+Se-

mMed

BOW

+POS

+Sem

BOW+POS

+Sem

+SemNet

BOW+POS

+Sem

+SemMed

BOW+POS

+Sem

+SemNet

+SemMed

LR 84.11% 57.05% 60.00% 69.41% 68.23% 83.52% 82.35% 88.23% 88.82%

SVM 86.47% 70.58% 61.17% 80.00% 78.23% 90.00% 86.47% 90.00% 90.00%

MVP 85.88% 73.52% 70.00% 81.76% 80.58% 85.88% 85.29% 88.82% 87.05%

Table 2.1. Performance comparison of different feature sets using Logistic

Regression(LR), Support Vector Machine(SVM) AND Multi Layer Percep-

tron(MLP) on drug questions where features bag Of Word(BOW), Semantic

Types(Sem), Semantic Network(SemNet), SemMedDB(SemMed), and combi-

nation of these features(SemNet + SemMed) were used

BOW Sem Se-

mNet

Se-

mMed

Se-

mNet

+Se-

mMed

BOW

+POS

+Sem

BOW+POS

+Sem

+SemNet

BOW+POS

+Sem

+SemMed

BOW+POS

+Sem

+SemNet

+SemMed

61.16% 48.73% 37.47% 27.57% 44.97% 66.91% 69.55% 70.54% 75.64%

Table 2.2. Performance comparison of different feature sets using Sup-

port Vector Machine(SVM) on BioMedLat questions where features

bag Of Word(BOW), Semantic Types(Sem), Semantic Network(SemNet),

SemMedDB(SemMed), and combination of these features(SemNet + SemMed)

were used

provided better results compared to Semantic features used by Cao, et al. and Kobayashi

and Shyu and our features are good additions to list of features that can be used for LAT

prediction in QA systems.
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2.3. Transition to Biomedical Semantic Embeddings

Although, the results attained in this preliminary research outperformed previous

work, it failed to address some issues. Firstly, the features created from semmeddb and

semantic network used hot-one encoding and as a result, the number of features increased,

thereby resulting in the problem of overfitting. Secondly, The test set used was very small

and was not able to provide a definitive effectiveness of new features. Lastly, most recently,

state of the art results in open domain text classification has been attained by making use

of neural network model with word embeddings as features.

Fortunately, using domain specific semantic resources was the right step towards

improving text classification in biomedical domain, even though the way it was utilized in this

research was not satisfactory. This preliminary research helped in understanding biomedical

resources such as semantic network and SmemMedDB and provided with a venue to explore

these tools further.

Keeping in mind the state of the art text classification models i.e. neural networks

using word embeddings as features, we explored how these word embeddings can be trained

efficiently utilizing biomedical resources that were explored in preliminary research for better

question classification. This results in our thesis on Bioemdical Word Embeddings.
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CHAPTER 3

BACKGROUND

Considering the extensive research in model architecture to train biomedical word

embeddings, our motivation of the study was not to tweak these already established state of

the art architectures. Rather, the novelty of our research lies in the usage of domain-specific

semantic resources to provide better inputs to these models. We were also influenced by the

fact that there is minimal research in biomedical word embeddings exploiting these semantic

resources, especially about using SemMedDB to improve the quality of biomedical word

embeddings. Even though these biomedical semantic resources have been used to solve NLP

problems that are tackled by word embeddings, these semantic resources have not been used

in unison with word embeddings. We took this opportunity to reap the benefits of both, the

biomedical domain knowledge and state of the art in NLP research word embeddings.

We use information in SemMedDB to engineer hybrid sentences which we call “se-

mantic sentences” for the scope of this study. These semantic sentences in addition to

biomedical text are provided as input to our word2vec(skip-gram) to train our semantic

word embeddings. As a result, we create biomedical word embeddings whose vectors are not

only words but also semantic types. Later in this paper, we explain the benefit of inducing

these semantic types into vector space.

This section further provides an outline of the tools and resources utilized in research

to achieve semantic word embeddings. The section further provides a brief description of how

the tools are implemented in this novel approach. These domain-specific tools and resources

are provided by the National Library of Medicine (NLM) and available for use.

3.1. Word2vec

Creating word embeddings or distribution representation of words is based on the

idea that we can know a word by the company it keeps. The main intuition is that if two

different words have very similar contexts (that is, what words are likely to appear around

them), then those two words are similar in meaning. For example, we could expect that syn-
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Figure 3.1. The CBOW architecture taken from Mikolov et al. [39]

onyms like intelligent and clever would have very similar contexts or words that are related, 

like engine and motor, would probably have similar contexts as well.

