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Abstract—Despite once being nearly eradicated, Measles cases
in Europe have surged to a 20-year high with more than 60,000
cases in 2018, due to a dramatic decrease in vaccination rates. The
decrease in Measles, Mumps, and Rubella (MMR) vaccination
rates can be attributed to an increase in ‘vaccine hesitancy’, or the
delay in acceptance or refusal of vaccines despite their availability.
Vaccine hesitancy is a relatively new global problem for which
effective interventions are not yet established. In this paper, a
novel machine learning approach to identify children at risk of not
being vaccinated against MMR is proposed, with the objective of
facilitating proactive action by healthcare workers and
policymakers. A use case of the approach is the provision of
individualized informative guidance to families that may
otherwise become or are already vaccine hesitant. Using a LASSO
logistic regression model trained on 44,000 child Electronic Health
Records (EHRs), vaccine hesitant families can be identified with a
higher precision (0.72) than predicting vaccine uptake based on a
child’s infant vaccination record alone (0.63). The model uses a
low number of attributes of the child and his or her family and
community to produce a prediction, making it readily
interpretable by healthcare professionals. The implementation of
the machine learning model into an open source dashboard for use
by healthcare providers and policymakers as an Early Warning
and Monitoring System (EWS) against vaccine hesitancy is
proposed. The EWS would facilitate a wide variety of proactive,
anticipatory and therefore potentially more effective public health
interventions, compared to reactive interventions taken after
vaccine rejections.

[. INTRODUCTION

Despite once being nearly eradicated, Measles has spread
across the globe due to a dramatic decrease in vaccination rates.
In 2017, 25.465 measles cases were reported in Europe, a four-
fold increase from a year earlier. The number of measles cases
hit a record high in 2018 in the European region with 59.578
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cases. In fact, in 20 of the 28 European Union countries,
Measles, Mumps, and Rubella (MMR) vaccination rates are
below the 95% herd immunity threshold, as recommended by
the World Health Organization (WHO) [1]. The dramatic
decrease in MMR vaccination can be attributed to an increase in
“vaccine hesitancy,” defined by the WHO’s Strategic Advisory
Group of Experts on Immunization Working Group (SAGE
WG) as “the delay in acceptance or refusal of vaccines, despite
their availability [2].”

The primary catalyst for the global surge in vaccine
hesitancy is an erosion of public trust in the effectiveness and
safety of vaccines [3]. In 2011, the WHO EURO Vaccine
Communications Working Group proposed the “3 Cs” model to
better explain the determinants of vaccine refusal. The first “C,”
confidence, refers to the public trust in the effectiveness and
safety of vaccines, and the competency and motivations of
healthcare workers and policymakers. Second, complacency
occurs when the perceived threat of a vaccine-preventable
disease is low. Third, convenience refers to the consideration of
geographic accessibility, sufficient supply, and the willingness-
to-pay of vaccines [4]. In 2015, Betsch, Bohm, and Chapman
added a fourth “C” to the model: the rational calculation of the
pros and cons of vaccination [5].

Researchers from a range of different fields have tested
interventions aimed at decreasing vaccine hesitancy. The impact
of these interventions has varied greatly [6]. Behavioral
economists observed an increase in vaccine uptake using
notification systems that send out reminders to families who
have missed recommended vaccination target dates; however,
there is no evidence to suggest the uptake was among vaccine
hesitant groups [7,8,9,10,11]. Researchers have also found that
broad-based information interventions implemented via public
health communication channels, such as distributing educational



pamphlets at health clinics, had no significant effect on vaccine
hesitancy. Paradoxically, in some cases, researchers observed
broad-based messaging reinforced vaccine hesitancy in already
vaccine hesitant individuals [12]. These findings emphasize the
complexity of the problem, and the need for carefully selecting
who to message, the message content, and the message delivery
method and timing. The first step in vaccine hesitancy research
is to identify vaccine hesitant groups and individual children at
risk.

