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Abstract— Screening mammograms is the gold standard for 

detecting breast cancer early. While a good amount of work has 

been performed on mammography image classification, especially 

with deep neural networks, there has not been much exploration 

into the confidence or uncertainty measurement of the 

classification. In this paper, we propose a confidence measure-

based evaluation metric for breast cancer screening. We propose 

a modular network architecture, where a traditional neural 

network is used as a feature extractor with transfer learning, 

followed by a simple Bayesian neural network. Utilizing a two-

stage approach helps reducing the computational complexity, 

making the proposed framework attractive for wider deployment. 

We show that by providing the medical practitioners with a tool to 

tune two hyperparameters of the Bayesian neural network, 

namely, fraction of sampled number of networks and minimum 

probability, the framework can be adapted as needed by the 

domain expert. Finally, we argue that instead of just a single 

number such as accuracy, a tuple (accuracy, coverage, sampled 

number of networks, and minimum probability) can be utilized as 

an evaluation metric of our framework. We provide experimental 

results on the CBIS-DDSM dataset, where we show the trends in 

accuracy-coverage tradeoff while tuning the two 

hyperparameters. We also show that our confidence tuning results 

in increased accuracy with a reduced set of images with high 

confidence when compared to the baseline transfer learning. To 

make the proposed framework readily deployable, we provide 

(anonymized) source code with reproducible results at 

https://git.io/JvRqE. 
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I. INTRODUCTION 

Breast cancer is the most common cancer among women 
around the world according to World Health Organization [1]. 
The key to breast cancer control is early detection to improve 
breast cancer outcome and survival [1]. Mammography is the 
most common screening technology for breast cancer. It is a 
type of imaging that uses a low-dose X-ray system to examine 
the breast and is the most reliable method for screening breast 
abnormalities [2] before they become clinically perceptible. 
Screening mammography is done for detecting breast cancer. 
However, one big challenge here is low contrast in 
mammogram images, which makes it hard for radiologists to 
interpret the results [3]. Therefore, the use of computer aided 
diagnosis (CAD) has been on the rise for breast cancer 
screening [2][4].  

To accomplish this, we have seen the usage of traditional 
approaches based on heavy feature engineering, as well as 
recent approaches based on deep convolutional neural 
networks. However, for a crucial task like cancer image 
screening, just classifying an image to a particular class (e.g. 
benign or malignant) is not enough, because it lacks any 
confidence or uncertainty measure associated with 
classification [5]. For example, if an image is classified as 
malignant, the radiologist might be interested in knowing how 
confident the CAD system is that it is malignant.  

The target of this work is not only to compute such 
uncertainty measure in an efficient manner, but also to provide 
the radiologists with a tool to effectively control the accuracy-
coverage tradeoff (explained in detail in section IIIB).  We first 
train a deterministic point-estimate neural network using the 
pretrained ResNet-18 architecture with some modifications, 
thus leveraging transfer learning. For saving computational 
resources, we separate the feature extractor from this 
deterministic network to generate lower dimensional features 
and feed those to a separate smaller network which acts as our 
Bayesian neural network. Having computed the posterior 
distributions by applying Stochastic Variational Inference (SVI) 
[7], we introduce two tunable parameters N (sampled network 
fraction) and P (minimum probability) which together (both are 
explained in detail in section IIIB) can be used as a confidence 
measure and can be tuned to adjust the confidence level. We also 
demonstrate that higher confidence results in lower coverage of 
the classification, i.e., some images are rejected due to lack of 
confidence. We propose that the tuple (accuracy, coverage, N, 
P) can be our new evaluation criterion where (N, P) is the 
confidence measure. We obtain the mammography images from 
CBIS-DDSM [3] where the classification task is essentially 
binary (benign vs malignant) and demonstrate our tool in effect.  
The overall approach can in general be applicable to any domain 
beyond medical imaging and any number of classes. 