Mikolov et al. [39] proposed two architectures as part of their word2vec tool to learn dis-

tributed representation of words: continuous bag-of-words(CBOW) and skip-gram for com-

puting the word vectors from very large data sets. These model architectures are two-layered 

shallow neural networks and yield a remarkable enhancement in accuracy when tested for 

syntactic and semantic word similarities with much inferior computational cost, and both 

these models still stand as state of the art for training word embeddings. Continuous Bag of 

Words architecture predicts the target word based on the source context words. It means that 

weights are obtained from the surrounding words and the probabilistic model then generates 

the output word. The output is not influenced by the order in which context words occur 

in the dataset. The Skip-gram architecture is a generalization of the n-gram and provides 

a way to overcome the issue of data sparsity in traditional n-gram analysis. In its primal 

form skip-gram is the exact opposite of the CBOW and uses the current word to predict sur-
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Figure 3.2. The Skip-gram architecture taken from Mikolov et al. [39], which 

predicts surrounding words given the current word.

rounding context words. The output of skip-gram is influenced by the positioning of similar

context words in the corpus with closer words having more weights than the distant con-

text words. Despite being slow, skip-gram performs better than CBOW for infrequent words.

skip-gram. Given a text corpus, skip-gram targets at deducing word representations

that are good at estimating the context words given a target word in a sliding window of text.

Specifically, skip-gram takes each word in the corpus (denoted as wt) and its surrounding

words within a window of defined size (denoted as Ct) as input. The model then feeds

each pair (wt, wc), where wc ∈ Ct into a neural network that is trained to maximize the

log probability of neighboring words in the corpus. More formally, given a training corpus
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represented as a sequence of words w1, w2, ..., wT , the objective of the skip-gram model is to

maximize the following function:

O =
T∑
t=1

∑
wc∈Ct

logP (wc|wt)

For both its performance and popularity, we make use of skip-gram shown in Figure 

3.2 to train our word embeddings model.

3.2. UMLS

The aim of the National Library of Medicine’s(NLM) Unified Medical Language Sys-

tem (UMLS) [26] [9] resource is to ease the development of conceptual relationships between 

users and machine-readable data. The UMLS model comprises of three centrally developed 

Knowledge Sources: a Metathesaurus, a Semantic Network, and SPECIALIST Lexicon and 

Lexical Tools. It integrates and delivers key terminology, coding and classification stan-

dards, and associated resources for the creation and advancement of biomedical information 

systems and services which include EHRs. Metathesaurus consists of biomedical terms and 

codes from many vocabularies, including CPT, ICD-10-CM, LOINC, MeSH, RxNorm, and 

SNOMED CT. This information is gathered by making use of Semantic Network and lexical 

tools to group synonymous terms, categorize biomedical concepts by semantic types, link 

health information, medical terms, drug names, and billing codes across different computer 

systems. Semantic Network consists of broad categories of semantic types and relationships 

between them. SPECIALIST Lexicon and Lexical Tools consist of Natural language pro-

cessing tools such as SemRep, Metamap, etc. Details of each resource that is used in this 

research have been provided in the below sections.

3.3. Semantic Network

Semantic Network [38] [51] provides a categorization of all concepts represented in the 

UMLS Metathesaurus and a set of relationships that exist between these concepts. It is a 

knowledge base that contains semantic relations between Biomedical terms present in ULMS. 

Semantic Network contains information about the set of semantic types, or categories, which
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may be assigned to a biomedical concept, and it defines the set of relationships that may

hold between these semantic types. The Semantic Network contains 133 different semantic

types like anatomical structure, biological functions, chemicals, events, conditions, etc., and

54 relationships that can exist between these concepts. The semantic types are represented

as nodes in the Network, and the relationships between them are the links.

These semantic types are represented using unique identifiers comprising of four char-

acters, ex: phsu for ”Pharmacologic Substance”. We make use of these unique identifiers

in our paper and also provide its full form as necessary. Example of a relationship in a

semantic network is ”phsu—affects—dsyn” where ”phsu”(Pharmacologic Substance) and

”dsyn”(Disease or Syndrome) are semantic types and ”affects” is the relationship between

them. A prime example is the assignment of smoking to phsu and lung cancer to dsyn

creating ”smoking causes lung cancer” with causes being the relationship. These semantic

types and relationships are defined as follows by the semantic network:

phsu: A substance used in the treatment or prevention of pathologic disorders. This in-

cludes substances that occur naturally in the body and are administered therapeutically.

dsyn: A condition which alters or interferes with a normal process, state, or activity of

an organism. It is usually characterized by the abnormal functioning of one or more of the

host’s systems, parts, or organs. Included here is a complex of symptoms descriptive of a

disorder.

affects: Produces a direct effect on. Implied here is the altering or influencing of an existing

condition, state, situation, or entity. This includes has a role in, alters, influences, predis-

poses, catalyzes, stimulates, regulates, depresses, impedes, enhances, contributes to, leads

to, and modifies.

below are some examples out of 6217 total semantic relations defined in the semantic network:

• Acquired Abnormality(acab)—affects—Human(humn)

• Disease or Syndrome(dsyn)—isa—Biologic Function(biof)

• Disease or Syndrome(dsyn)—occurs in—Family Group(famg)

• Enzyme(enzy)—ingredient of—Clinical Drug(clnd)
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• Enzyme(enzy)—interacts with—Receptor(rcpt)