There is limited success so far in that direction. Social
science researchers modeled the probability that an individual
child will be vaccinated using logistic regression models, and
found that the educational attainment of the child’s parents,
whether or not the child was the first born, race, age of mother,
and geographic region were all significant at the 5% level [13].
The findings however, are not yet associated with any specific
intervention.

Machine learning approaches have been used to analyze
discussions among vaccine hesitant groups on social media
platforms and online blogs. The results of such research suggest
that these groups form an anti-vaccine narrative framework,
such as the alleged connection to autism, and proliferate the
narrative through their networks [14,15]. Researchers in
Pakistan have proved the feasibility of using machine learning
models, such as Support Vector Machines and Random Forests,
to make individual level predictions for whether or not a child
will default on any immunization in the recommend Pakistani
vaccination schedule. The research was carried out using
individual-level immunization records, which contained
features such as the child’s gender, place of residency,
vaccination history, and date of birth. The models had an AUCs
ranging from 0.782 to 0.791 [16]. A major limitation of all the
machine learning analyses conducted to date is that while they
have shown some success in monitoring and detecting vaccine
hesitancy, again, they are not associated with any specific
intervention aimed at increasing vaccine uptake.

In this paper, an action-driven analytics approach is
proposed, where the analysis and the outcomes are tightly linked
with an action from key stakeholders that may introduce a
required change. The objectives of the research have two
distinguished strengths, as compared to other research in the
field: first, vaccine hesitancy models were built using Electronic
Health Record data, and second, the an intervention aimed at
increasing vaccination rates is proposed.

II. RESEARCH CONTEXT

While the threat of vaccine hesitancy is a concern across
Europe and the globe, falling vaccination rates have been among
the most alarming in a specific country in Southern Europe!. For
instance, in County 1 of Country, vaccination rates for the infant
dose of MMR dropped from 95% in 2010 to below 60% in 2017.
As a result, this research project was formed from a partnership
between the country’s Institute of Public Health (IPH).

The country’s healthcare officials follow the WHO’s
recommended vaccine schedule for MMR: one dose
administered by pediatricians at infancy, typically around the
age of 1 (referred to as “primovaccination”), and a second dose

! At the time of writing this paper, the country name must remain
anonymous under the project’s GDPR-compliant data sharing agreement.
Henceforth, the country will simply be referred to as Country.

administered by school and adolescent medicine doctors to
children around age 6 (referred to as “revaccination”). In some
cases, if a child has missed MMR primovaccination, they
receive a double dose of the MMR vaccine at the intended time
of the revaccination dose. This makes revaccination a critical
time point in ensuring immunization against MMR.

The current response to vaccine rejection in the region is a
notification system, where doctors and healthcare administrators
contact the families of children who have missed the mandatory
vaccine schedule. A major weakness of this system is that it is
entirely reactionary. Studies indicate that once a child is delayed
from their normal vaccine schedule, they are much less likely to
be vaccinated at all [17]. Moreover, despite legal repercussions
for refusing mandatory vaccines, many parents are able to
circumvent the law through various loopholes. Doctors in the
region have also expressed concerns that enforcing legal
procedures following a rejection of vaccination will harm the
doctor-patient relationship, and cause parents to avoid going to
the doctor altogether. Currently, healthcare workers in the
country confront vaccine hesitancy by promoting scientific
research on vaccination.

Here we partner with the IPH to test two hypotheses. First,
to assess whether or not effective machine learning models can
be built to predict if an individual child is at risk of not receiving
the MMR vaccination using EHRs — in other words, their risk of
being vaccine hesitant. Second, that the models can be deployed
as an Early Warning and Monitoring System (EWS) that will
allow healthcare workers and policymakers to more accurately,
and preemptively, intervene on vaccine-hesitant families.