II. RELATED WORK 

Tsochatzidis et al. [8] performed a comparative study on 
applying CNNs for breast cancer diagnosis. They made use of 
Alexnet, VGG, GoogLeNet, Inception Networks and 
ResNet.They showed that under fine-tuning scenario, 
pretrained networks achieve superior performance over 
networks trained from scratch. Agarwal et al. [9] showed 
similar results with transfer learning on VGG16, ResNet50 and 
InceptionV3. 

https://git.io/JvRqE


Xi et al. [10] performed binary classification of 
mammography images using transfer learning. They made use 
of AlexNet, VGGNet, GoogleLeNet and ResNet and showed 
that VGGNet achieves the best overall accuracy while ResNet 
performs best for computing class activation maps. Part of our 
proposed framework has adopted this strategy. 

Rampun et al. [11] performed classification of 
mammographic microcalcification clusters with confidence 
levels. They studied distribution of classifiers' probability 
outputs and used it as an additional confidence level metric to 
indicate reliability. They concluded that in breast CAD systems, 
the accuracy or AUC metric alone does not provide a complete 
representation of reliability. Although they do not make use of 
Bayesian neural networks, our paper is greatly motivated by 
this work given that we are also looking for a confidence 
measure-based evaluation criterion for classification. 

Although not particularly in the domain of medical imaging, 
Harper and Southern [12] showed a Bayesian deep learning 
framework for prediction emotion from heartbeats by 
introducing a tunable confidence measure. Their confidence 
measure is based on the percentage of the output distribution 
that lies within a given class zone.  

In terms of adopting a confidence or uncertainty measure in 
the domain of medical image classification, the work of Leibig 
et al. [13] has some similarity to ours. They showed a method 
for capturing uncertainty in disease detection using drop-out 
based Bayesian neural networks. Their method of measuring 
Bayesian uncertainty was based on the recent finding [14] that 
a multi-layer perceptron with added dropout after every weight 
layer is mathematically equivalent to approximate variational 
inference [15] in the deep Gaussian Process model [16, 17], 
which holds for any number of layers and arbitrary non-
linearities. They extended this idea to incorporate convolutional 
layers [18]. The uncertainty for a given test image was obtained 
by simply keeping the dropout mechanism switched on at test 
time and performing multiple predictions. They used the 
Messidor dataset [19] for their experiments and manifested a 
monotonic increase in prediction accuracy for decreasing levels 
of tolerated model uncertainty. They pointed out that one of 
their main motivations for resorting to a dropout-based 
Bayesian approach, as opposed to a Gaussian process (GP) 
approach was that while GPs theoretically seem more 
appealing, they scale badly with both the dimensionality of the 
feature space and the size of the dataset. 

In our proposed framework, unlike [13] we rely on a 
Gaussian process (Stochastic Variational Inference) for our 
Bayesian posterior approximation, and then use a few hyper 
parameters that work on networks sampled from that posterior, 
to tune the level of uncertainty. For dealing with performance 
and scalability issues (the main criticism against GPs in [13]), 
we mainly rely on transfer learning, along with dividing our 
network architecture into a deterministic portion which acts as 
a lower-dimensional feature generator, and another relatively 
small neural network on which the actual Bayesian inference is 
performed. Dividing the network into a deterministic and a 
Bayesian portion while employing transfer learning makes our 
proposed method extremely modular, therefore giving it the 
ability to be plugged into existing CAD systems which are 

employed at hospitals or clinics. This modular approach is 
inspired by the work of Riquelme et al. [20], where they apply 
a Bayesian linear regression on the last layer of a deep neural 
network. 

III. PROPOSED FRAMEWORK 

Our proposed framework has two main components – (i) A 
modular network architecture with a feature generator 
combined with a Bayesian network (ii) Tunable 
hyperparameters on the posterior distribution learnt by the 
Bayesian training to come up with a confidence measure.  

A. Modular Network Architecture 

To achieve a proper Bayesian training, we first need to make 
sure we have a good architecture of a deterministic (non-
Bayesian) neural network, because the Bayesian neural network 
will be based on the non-Bayesian one. There are already well 
studied and researched neural network architectures like 
AlexNet [21], ResNet [23], and VGG [22] (along with their pre-
trained versions. There are two avenues to transform one of 
these architectures into a Bayesian network: 

1. Try end-to-end Bayesian learning from scratch, not 
leveraging the pre-trained version of the chosen network 
architecture (i.e., not leveraging transfer learning). 
Initialize the weights and biases with random priors (e.g 
with normal distributions with zero mean and unit standard 
deviation) and then apply a Gaussian Process like 
Stochastic Variational Inference (SVI) end-to-end to learn 
the posterior distributions.  