• Food(food)—affects—Organism Function(orgf)

• Gene or Genome(gngm)—part of—Human(humn)

• Hazardous or Poisonous Substance(hops)—complicates—Neoplastic Process(neop)

• Hormone(horm)—disrupts—Cell Function(celf)

• Neoplastic Process(neop)—result of—Genetic Function(genf)

• Nucleic Acid, Nucleoside, or Nucleotide(nnon)—interacts with—Enzyme(enzy)

• Organic Chemical(orch)—affects—Disease or Syndrome(dsyn)

• Organism(orgm)—interacts with—Virus(virs)

• Pathologic Function(patf)—affects—Animal(anim)

• Pharmacologic Substance(phsu)—diagnoses—Disease or Syndrome(dsyn)

We use information in semantic network as standard guidance for working with semantic 

type vectors that are introduced as part of our research. This information will be used 

during our applications, similarity and relatedness related tasks which will come in later 

sections of this paper.

3.4. MetaMap

MetaMap [5] [4] [6] is a tool developed to map biomedical texts to biomedical concepts. 

These concepts are classified by semantic types1 defined by the UMLS Metathesaurus, such 

as Body Part, Organ, or Organ Component (T023, A.1.2.3.1) and Anatomical Structure 

(T017, A1.2).

MetaMap uses a knowledge-intensive approach based on symbolic, natural language 

processing (NLP) and computational linguistic techniques to identify biomedical concepts in 

the text. For this reason, it has been used in many applications such as information retrieval, 

data mining and decision support systems. It breaks the text into phrases and then based 

on mapping strength, for each phrase, return a ranked list of mapping options. It allows the 

user to use domain-specific customized dictionaries.

1https://metamap.nlm.nih.gov/Docs/SemanticTypes_2013AA.txt
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Given the biomedical text, MetaMap outputs the biomedical concepts in the text and 

provide details about these biomedical concepts, such as concept id, concept name, preferred 

name, semantic type, etc.

For Example: when we provide ”Histochemical changes in psoriasis treated with triamci-

nolone” as input text to MetaMap, the following biomedical concepts are identified in the 

text along with its information:

Psoriasis [Disease or Syndrome]

changes [Quantitative Concept]

Treated with [Therapeutic or Preventive Procedure]

Triamcinolone [Organic Chemical, Pharmacologic Substance]

We only show the concept [semantic type] information above, since these are the two values 

that we make use of in our research, however, MetaMap provides many other details related 

to biomedical concepts identified. We make use of the concept and semantic types identified 

in the biomedical text to use them as input features for our text classification task.

3.5. SemRep

SemRep [48] is another useful tool provided by NLM that extracts semantic predi-

cations from sentences in biomedical text. It is a multilingual graph-based platform that 

integrates concepts and their semantic relations extracted from various databases such as 

Wikipedia, UMLS, OpenThesaurus, and WordNet. This makes SemRep a powerful tool for 

data integration tasks based on different background knowledge like finding semantic corre-

spondences between schemas and ontologies or semantic enriching of fairly straightforward 

mappings. SemRep maps relations and concepts similar to the nodes approach and if a 

relationship does not exist, different techniques are used to derive it. Semantic Predication 

consists of a subject argument, an object argument, and the relation that exist between 

them. The subject and object argument of each predication are concepts from the UMLS 

Metathesaurus and their binding relationship is a relation from the UMLS Semantic Net-

work. Table 3.1 shows an example of relations that are extracted by passing the biomedical 

text through SemRep.
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Input Sentence Output Relations

We used hemofiltration to treat a patient with

digoxin overdose that was complicated by re-

fractory hyperkalemia.

• Hemofiltration-TREATS-Patients

• Digoxin overdose-PROCESS OF-

Patients

• Hyperkalemia-COMPLICATES-

Digoxin overdose

• Hemofiltration-TREATS-Digoxin

overdose

Treatment of tumors of the eyeball with ra-

dium and radiotherapy. • Neoplasm-PART OF-Eye

• Radiation therapy-TREATS-

Neoplasm

• Radium-TREATS-Neoplasm

Significance of Alimemazine in the treatment

of delirium tremens • Alimemazine-TREATS-delirium

tremens

Surgical treatment of congenital cardiovascu-

lar anomalies accompanied by cyanosis. • Cyanosis-COEXISTS WITH-

Cardiovascular Abnormalities
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Hypophyseal tumors induced by estrogenic

hormone • Neoplasm-PART OF-Pituitary

Gland

• Estrogenic-CAUSES-Neoplasm

Myoclonus and epilepsy appearing in various

patients during the administration of chlorpro-

mazine

• Epilepsy-PROCESS OF-Patients

• Myoclonus-PROCESS OF-Patients

Table 3.1. Examples of semantic relations extracted from biomedical sentences

3.6. SemMedDB

The Semantic MEDLINE Database (SemMedDB) [31] [30] [22] is a database of se-

mantic predications extracted by running SemRep [48] on PubMed. SemMedDB currently 

contains information about approximately 94.0 million predications from all of PubMed 

citations (about 27.9 million citations, as of December 31, 2017) and provides valuable in-

formation for extraction purposes. It is used as a knowledge resource to assist in hypothesis 

generation and literature-based discovery in biomedical text resources. The presence of se-

mantic types in SemMedDB makes it an excellent input source to increase the performance 

of Machine learning models. This database consists of 8 tables out of which SENTENCE, 