III. DATA AND METHODS

A. Data

Two data sources were used. The first was Electronic Health
Records (EHRs) collected by public health clinics, namely the
school-medicine centers in Country, typically as a child is about
to enter the first grade of primary school. Access to this data is
a distinguishing feature of this research paper. To our
knowledge, no other machine learning models have been used
to model vaccine hesitancy using individual level EHRs. The
IPH provided anonymized data for approximately 37,000
children from County 1 and 7,000 children from a second county
(County 2). This encompasses all children who received a health
check up from a public health clinic prior to First Grade
enrollment, after 2011. Our modeling approaches used features
from the EHRs in the following areas: (1) demographic and
personal information: the parents education level, age, work
status, marital status, smoking status, child’s educational
attainment, living situation, number of siblings, whether the
child attended preschool or kindergarten, and speaks a foreign
language; (2) geographic information: the child’s settlement of
residence , and assigned health center; (3) visits to a doctor - the
number of recorded visits a child has made to the doctor; (4)
infant vaccination record: vaccination record, for Polio (four
doses), DTP (five doses), PPD (tuberculosis), BCG
(tuberculosis), HBV (hepatitis B, three doses), Hib (four doses),
MMR primovaccination dose and age at which it was received;
(5) sibling vaccination history—specifically the number and
proportion of siblings who received the doses of the MMR
vaccine; (6) Personal medical history—specifically an



indication of complications at birth, the age at which the child
first sat, walked, teethed, and spoke (words and sentences).

The second data source used was publicly available census
data which included the municipality population and the
proportion of the population under 20 years of age.

B. Data preprocessing

To convert the raw EHR and census data into a form usable
for modeling, several preprocessing steps were required.
Continuous variables, such as the age at which a child began to
walk, were rescaled to have a mean of zero and standard
deviation of one. Binary variables, such as whether the child
received their infant MMR vaccination, were coded as 1 for true
and 0 for false. Categorical variables with more than two
options, such as the parents’ marital status, were encoded using
a one-hot encoding scheme.

EHR data can be incomplete and error-prone. In particular,
we found that many patients had significant missing data. For
some children, personal medical history or family demographics
was missing entirely. We created separate binary variables that
indicated when this kind of systematic missingness occurred.
Individual variables were also missing in some cases. For the
purposes of modeling, simple imputation methods were used:
missing variables were filled using the variable’s mean value for
continuous variables, using a value of 0.5 for binary variables,
and a value of 0 for one-hot encoded variables. In the future,
logic-based imputation methods could be explored, including
performing a sensitivity analysis testing the effects of different
methods on evaluation metrics. Along with missing data, some
variables were also entered incorrectly. We attempted to correct
for entry errors on an ad hoc basis by removing outliers, for
example by replacing parent ages less than 12 or greater than 80
with the variable’s mean value and setting a maximum age for
early developmental milestones (e.g., sitting up, crawling) at 48
months.

C. Modeling

Consistent with best practices in applied machine learning, a
gamut of models was tested. Our approach was model agnostic,
in the sense that we valued high interpretability and high
performance on the prediction metric more than a priori
preference towards a specific model. To this end, a grid search
method was implemented to select the optimal model and
hyperparameters from among several model choices, including
two linear models (ridge and LASSO logistic regression) and a
nonlinear model (gradient-boosted decision trees). Separate
models were used for each county for two reasons: first, each
county has an independent data storage system, and second, to
account for hidden regional features that may influence the
probability of vaccine hesitancy. This practice has been used in
other applied machine learning settings [18]. Note that in
practice, this means that feature importance and
hyperparameters may vary by region.

The goal was to select a model that was highly interpretable
while simultaneously being effective at identifying children at
high risk of vaccine hesitancy. For each model, the following
evaluation metrics were recorded: AUC, accuracy, average log
likelihood, precision and recall. Performance was compared
across models, and to a baseline model which assumed a

family’s vaccination choice for revaccination will match their
choice for primovaccination. In general, models were compared
using AUC, and the precision at k, where k is a percentage of the
population that healthcare workers have sufficient resources to
carry out interventions for. After evaluating all models, the
LASSO regression was selected as the optimal model due its
high performance while using few features, making it more
easily interpretable.