2.   Try leveraging transfer learning and do Bayesian learning 
via the Gaussian process on top of that. We call this second 
approach a modular approach. 

However, there are a few empirical problems associated with 
both of these approaches: 

1. The problem with approach 1 above is time and resource 
complexity. For example, a network architecture like 
ResNet-18, with 3 additional fully connected layers, has 
over 11 million parameters, so learning posterior 
distributions via a Gaussian process for each of these 
parameters will be very time consuming could be 
impractical for wider deployment and re-training. 

2. Approach 2, has not been investigated widely, other than 
[20] provides results on simple numerical datasets.  

In order to get around these issues, we decided to modify 
approach 2 above to make it modular. The steps are outlined 
below: 

1. Select a pretrained deep neural network (such as ResNet-
18) and adapt it to leverage transfer learning. For example, 
for ResNet-18, replace the fully connected layer with a 
stack of trainable fully connected layers to leverage transfer 
learning. 

2. Train this network deterministically (non-Bayesian) to 
reach a reasonable classification accuracy.  

3. Now divide the network into 2 different independent 
networks – one will be a network containing a majority of 
the layers and convolutional blocks so that it can act as a 
lower dimensional feature generator, and the other will be 



a much simpler network consisting of a few fully connected 
layers, which can be used for end to end Bayesian learning 
using the lower dimensional features as input. For example, 
when using an adapted version of ResNet, the feature 
generator network will be the portion of the network before 
the fully connected layers start, and the smaller network for 
Bayesian learning will just be the fully connected layers 
followed by softmax ( e.g in our experiemnts it is a 512-
element feature vectors, as opposed to 224 x 224 images 
for ResNet). A similar breakdown has to be applied if any 
other network architecture is being used. 

4. Now perform the Bayesian inference via a Gaussian 
Process such as SVI on the smaller network and with lower 
dimensional training data, to learn the posterior distribution 
of the parameters. 

This modular approach makes the Bayesian learning process 
faster, since the Gaussian process (SVI) is now being applied to 
a much smaller network and the input data for this network is 
also lower dimensional. This Bayesian learning is easily 
achievable within a reasonable time frame using off-the-shelf 
tools (like Pyro [26]). Together, this end-to-end approach gives 
us a way to do Bayesian learning on top of leveraging transfer 
learning in an effective manner. This two-step approach is also 
attractive in the sense that popular neural network architectures 
are already being deployed at hospitals and clinics for 
computer-aided diagnosis. The Bayesian network can be an 
additional module to be tacked on to these existing architectures. 
Fig. 1 summarizes the steps mentioned in this subsection. 

 

Fig. 1: Framework for Bayesian Posterior Inference 

B. Tunable Hyperparameters for Confidence Measurement 

Once we have the posterior distributions of the network 
parameters (weights and biases) calculated from section IIIA, 
the next step is to come up with a confidence measure. Our 
proposed confidence measure consists of two tunable 
parameters. The steps to calculate these are described below:  

1. Sample a reasonable number (1000 in our experiments) of 
networks from the posterior distributions using Monte 
Carlo sampling. Each of these sampled networks is a 
deterministic network by itself. 

2. Classify each image by each of the sampled networks. 
Record the probabilities for both classes (benign and 
malignant) for each image. 

3. Use two parameters N and P, where N denotes the fraction 
of the sampled number of networks that have a minimum 
probability P on a certain image being of a particular class 
(either benign or malignant). 

4. With these two tunable parameters N and P, we can define 
a confidence measure. For example, if we have 1000 
sampled networks, then N = 0.6 and P = 0.7 would mean at 
least 600 networks out of the 1000 have to have a 
probability of at least 0.7 for an image being either benign 
or malignant, otherwise the image will be skipped for 
classification. In other words, by incorporating both N and 
P in the confidence measure, we account for agreement 
among a portion of the sampled networks and find out how 
strongly each network feels about the classification. 