PREDICATION, and PREDICATION AUX tables are used for our research. More specifi-

cally we use row data present in SENTENCE, SUBJECT SEMTYPE, OBJECT SEMTYPE, 

SUJECT TEXT and OBJECT TEXT columns of these tables. Figure 3.3

shows the entity-relationship diagram of SemMedDB, and this figure provides details of all 

the tables and columns present in the SemMedDB along with the relationship between these 

tables.
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Figure 3.3. The Entity-Relationship diagram of SemMedDB

The most critical part of our research, i.e., “Semantic Sentences” are created by

extracting information from these columns of SemMedDB.
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CHAPTER 4

METHOD

4.1. Semantic Embeddings

Our research idea can be explained in two simple steps:

(1) Use SemMedDB to create hybrid sentences or “semantic sentences”.

(2) Use these hybrid sentences as input to our word embedding training model.

Word embeddings are created by providing a list of sentences as input to the skip-

gram model, and Skip-gram model aims to deduce word representations based on context 

words. The main goal of our research is to introduce semantic types into vector space of 

word embeddings. To do so it is essential that input to the skip-gram model has sentences 

or text that contain semantic types. With this aim of providing semantic types and its 

context information to the skip-gram model, we first create “semantic sentences” which 

have semantic types and their context information. By training skip-gram model on these 

semantic sentences, we get word embeddings with a distributed representation of words and 

semantic types.

SemMedDB provides biomedical domain-specific semantic data related to predicate 

sentences. Semantic sentences are constructed using SENTENCE, SUBJECT SEMTYPE, 

OBJECT SEMTYPE, SUJECT TEXT, and OBJECT TEXT columns in SemMedDB ta-

bles. This is done by replacing subject and object text in a sentence with their respective 

semantic types. Algorithm 1 illustrates how semantic sentences are created from sentences. 

Table 4.1 shows examples of semantic sentences created using semantic information from 

SemMedDB.
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sentence subject object subject

se-

man-

tic

type

object

se-

man-

tic

type

semantic sen-

tence

Histochemical

changes in psori-

asis treated with

triamcinolone.

triamcinolone psoriasis phsu dsyn Histochemical

changes in dsyn

treated with

phsu.

Fulminating

hepatic necrosis

in a patient

with multiple

myeloma treated

with urethan.

multiple

myeloma

patient neop humn Fulminating hep-

atic necrosis in a

humn with neop

treated with ure-

than.

Clinical impor-

tance of the

Russian spas-

molytic prepa-

ration Etaphen

in visceral-reflex

stenocardia.

spasmolytic stenocardia phsu sosy Clinical impor-

tance of the Rus-

sian phsu prepa-

ration Etaphen

in visceral-reflex

sosy.

Effect of cyclic

progestin-estrogen

therapy on se-

bum and acne in

women.

acne women dsyn humn Effect of cyclic

progestin-estrogen

therapy on sebum

and dsyn in

humn.
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Surgical treat-

ment of congen-

ital cardiovas-

cular anomalies

accompanied by

cyanosis.

congenital

cardiovascu-

lar anomalies

cyanosis dsyn sosy Surgical treat-

ment of dsyn

accompanied by

sosy.

Significance of

Alimemazine

in the treatment

of delirium

tremens.

Alimemazine delirium

tremens

phsu dsyn Significance of

phsu in the treat-

ment of dsyn.

Activation of

Hageman

factor by L-

homocystine.

L-

homocystine

Hageman

factor

aapp gngm Activation of

gngm by aapp.

Acute suppura-

tive infections

of the salivary

glands in the

newborn.

salivary

glands

Acute sup-

purative

infections

bpoc dsyn dsyn of the bpoc

in the newborn.

Hypophyseal tu-

mors induced

by estrogenic

hormone.

estrogenic tumors horm neop Hypophyseal

neop induced by

horm hormone.
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FACTORS AF-

FECTING MO-

TOR PERFOR-

MANCE IN

FOUR-MONTH-

OLD INFANTS.

MOTOR

PERFOR-

MANCE

INFANTS orgf humn FACTORS AF-

FECTING orgf

IN FOUR-

MONTH-OLD

humn.