Feature selection was based on both previous literature and
the available data. Past research has shown that whether or not
the child was the first born, the age of the mother, geographic
region, gender, age, and date of birth are all strong indicators for
predicting vaccine compliance. Additionally, features were
selected from the 6 data categories mentioned earlier in this
paper. Over 70 features were selected for modeling.

Many of the features used by the model, such as pediatric
vaccination history and demographic information, are generally
stable over time. However, other features, such as the number of
times a child has visited a health clinic change over time. Thus,
it was important to train the model to make predictions at
multiple time points, taking into consideration changes in the
data. The model was trained on historical data from, and created
predictions for, four time points for each child: January 1 and
April 1 in the year before a child enters 1st grade, and September
1 and February 1 during the school year. For all prediction
timepoints, the quantity being predicted was whether the child
would be vaccinated by July 1 following the end of the 1st grade
school year.

Each model was trained on data from students who began
first grade between 2011 and 2015, using the cohort of students
who began school in 2016 as a validation set to determine the
best model hyperparameters through grid search, based on AUC
value. To avoid comparing students across different time points
when calculating AUC, the AUC score was calculated within
data from each time point, and a weighted average of these
scores was used for grid search evaluation. Each model’s best
hyperparameter settings were then used to produce predictions
on the 2017 student cohort for final evaluation and comparison.

D. EWS Implemenation

While researchers have had success using machine learning
to model vaccine hesitancy, there is a research gap with respect
to connecting findings to a specific intervention. To address this
gap, here we prototyped an EWS that can be used by healthcare
workers and policymakers to support existing interventions, by
allowing for preemptive rather than reactive interventions, as
well as to allow novel, well-targeted messaging. The EWS was
built using the Flask web framework for Python, and has the
following features: (1) displays the average calculated risk-score
for the students assigned to each health center in the country, (2)
displays the individual risk score of each student in a given
health clinic, and (3) displays each child’s value for the features
used in the final predictive model.

Children are assigned into one of four levels of risk not
receiving MMR revaccination (low, medium, high, and very
high) based on the percentile calculated risk score from each
counties” LASSO regression model, as early as January 1st
before the child enters first grade (8 months before the expected



revaccination date). For the purposes of prototyping the EWS,
cutoffs for the four risk levels were arbitrarily decided as such:
the bottom quartile of students is assigned to the “low” risk
category, and the highest quartile assigned to the “very high”
risk category (the middle two quartiles assigned to the
“medium” and “high” categories, respectively).  These
categories are not meant to not indicate risk of non-vaccination
in an absolute sense (e.g., indicating a particular probability of
not being vaccinated) but rather indicate the risk relative to other
children, which is the most relevant information in the context
of limited resources and a pending policy decision of whom to
dedicate time to or intervene on.

In practice, these risk levels would be defined by health
clinic administrators, doctors, and nurses, who will use the EWS
to view the percentage of children in each risk category at their
health clinic, as well view the feature values of each child in the
clinics. The EWS can help doctors prepare additional vaccine
information prior to medical visits with the families of high-risk
children. Administrators and policymakers can use the EWS to
better target public messaging and policy interventions. The
EWS allows administrators to observe which regions have dense
concentrations of children at high risk for not vaccinating.

IV. RESULTS

A. Modeling

All models tested outperformed the baseline on AUC. For
County 1, the baseline AUC was 0.72, and the AUC for the ridge
regression, LASSO regression, and gradient-boosted trees
models were found to be 0.81, 0.81, and 0.83, respectively. For
County 2, the baseline AUC was 0.63, and the AUC for the ridge
regression, LASSO regression, and gradient-boosted trees
models were found to be 0.73, 0.73, and 0.76, respectively.
Findings for County 1 and 2 are found in Figure 1 and 2.
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When evaluating the models based on precision, & was
chosen to be 20%, meaning that the results show the precision
for the top 20% most at-risk individuals. This reflects the
assumption that health workers would only have resources to
implement interventions for 20% of children, and that thus the
goal would be to maximize the proportion of families within that
20% who truly would not otherwise vaccinate (the assumed &
will need to be updated once true resource constraints are
known). The reported precision score is the weighted average
over all time points, where the weight corresponds to the number
of unvaccinated individuals in the sample in each time point.