Under the above settings, naïve expectation would be that as N 
and P go higher (higher confidence, lower uncertainty), we 
should be getting higher accuracy, while as N and P go lower 
(lower confidence, higher uncertainty), the accuracy should 
decrease. However, raising the value of N and P might also 
result in some images being skipped for classification. For 
example, consider a case where we have 1000 sampled 
networks, N = 0.9 and P = 0.9, which demands that at least 900 
out the 1000 networks must have a probability of at least 0.9 for 
an image being either benign or malignant. This might result in 
a number of images being skipped for classification, since we 
are demanding too high of a confidence. This is the case of 
lower coverage. At higher values of N and P (higher 
confidence), we will have lower coverage (many images 
skipped), but the accuracy on the covered images will be high. 
On the other hand, at lower values of N and P (lower 
confidence), we will have (higher coverage not too many 
images skipped) but the accuracy on the covered images would 
be lower. In short, tuning the values of N and P gives us a way 
to decide where in the accuracy-coverage tradeoff we want to 
settle. Therefore, the N and P values, along with the accuracy 
and coverage, comprise our new evaluation metric, which can 
be formalized as a tuple (accuracy, coverage, N, P) where N 
and P comprise the confidence measure.  

Although in this paper we are using classification accuracy 
as the primary evaluation criterion, in general, the framework 
allows any evaluation criterion to be paired with a confidence 
measure. Other possible candidates include precision, recall, 
F1-score, ROC AUC score etc., some of which might make 
more sense for an imbalanced classification case. Ours being a 
relatively class-balanced classification case, we chose to go 
with accuracy for our task.  

IV. EXPERIMENTAL SETUP 

A. Dataset 

The data has been obtained from the CBIS-DDSM (Curated 
Breast Imaging Subset of DDSM) [3] dataset. For the purpose 
of our classification problem, we utilize the cropped Region-of-
Interest (ROI) image patches containing the mass that are 
provided with the dataset. The ROI-cropped dataset contains 
1696 labelled grayscale images. Of those, 912 are labelled as 
benign and 784 are labelled as malignant. Therefore, the dataset 
is reasonably class-balanced. Fig. 2 shows samples of one 
benign and one malignant image patch.  



 

 

 

 

 

 (a) Benign                               (b) Malignant 

Fig. 2: Sample benign and malignant images patches 

B. Data Preprocessing 

1) Image Resizing: We have resized all images to 224 x 224 
pixels to match with the input image size of popular deep 
networks.  

2) Normalization: We have performed standard 
normalization on all the images with zero mean and unit 
standard deviation in order to reduce the chance of overfitting. 

3) Train-Validation Split: Although CBIS-DDSM comes 
with a pre-division of the dataset into training/test, for more 
generalization, we merged these two datasets and then split 
them again, into our own training and validation datasets. This 
was done to ensure similar class ratio (benign to malignant) of 
the images in the training and validation sets. This splitting was 
done 80:20 training to validation ratio and in a stratified manner 
with regards to the class (benign vs malignant) distribution. We 
created 5 such stratified splits so that each such split can be used 
for cross-validation to test the generalization of our approach. 
For each of the 5 splits, we have 1357 training image and 339 
validation images.  

4) Data Augmentation: We have performed data 
augmentation by applying random rotation (from 0 to 360 
degrees) and random vertical and horizontal flips on the images. 
Note that this was done for training data only. This 
augmentation was done on the fly during the training process, 
meaning that each epoch would have training images with 
different orientations, effectively increasing the training set size 
manifold (as opposed to the actual 1357 training images) and 
making the training process more robust. 