Table 4.1. Examples of semantic sentences created from semantic infor-

mation of sentences in SemMedDB, here “phsu”(Pharmacologic Substance),

“dsyn”(Disease or Syndrome), “neop”(Neoplastic Process), “humn”(Human),

“sosy”(Sign or Symptom), “aapp”(Amino Acid, Peptide, or Protein),

“gngm”(Gene or Genome), “bpoc”(Body Part, Organ, or Organ Component),

“horm”(Hormone) and “orgf”(Organism Function) are biomedical sematic

types defined by UMLS

We use information in SemMedDB to construct ’semantic sentences’. Using these 

’semantic sentences’ as input to skip-gram, word embeddings are created, which consist of 

both biomedical terms and UMLS semantic types as explained by Arshad et al. [52]. Figure 

4.1 shows how the word embeddings are created. Finally, the word embeddings created in this 

process not only have distributed representation of words but also semantic types, which are 

at our disposal for various tasks such as calculating relatedness between two biomedical terms 

and text classification utilizing the vectors of these semantic types as input features.

For analysis purpose we create two-word embeddings SMDB and SMDB+ using the 

skip-gram model from the gensim library, and we use the default parameters provided by 

gensim library such as window size of 5 and vector dimension of 200. The training sentences 

which we use for these embeddings are what differentiate them, detailed as below:
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Algorithm 1 Semantic Sentence Creation

1: procedure createSemanticSentences

2: n← total no. of Sentences

3: sentences← list of sentences

4: subjectSemType← semantic type of subject

5: objectSemType← semantic type of object

6: subjectText← subject text

7: objectText← object text

8: semanticSentences← [ ]

9: for i← 1 to n do

10: tempSentence← sentences[i]

11: [t] tempSentence← replace(

sentences[i], subjectText[i],

subjectSemType[i])

12: [t] tempSentence← replace(

tempSentence, objectText[i],

objectSemType[i])

13: semanticSentences.append(tempSentence)

14: return semanticSentences

4.1.1. SMDB

This is the word embeddings trained using 94 million sentences in SemMedDB as

input to the skip-gram model, and we use this as a baseline to compare with semantic

embeddings created in this research. The vector space of this embedding has biomedical

terms but not the semantic types defined in UMLS.

4.1.2. SMDB+

This is our special word embedding created using 94 million sentences in SemMedDB

and respective 94 million semantic sentences which we created utilizing semantic types in-
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Figure 4.1. biomedical semantic embeddings are created from sentences 

and ”semantic sentences”, where ”semantic sentences” are created by uti-

lizing semantic information in SemMedDB taken from Arshad et al. [52]. 

Here ”phsu”(Pharmacologic Substance) and ”dsyn”(Disease or Syndrome) are

biomedical semantic types defined by UMLS

formation. It consists of both biomedical terms and semantic types in vector space.

4.2. Applications

Word embeddings are a powerful tool because of the relationship it captures in differ-

ent words. For example: on taking vectors of ”queen”, ”woman” and ”man” and computing

vector(”queen”) - vector(”woman”) + vector(”man”), the output generated is the vector of
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”king”. Similarly, the standard UMLS semantic types introduced in our semantic word em-

bedding captures various semantic relations between different biomedical terms. To further 

demonstrate this idea we show below how we can compute a disease vector given the value 

of its related drug.

Drug-Disease pairs: using vectors of a drug and semantic types of drug and disease, 

a set of related diseases are generated. For example: calculating vector(”bortezomib”) -

vector(”orch”) + vector(”neop”) gives a vector X and on computing the nearest word vector 

to X we get ”myeloma”, in terms of word embeddings. Bortezomib is a drug used to cure 

multiple myeloma, the semantic type of bortezomib in UMLS is defined as orch(organic 

chemical), and neop(neoplastic process) is the semantic type which is assigned to cancer 

diseases.

By using the knowledge of semantic types from the semantic network and utilizing 

the semantic types vectors from our word embeddings we were able to arrive at Myeloma 

cancer disease just by knowing the name of the drug Bortezomib. Similarly, there are 133 

different semantic types in the semantic network and 54 relationships that exist between 

these semantic types, and using our semantic word embeddings these semantic types can be 

exploited to get pairs such as drug-disease, drug-target, etc.

4.2.1. Intrinsic Evaluation

Pakhomov, et al. [46] provides similarity and relatedness for clinical terms culminat-

ing in a set of biomedical pairs and scores associated with them based on the degree of 

similarity and relatedness. This dataset acts as a benchmark for the intrinsic evaluation of 

the embeddings presented here.

To compute similarity between vectors A and B, cosine similarity is used which is 

defined as follows:

cos(A,B) =
AB

‖A‖‖B‖
=

∑n
i=1 AiBi√∑n

i=1 (Ai)2
√∑n

i=1 (Bi)2

Similarity: From Pakhomov, et al. [46] observations and result data we can conclude

that similarity between two biomedical terms exist when these two terms belong to the same
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semantic types. For example, Medrol and prednisolone are the names of drugs which belong 

to the same drug class, treats similar diseases and both of them are assigned the same 

semantic type of phsu(Pharmacologic Substance) by UMLS. Similarity score in such pairs 

can easily be determined by finding cosine similarity between two biomedical terms. We compute 

the similarity measure using the cosine similarity as it has been used previously [43].