For County 1, the baseline precision was 0.63, and the
precision for the ridge regression, LASSO regression, and
gradient-boosted trees models were found to be 0.72, 0.72, and
0.73. For County 2, the baseline precision was 0.39, and the
precision for the ridge regression, LASSO regression, and
gradient-boosted trees models were 0.54, 0.56, and 0.62,
respectively. Precision findings for County 1 and 2 are found in
Figure 3 and 4, respectively.

FIGURE 3. PRECISION AT 20% FOR COUNTY 1, SELECTED MODEL IN BLUE
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With respect to AUC, the overall best-performing model was
the gradient-boosted trees model; however, performance was
only marginally better than that of the regression models (less
than 3%). Furthermore, similar performances were in observed
in the ridge and LASSO regression models, specifically, an 11%
increase in performance as compared to the baseline model.

For precision, again, the best-performing model as compared
to the baseline was the gradient-boosted trees model. While only
a marginal improvement was observed in County 1, the
gradient-boosted trees performed an average 7% better than the
regression models in County 2, and 23% over the baseline.

While the gradient-boosted trees model performed slightly
better in terms of AUC and precision, the LASSO model was far



more easily interpretable. It used only 25 features, combined in
a linear manner, while the gradient boosted trees model used all
features in an opaque, nonlinear manner. Whether the child had
a personal anamnesis on file was the strongest selected feature.
This suggests that pupils who have received medical care during
their childhood are more likely to be vaccinated than the others.
Whether they had received the five-year-old Diphteria, Tetanus
and Polio (DTP) vaccine dose was also listed among the
strongest features. Note that the aforementioned DTP vaccine
dose is the last infant vaccine a child is supposed to receive
before the MMR dose. EWS Implementation

An EWS was built in the form of a web dashboard. The
dashboard contains views at the county, health center, and child
levels, and shows risk scores based on the LASSO regression
model. The architecture of the EWS is such that it is built
directly on top of the IPH servers, meaning that it is robust in
responding to real-time data changes. Risk scores can be
recalculated at a user-specified interval, as often as several times
in one day. The EWS has been built as a proof-of-concept and is
currently awaiting deployment in several health centers across
the country.

The simple solution produced by the LASSO model makes
it ideal for use in an EWS, because the exact attributes that
caused a certain prediction to be made can be reviewed and
understood by healthcare providers. For example, besides
predicting that children who received their infant vaccinations
will receive the vaccine, the model also predicts that children
who attended kindergarten are more likely to be vaccinated,
while those that learned to walk later than peers are less likely
to get vaccinated. While the current model can draw no causal
links between these features and vaccine hesitancy, future
research may lead to individualized interventions based on the
attributes of a given child.

B. EWS Implementation

An EWS was built in the form of a web dashboard. The
dashboard contains views at the county, health center, and child
levels, and shows risk scores based on the LASSO regression
model. The architecture of the EWS is such that it is built
directly on top of the IPH servers, meaning that it is robust in
responding to real-time data changes. Risk scores can be
recalculated at a user-specified interval, as often as several
times in one day. The EWS has been built as a proof-of-concept
and is currently awaiting deployment in several health centers
across the country. The EWS for this project was built as
standalone software, in-part because the EHR system does not
allow for adding external features developed by third parties.
However, alternative implementation methods exist, such as
integrating the EWS directly into an EHR data system. Several
open source EHR systems, like OpenEMS, allow for the direct
integration of custom applications into their platform.