C. Network Architecture Selection and Adaptation 

Referring to the framework described in section IIIA, the 
first step was to select and adapt a deep neural network 
architecture on which we would perform non-Bayesian 
training. We have experimented with pre-trained AlexNet [21], 
VGG-16 [22] and ResNet-18 [23]. To adapt these networks to 
a binary classification problem, we followed [10] and in each 
case (AlexNet, VGG-16 and ResNet-18), we have dropped the 
last fully connected layer and replaced that with our own block 
of trainable fully connected layers. We also made a few later 
convolutional blocks trainable while freezing the earlier part of 
the networks. This setting allows us to learn domain specific 
features on top of the pretrained networks. For the CBIS-
DDSM dataset, ResNet-18 provided the best performance. For 
this reason, in this paper, we will confine the discussion to the 
results obtained by ResNet-18 only. We replaced the fully 
connected layer of ResNet-18 with 3 new fully connected 
layers.  Also, of the four residual convolutional blocks, we 
made the latter 2, namely Conv3 and Conv4 as trainable. We 

froze the earlier part of the network. We also modified the 
softmax layer to have only 2 classes as per our need. 

D. Non-Bayesian Training 

We trained via our 1357 training images (for each split 
separately and with random augmentation applied on them) we 
used a batch size of 8 and an initial learning rate of 0.0001 for 
the earlier part of the network (except for the fully connected 
part). For the fully connected part we gradually increased the 
initial learning rate layer by layer, 0.0001 for the first layer, 
0.001 for the second one and 0.002 for the last one. We also 
used an exponential learning rate decay scheme and an Adam 
optimizer. The training was done using the PyTorch [25] 
framework on Google Colab platform which uses a Nvidia 
Tesla K80 GPU and took approximately 12 minutes to finish 
with 25 epochs. This provided a reasonable accuracy of 81% on 
the validation set on average. Since achieving the best possible 

 

             (a) Feature Generator                       (b) Bayesian Neural Network 

Fig. 3: Neural Network Architecture for Bayesian Inference 

accuracy is not the focus of our work, we did not experiment 
with the parameters any further, and utilized this trained 
network with 81% accuracy as a baseline feature extractor for 
our Bayesian network.  

E. Network Split 

As per the framework from section IIIA, the network splitting 
is done so that we have a feature generator consisting of mainly 
convolutional blocks which takes in 224 x 224 sized images and 
generates 512-element feature vectors, and a separate small 
fully connected network which has just 3 fully connected layers 
followed by a softmax. Notice that this small network only has 
just over 164 thousand parameters as opposed to the over-11 
million parameters in the full network, making the subsequent 
steps easily executable on commodity hardware. Fig. 3 
summarizes the split. 

F.  Bayesian Training 

We re-initialized the weights of the small fully connected 

network with normally (Gaussian) distributed priors having 

zero mean and unit standard deviation. We then generated the 



512- element features using the feature generator. Here we 

applied random augmentation in a way that we have 10 

augmented images for every original training image (no 

augmentation was done for validation images). Since we have 

1357 training images, we effectively ended up generating 

13570 training images and correspondingly 13570 number of 

512-element vectors from the feature generator. These 512-

element vectors were fed to the small network and SVI was 

applied using Pyro software package [26] to learn the posterior 

distribution of the weights. The hyper-parameters (optimizer, 

learning rate) were the same as those we used during the non-

Bayesian training, and we let it run for 10 epochs on the same 

Google Colab environment. The process took approximately 30 

minutes to finish. The code to reproduce the results is available 

at the following anonymized Github repository: 

 https://github.com/ICHISubmission/Metric-Breast-Cancer 

 

V. EVALUATION AND RESULTS 

As per the framework presented in section IIIB, we sampled 
1000 networks from the posterior distributions and performed 
evaluation by tuning the values of N and P. 

As a first check, we performed forced prediction by 
ignoring N and P and forcing Bayesian network to predict a 
class for every image by taking the average predicted 
probability for both classes for each image, and taking the class 
that has the higher average as prediction. This gives us 100% 
coverage and a prediction accuracy of 81%. Note that this is the 
same accuracy we got by using the single deterministic network 
in section IV, proving that our proposed network can also be 
converted to a traditional classifier if need be. 