Relatedness: Relatedness between two biomedical terms is a difficult task to define 

computationally. From Pakhomov, et al. [46] observations and result data we can conclude that 

two semantically related terms can be of same or different semantic types. In the previous 

research [43] problem of relatedness is targeted by using the same cosine similarity score. 

Although cosine score is a good measure if the semantic types of two terms are the same, it is not 

a good measure to compute relatedness between two terms which are of different semantic types. 

For example, diabetes and insulin are semantically related but both of these biomedical terms are 

of different semantic types, where diabetes has the semantic type of disease or syndrome and 

insulin has the semantic type of pharmacologic substance. There exists a relatedness between 

these two terms because insulin is the drug which is used to treat diabetes.

Given the distribution of words in word embeddings, similar words are close to each other 

but words with different semantic types are far apart. Based on this phenomenon we define a 

better measurement of semantic relatedness here, and this measure of relatedness is only possible 

because of the special nature of our word embeddings which contains vectors of semantic types in 

addition to biomedical terms. This more accurate Relatedness score is determined by utilizing 

semantic types in the word embeddings to capture the relationship between two biomedical 

terms. For a given biomedical pair (term1,term2) it is possible to calculate relatedness using the 

formula:

relatedness(term1,term2)=cos(X,Y) where X=”term1”-”sem1”+”sem2” and Y=”term2”, where 

”sem1” and ”sem2” are semantic types of ”term1” and ”term2” respectively.

For example: relatedness(”diabetes”,”insulin”)=cos(X,Y) where X=”diabetes”-”dsyn”+”aapp” 

and Y=”insulin”, here dsyn(disease or syndrome) is the semantic type of diabetes and
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aapp(amino acid, peptide or protein) is semantic type of insulin. Relatedness score algo-

rithm 2 is provided below for illustration:

Algorithm 2 Relatedness Calculation

1: procedure relatedness(term1,term2,SMDB+)

2: sem1← getSem(term1) . use MetaMap to get semantic type

3: sem2← getSem(term2) . use MetaMap to get semantic type

4: vectorTerm1← getV ector(term1, SMDB+)

5: vectorTerm2← getV ector(term2, SMDB+)

6: vectorSem1← getV ector(sem1, SMDB+)

7: vectorSem2← getV ector(sem2, SMDB+)

8: relatedV ector ← vectorTerm1− vectorSem1 + vectorSem2

9: relatedness← cos(relatedV ector, vectorTerm2)

10: return relatedness

Since the distribution of words captures relations between different words, semantic 

types yield a better calculation of relatedness. Note in case there is no semantic type for a 

biomedical concept we can just use the word vector value ignoring the semantic type vector in 

the formula, which is same as the similarity measure. The results achieved in the relatedness 

score are comparably higher than those in other biomedical word embeddings.

4.2.2. Text Classification

Recently, CNNs and other neural networks have been widely used for various NLP 

tasks including sentence classification [61], [53], [29], [15]. Pre-trained word embeddings have 

shown effective results when used as input feature to train a sentence classification model [29], 

[32]. Applying Yoon Kim’s [32] CNN model showcases the power of the seman-tic 

embeddings(SMDB+) compared to a normal word embedding(SMDB) which does not 

contain semantic types vector.

Normally, vectors of words present in a text are used as input features to a CNN

text classifier. However, due to the nature of word embeddings developed here, the vector of
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semantic types present in a text can be used as an additional feature to the CNN classifier.

Semantic types in the text are determined by using MetaMap, and semantic type vectors

are then appended to vectors of words in the text as input. Results of text classification are

discussed in details in the following section.
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CHAPTER 5

RESULTS

5.1. Data Sets

5.1.1. UMNSRS-Rel and UMNSRS-Sim

UMNSRS-Rel and UMNSRS-Sim are the datasets compiled by Pakhomov, et al. [46] 

which consist of semantically related and semantically similar biomedical terms. The degree 

of similarity and relatedness is captured by a score assigned by a group of eight medical 

residents. Based on these scores assigned we use top 12 semantically similar pairs from 

UMNSRS-Sim for similarity measure and top 12 related pairs from UMNSRS-Rel for relat-

edness measure.

5.1.2. Clinical Questions

A subset of clinical question dataset provided by the National Library of Medicine, 

which were accumulated by Ely et al. and D’Alessandro et al. [18], [19], [17]. This dataset 

consists of 4,654 clinical questions that arose during patients care and visit. This dataset 

contains information on topics assigned to each question, each question is assigned one or 

more topics to them from a set of 12 topics. This paper makes use of question set that 

belongs to the top five most recurring topics namely ”Pharmacological”, ”Management”, 

”Diagnosis”, ”Treatment & Prevention” and ”Test”. Distribution of these questions across 

topics is illustrated in Table 5.1.