V. DISCUSSION

The results show that effective models for predicting vaccine
hesitancy at the individual level can be built using EHRs.
Despite achieving slightly lower precision than that of other
models, the LASSO regression model was implemented into the
dashboard, because it uses fewer than 25 features to generate

risk scores for both counties, as compared to over 70 features
used by the gradient-boosted decision tree and ridge regression
models. The payoff for having fewer features is that it minimizes
the “black box” effect often observed in utilizing machine
learning models. The importance of having a transparent,
interpretable model that can easily be explained to healthcare
workers and policymakers will likely increase uptake of the
dashboard. As a result, the EWS can be fully leveraged to
facilitate the efficacy of interventions meant to address vaccine
hesitancy, such as informational phone calls and one-on-one
sessions with members of the at-risk population. Delivered with
the appropriate consideration and early enough, the downsides
of acting upon information about who the at-risk population
consists of seem to be low, as persuasion of those who have
already formed a strong opposing opinion is unlikely but is also
unlikely to be found provocative by those at risk but still bereft
of strong explicit stances.

The model is well equipped to answer a variety of policy and
healthcare questions by offering predictions at four time points.
Policy makers, for instance, may be concerned about the risk
score based on April 1 before the start of 1st grade, which is the
deadline by law for receiving the second, revaccination dose of
the MMR vaccine; while doctors might be interested in the risk
of not being vaccinated by the start of first grade, when a child
starts spending a significant amount with their peers, some of
whom could be carriers.

Evaluating models on both AUC and precision at k& also has
important policy implications. For instance, if health clinics only
have the resources to intervene on a limited number of families
per week, the model can be tuned to maximize the precision of
the most at-risk children. Alternatively, if the IPH plans to
implement targeted policy interventions against vaccine
hesitancy, it is more useful to maximize AUC.

There are few remaining technical hurdles to implementing
the EWS in a real-world healthcare setting. By building the
prototype directly into the IPH servers, the machine learning
model is always trained on the most up-to-date dataset.
Furthermore, few challenges are faced with respect to
scalability. The dashboard could easily be implemented to many
regions throughout the Country because the models were based
on nationally-standardized EHRs, despite models varying by
region. When a nationally-standardized EHR system is
available, this robustness with respect to scalability is a unique
strength of the proposed EWS. However, in the absence of a
standardized EHR system, the robust scalability may be
dramatically undermined. For example, if certain variables that
proved to be strong features in one region are non-existent in a
different region, the EWS cannot be generalized. Another
limitation of the EWS is that it must remain connected to the
PHI servers to provide accurate risk score predictions, which
could provide significant security concerns. Future work for this
research includes a Randomized Control Trial (RCT) that would
evaluate the effect of using the EWS on vaccine uptake among
vaccine hesitant groups, as compared to business-as-usual. Such
an experiment might also involve comparisons with the efficacy
of yet to be developed elements of interventions meant to
address vaccine hesitancy, in addition to that of making the
existing routine interventions proactive by implementing them
preceding explicit expressions of vaccine hesitancy.



VI. CONCLUSION

This study explores the use of a novel machine-learning
based approach on EHR data to predict which families will be
hesitant to vaccinate their child against MMR, for the purpose
of enabling proactive informational guidance. Evaluated on both
AUC and precision at k£, machine learning insights predicted that
a child will not receive revaccination of MMR at higher rates
than the status quo methods, and the model findings were
successfully implemented into the prototype of an EWS. This is
an important step towards helping healthcare workers reach the
right families at the right time to encourage potentially life-
saving vaccinations. Nevertheless, it is our belief that this is not
a silver bullet against vaccine hesitancy. Instead, the research
findings shown in this paper provide the most benefit when used
in conjunction with the professional opinion of healthcare
workers, public health officials, and policymakers, as well as
careful considerations of which interventions are suitable given
the predictive insights provided by the EWS.
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