Next, we demonstrate the value of our control parameters N 
and P. We have 339 validation images on average. We found 
that when we set N above 0.9, all test images were skipped and 
the Bayesian network had no coverage, regardless of the value 
of P, which is expected, because it’s unlikely that 95% of the 
networks would have a minimum probability for a class for any 
image.  In general, if we kept N to a moderate value like 0.5 and 
then varied P, we noticed an upward trend in accuracy and a 
downward trend in coverage, which is expected. An almost 
similar trend shows up if we held P at 0.5 and varied N instead, 
which is also expected. The results have been summarized in 
Table I and Fig. 4. Table Ia and Fig. 4a capture the accuracy 
and coverage values and trends for varying N, keeping P at 0.5, 
while Table Ib and Fig. 4b capture the accuracy and coverage 
values and trends for varying P, keeping N constant at 0.5 
(standard deviation is over the 5 splits of cross-validation).  

Based on the observations, the conceptual expectation we 
laid out in section IIIB is verified. Thus, instead of only 
accuracy, a tuple (accuracy, coverage, N, P) can be our new 
evaluation criterion with (N, P) being the measure of 
confidence. We should point out that practically it might make 
more sense to keep P at a constant value (e.g. 0.5) and tune N, 
as opposed to keeping N constant and tuning P; this is because 
tuning N and keeping P constant effectively means varying the 
degree of polling on the sampled set of networks while 
expecting a fixed minimum classification probability 
agreement among the polled ones, whereas tuning P keeping N 

constant means freezing the polling space and varying the value 
of the minimum classification probability agreement in that 
frozen network space. In other words, it is N that allows us to 
choose how much of the sampled network distribution we will 
cover, and hence is a better measure of practical uncertainty. 

We also compare our results with a baseline, where instead 
of picking the most confident test samples, we picked an equal 
number of test samples randomly.For example, the case where 
P = 0.5 and N = 0.85 in Table Ia, out of 339 images, only 28 
images were classified with 96% accuracy and the rest were 
skipped. In our baseline, instead of the Bayesian network, we  
take 10 different random samples of 28 images from the 339 
validation images (from each split) and calculate the averace 
accuracy of those samples by the non-Bayesian neural network 
(from section IVD). 

TABLE I.  ACCURACY AND COVERAGE VS N AND P VALUES 

N P 

Total 

Images 

Skipped 

Images 

Accuracy 

±st. dev. Coverage 

Baseline 

Accuracy 

0.95 0.5 339 339 NA 0.00 NA 

0.85 0.5 339 311 96±0.8 0.08 80 

0.75 0.5 339 257 94±1 0.24 81 

0.55 0.5 339 31 85±0.8 0.91 80 

0.35 0.5 339 0  82±0.9 1.00 81 

0.2 0.5 339 0 82±0.8 1.00 81 

(a) Accuracy and Coverage vs N (at P = 0.5) 

N P 

Total 

Images 

Skipped 

Images 

Accuracy 

±st. dev. Coverage 

Baseline 

Accuracy 

0.5 0.95 339 85 88±0.8 0.75 80 

0.5 0.85 339 55 86±0.9 0.84 81 

0.5 0.75 339 35 85±0.8 0.90 81 

0.5 0.55 339 10 82±0.8 0.97 81 

0.5 0.35 339 0 81±1 1.00 81 

0.5 0.2 339 0 81±0.9 1.00 81 

(b)   Accuracy and Coverage vs P (at N = 0.5) 

 

As can be seen in Table I, the accuracy of our proposed 
framework is always higher than the baseline. The baseline 
accuracy stays close to around 81%, whereas the Bayesian 
accuracy clearly grows with lower coverage. The baseline 
trends are also shown in Fig. 4a and 4b as dotted lines. 

This proves that the increase in accuracy for the confident 
images is not just due to a small size effect. This is a clear 
demonstration of the confidence measure working as expected.  

We should also point out that setting N and P to 0.5 while 
varying the other was a conscious choice to identify trends. A 
value too low (such as 0.2) is impractical and a value too high 
might be too aggressive. We have also created separate graphs 
for each pair of N and P values for all (N, P) pairs we used. A 
clear trend emerges only when one of them is set closer to 0.5. 
Due to lack of space we only present the best trends, which were 
found at 0.5. 