5.2. Semantic Similarity

Similarities are computed between the two terms by finding cos(Term1, Term2) where 

Term1 and Term2 are word vectors from different word embeddings. Table 5.2 shows the re-

sults of similarity scores computed on top 12 similar terms from UMNSRS-Sim dataset using 

Pyysalo et al. [43], SMDB, and SMDB+ word embeddings. Word embeddings created from 

SemMedDB sentences(SMDB) and SemMedDB+semantic sentences(SMDB+) provided ap-

proximately 3.5% increase in average score demonstrating the effectiveness of this technique.
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Question Topic No. of Questions

Pharmacological 1594

Management 1403

Diagnosis 994

Treatment & Prevention 868

Test 746

Table 5.1. Question topics distribution

One interesting thing to note here is SMDB performed equally well, and this could be due 

to the quality of sentences in SemMedDB. Since SemMedDB has sentences which have a 

subject-object relationship in them, the similarity between words was captured better than 

Pyysalo et al. [43] embeddings which were trained on the entire PubMed.

5.3. Semantic Relatedness

The same cosine score for computing relatedness in Pyysalo et al. and SMDB was 

applied here. However, SMDB+ provides with semantic types vectors which can be exploited 

to better capture the relatedness between two terms. We calculate relatedness in SMDB+ 

word embeddings using the formula defined in the Method section. Table 5.3 shows relat-

edness score on top 12 biomedical pairs from UMNSRS-Rel which are different in semantic 

types but semantically related to each other. The 11% increase in the average score of 

SMDB+ from Pyssalo et al. showcases the power of introducing semantic types in the word 

embeddings and further bolsters the formula used to compute the relatedness score. Again 

SMDB performed better than Pyysalo et al. [43] due to a better quality of sentences. Cosine 

score is not a good measure of relatedness because words with similar semantic types are 

grouped but words with different semantic types are far apart in vector space. However, by 

using semantic types in SMDB+ vector space we were able to arrive at better relatedness 

measures.
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Term 1 Term 2 Pyysalo et al. SMDB SMDB+

medrol prednisolone 0.60804 0.53884 0.50556

lipitor zocor 0.66682 0.85673 0.84450

thalassemia hemoglobinopathy 0.70729 0.62486 0.61177

convulsion epilepsy 0.54465 0.52118 0.51423

emaciation cachexia 0.49607 0.57806 0.57375

dizziness vertigo 0.72978 0.80141 0.81400

mycosis histoplasmosis 0.55776 0.61603 0.59177

enalapril lisinopril 0.94660 0.93651 0.94842

actonel fosamax 0.67757 0.76767 0.82370

carboplatin cisplatin 0.87725 0.85271 0.86052

xanax ativan 0.72460 0.80707 0.80830

ethanol alcohol 0.57237 0.61436 0.62272

Average 0.67573 0.70962 0.70994

Table 5.2. comparison of cosine scores between Term 1 and Term 2 vectors

from pyysalo et al., SMDB and SMDB+ word embeddings. Values in bold

indicates the highest scores.

5.4. Text Classification

Using clinical questions dataset, text classification was performed to classify the ques-

tions into labelled topics. This questions dataset was prepared in accordance with Cao, et al. 

[10] for binary classification. The accuracies of SVM classifier trained on a set of domain-

independent and domain-specific features as provided by Cao, et al. [10] were compared to the 

accuracies of CNN classifiers trained using vectors in SMDB and SMDB+ word embeddings 

as features. Cao et al. used a combination of BOW”, ”POS”, ”CSTY” and ”BIGRAM” 

where ”BOW” is a bag of words, ”POS” is Part of Speech, and ”CSTY” is Concept Seman-

tic Type. Here SMDB classifier uses vectors of words in the text as input features, whereas 

SMDB+ classifier uses both vectors of the word and semantic type in the question text. To
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Term 1 Sem 1 Term 2 Sem 2 Pyysalo et al. SMDB SMDB+

diabetes dsyn insulin aapp 0.43701 0.34331 0.43770

meningitis dsyn headache sosy 0.31292 0.32223 0.51885

nausea sosy zofran orch 0.35318 0.46599 0.37232

hypothyroidism dsyn synthroid aapp 0.27220 0.32810 0.26122

pain sosy morphine orch 0.34102 0.44372 0.54410

diabetes dsyn polydipsia sosy 0.27831 0.25547 0.37107

hyperemesis sosy zofran orch 0.09222 0.19064 0.20726

diabetes dsyn polydipsia sosy 0.30673 0.32209 0.35027

obesity dsyn snoring sosy 0.37785 0.40361 0.45213

dyslipidemia dsyn lipitor orch 0.22700 0.24698 0.40581

headache sosy tylenol orch 0.25602 0.10493 0.25559

ataxia sosy ethanol orch 0.03230 0.00496 0.36580

Average 0.26851 0.28517 0.37851

Table 5.3. comparison of relatedness scores between Term 1 and Term 2

vectors from pyysalo et al., SMDB and SMDB+ word embeddings. Here Sem

1 and sem 2 are semantic types for term 1 and term 2 respectively. Values

in bold indicates the highest scores. aapp(Amino Acid, Peptide, or Protein),

dsyn(Disease or Syndrome), orch(Organic Chemical), sosy(Sign or Symptom)

are semantic types defined in UMLS

get semantic types in question text we make use of Metamap. Table IV shows the accuracies 

comparison of SVM classifiers trained on different features to CNN classifiers trained using 

word embeddings as features. It is evident from the result that use of both words and seman-

tic types(SMDB+) provided a 2.35% increase in classification accuracy compared to Cao, et 

al. [10], and a 1% increase in SMDB+ from SMDB classifier illustrates the effectiveness of 

using semantic types vectors as additional features to CNN model.
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BOW+

BIGRAM

BOW+

BIGRAM

+POS

BOW+

BIGRAM

+CSTY

BOW+

BIGRAM

+CSTY

+POS

SMDB SMDB+

Pharmacological 86.99 87.22 87.81 87.97 90.35 91.3

Management 67.06 67.09 67.02 67.02 65.99 68.51

Diagnosis 76.82 76.61 76.97 77.13 77.19 78.97

Treatment & Pre-

vention

71.09 71.20 71.26 71.03 74.59 75.28

Test 79.71 79.78 80.79 80.79 82.55 83.98

Average: 76.33 76.38 76.77 76.78 78.13 79.60

Table 5.4. Accuracy comparision of SVM classifier trained on a

set of features i.e. ”BOW+BIGRAM”, ”BOW+BIGRAM+POS”,

”BOW+BIGRAM+CSTY”, ”BOW+BIGRAM+CSTY+POS” as trained by 

Cao, et al. [10] to CNN classifiers trained using SMDB and SMDB+ word 

embeddings as features. Values in bold indicates the highest scores.
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CHAPTER 6

CONCLUSION AND FUTURE WORK

This work takes a new and effective approach towards the training of biomedical word

embeddings, utilizing semantic information in SemMedDB. The research does not aim to

produce a new architecture for generating word embeddings but to check the effect of utilizing

semantic inputs on the current state of the art models. In this research, a background of

biomedical tools and resources useful for NLP tasks were provided. The research bridges

the gap between the utilization of biomedical semantic resources and word embeddings.

Using semantic information from SemMedDB semantic sentences were created, using these

sentences, semantic types were introduced into the vector space of word embeddings. Skip-

gram model was trained to build biomedical semantic embeddings from our new sentences.

This research further illustrates the use of semantic type vectors in various tasks:

• Finding biomedical pairs such as drug-disease. Similarly, we could find relations

between different biomedical pairs such as drug-target, symptom-disease, drug-side

effects, etc.

• Calculating better relatedness scores using UMLS as standard for getting relations

between biomedical terms.

• Improving text classification accuracy. Similarly, vectors of our semantic types could

be used as additional input features wherever word vectors are used.

The introduction of semantic types in the vector spaces results in better similarity

and relatedness between words compared to regular word embeddings that do not have se-

mantic inputs. When an input is fed to the system the embedding utilizes the semantic

type of the input to generate supportive and related text. The output of this research

are two word embeddings SMDB(trained on SemMedDB sentences) and SMDB+(trained

on SemMedDB+Semantic sentences), generated using the genism library. The SMDB is a

regular word embedding whereas SMDB+ utilizes semantic types. In terms of semantic sim-

ilarity, the performance of SMDB and SMDB+ was equivalent, but both of them performed
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better than the model used by Pyysalo el al. [43]. This can be attributed to the fact that 

SemMedDB database contain only filtered sentences from PubMed which has subject-object 

pairs in them, while PubMed used by Pyysalo comprises of all the biomedical text. In terms 

of semantic relatedness, SMDB+ performed better compared to SMDB, reinforcing the idea 

that semantic sentences created as part of this research improves word embeddings. Ac-

curacies of CNN classifiers trained using SMDB and SMDB+ were compared to the SVM 

classifiers used by Cao et al. The results displayed that SMDB+ has better accuracy, followed 

by SMDB and lastly SVM classifiers.

The research acts as a foundation and creates many opportunities for further improve-

ment in Biomedical Natural Language Processing. The prospects of further study include:

• The addition of inputs from other clinical text resources (such as PubMed and

Medline) to create more powerful word embeddings with a larger vocabulary and

better performance accuracy.

• Analyse the effectiveness of other word embeddings model such as GloVe, CBOW,

trained using our semantic sentences. Compare the performances of these models

to provide the best possible solution to the problems in Biomedical NLP.

• Experimenting with different hyper-parameters such as vector dimension, window

size to improve the accuracy of the embedding.

Two main approaches to prepare word embedding include using an embedding layer in

the Neural Network and generating the embedding from scratch, which is the most popular

choice utilized by major Deep Learning packages, and another approach is to use a pre-

trained embedding and train the model with it as the base. The approaches when tested

reveal that the training loss decays more rapidly in almost all the cases of the later on different

training sets. Due to the lack of pre-trained word embeddings with semantic inputs, the word

embedding was generated using the former method, however, is made publicly available for

other researchers to utilize our semantic embeddings in their research.
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