The takeaway from the findings is that the parameters N and 
P can be tuned to a desirable level and the higher the values of 
these parameters, the higher confidence we will have in the 
predictions/classifications, in exchange for possibly lower 
coverage. For a domain like medical mammography image 
classification, it will be up to the mammography experts to 
determine what value of N and P is reasonable. After setting 

https://github.com/ICHISubmission/Metric-Breast-Cancer


reasonable values for N and P, previously unseen images that 
will be classified by the Bayesian network (either as benign or 
malignant) are more likely to be correctly classified, whereas 
images that will be skipped and denied classification would 
need further investigation. Notice that the overall approach 
described in sections III and IV can in general be applied to any 
domain (beyond mammography) and any number of classes, 
and thus can be used as a skeleton framework for an 
uncertainty/confidence measurement task. 

Due to resource constraints, we could not run a full Bayesian 
network identical to the modular architecture we have. It is 
highly likely that a full Bayesian network will result in 
increased accuracy, but with significantly higher computational 
cost. Hence, we put forward the idea of a modular architecture. 

 

 

           (a) Accuracy and Coverage vs N (at P = 0.5) 

 

           (b) Accuracy and Coverage vs P (at N = 0.5) 

Fig. 4:    Accuary and Coverage Trends vs N and P values 

 

VI. DISCUSSION AND FUTURE WORK 

In this paper, we propose a confidence measure-based 
evaluation metric for computer-aided diagnosis systems. We 
propose a modular network architecture, where a traditional 

neural network (ResNet-18) is used as a feature extractor with 
transfer learning, followed by a simple Bayesian neural 
network. By utilizing a two-stage approach, we reduce the 
computational complexity significantly, which makes the 
proposed framework an attractive option for wider deployment, 
or simply as an add-on to existing systems that utilize 
deterministic networks. We show that by providing a tool to 
tune two hyperparameters of the Bayesian neural network, 
namely, fraction of sampled number of networks and minimum 
probability, the framework can be adapted to the liking of the 
domain experts. Finally, we argue that instead of just a single 
number such as accuracy, a tuple of accuracy, coverage, 
sampled number of networks, and minimum probability can be 
utilized as an evaluation metric of our framework. 
Experimental results provide an in-depth analysis of the effect 
of tuning the parameters on the accuracy-coverage tradeoff. We 
also compare with a baseline non-Bayesian network to show 
that our confidence tuning process can effectively filter out 
images with less confidence to increase accuracy.  

During the training of our deterministic and Bayesian neural 
networks, we noticed that the more accurate the deterministic 
network is, the more consistent the behaviour of the Bayesian 
network is. This means that without a reasonably good feature 
extractor that we used as a precursor, the expected accuracy-
coverage trade-off behaviour cannot be observed. It was only 
after we achieved over 80% accuracy through the deterministic 
neural network (and hence the feature generator) that the 
expected upward and downward trends in Fig. 4 were achieved 
via the Bayesian neural network. This implies that before a 
Bayesian approach can be relied upon, we first need to train a 
good network architecture with proper hyper parameter tuning. 
We settled on ResNet-18. However, more complex network 
architectures can be explored including some in the ResNet 
family (ResNet-50, ResNet-152). During transfer learning, we 
also noticed that the more layers we make trainable, the 
accuracy generally increases. With a more complex network 
architecture, tuning how many layers to freeze would be one 
interesting avenue to explore.  

The prior distributions we assigned to the Bayesian layer 
parameters were simple Gaussian distributions with zero mean 
and unit standard deviation. Ideally, these priors should come 
from a more rigorous estimation, possibly based on the nature 
of the input data along with domain knowledge. Work such as 
[24] can be investigated for this purpose. 

To make the approach computationally achievable with limited 
available resources, we performed training in two separate 
stages for the feature extractor and the Bayesian network. An 
end-to-end Bayesian learning approach on top of transfer 
learning to keep the computational requirement manageable is 
something we would be exploring in future. In that case, the 
priors to be assigned to the Bayesian layer parameters could 
come from the parameter values learnt for deterministic 
training. 
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