

An Efficient Confidence Measure-Based Evaluation

Metric for Breast Cancer Screening Using Bayesian

Neural Networks

Anika Tabassum Naimul Khan

 Data Analytics Electrical, Computer and Biomedical Engineering
 Ryerson University, Toronto, ON, Canada Ryerson University, Toronto, ON, Canada

 anika.tabassum@ryerson.ca n77khan@ryerson.ca

Abstract— Screening mammograms is the gold standard for

detecting breast cancer early. While a good amount of work has

been performed on mammography image classification, especially

with deep neural networks, there has not been much exploration

into the confidence or uncertainty measurement of the

classification. In this paper, we propose a confidence measure-

based evaluation metric for breast cancer screening. We propose

a modular network architecture, where a traditional neural

network is used as a feature extractor with transfer learning,

followed by a simple Bayesian neural network. Utilizing a two-

stage approach helps reducing the computational complexity,

making the proposed framework attractive for wider deployment.

We show that by providing the medical practitioners with a tool to

tune two hyperparameters of the Bayesian neural network,

namely, fraction of sampled number of networks and minimum

probability, the framework can be adapted as needed by the

domain expert. Finally, we argue that instead of just a single

number such as accuracy, a tuple (accuracy, coverage, sampled

number of networks, and minimum probability) can be utilized as

an evaluation metric of our framework. We provide experimental

results on the CBIS-DDSM dataset, where we show the trends in

accuracy-coverage tradeoff while tuning the two

hyperparameters. We also show that our confidence tuning results

in increased accuracy with a reduced set of images with high

confidence when compared to the baseline transfer learning. To

make the proposed framework readily deployable, we provide

(anonymized) source code with reproducible results at

https://git.io/JvRqE.

Keywords—Bayesian Neural Networks, Transfer Learning, Deep

Learning, Breast Cancer Screening, Confidence Measurement,

Uncertainty Measurement, Mammography

I. INTRODUCTION

Breast cancer is the most common cancer among women
around the world according to World Health Organization [1].
The key to breast cancer control is early detection to improve
breast cancer outcome and survival [1]. Mammography is the
most common screening technology for breast cancer. It is a
type of imaging that uses a low-dose X-ray system to examine
the breast and is the most reliable method for screening breast
abnormalities [2] before they become clinically perceptible.
Screening mammography is done for detecting breast cancer.
However, one big challenge here is low contrast in
mammogram images, which makes it hard for radiologists to
interpret the results [3]. Therefore, the use of computer aided
diagnosis (CAD) has been on the rise for breast cancer
screening [2][4].

To accomplish this, we have seen the usage of traditional
approaches based on heavy feature engineering, as well as
recent approaches based on deep convolutional neural
networks. However, for a crucial task like cancer image
screening, just classifying an image to a particular class (e.g.
benign or malignant) is not enough, because it lacks any
confidence or uncertainty measure associated with
classification [5]. For example, if an image is classified as
malignant, the radiologist might be interested in knowing how
confident the CAD system is that it is malignant.

The target of this work is not only to compute such
uncertainty measure in an efficient manner, but also to provide
the radiologists with a tool to effectively control the accuracy-
coverage tradeoff (explained in detail in section IIIB). We first
train a deterministic point-estimate neural network using the
pretrained ResNet-18 architecture with some modifications,
thus leveraging transfer learning. For saving computational
resources, we separate the feature extractor from this
deterministic network to generate lower dimensional features
and feed those to a separate smaller network which acts as our
Bayesian neural network. Having computed the posterior
distributions by applying Stochastic Variational Inference (SVI)
[7], we introduce two tunable parameters N (sampled network
fraction) and P (minimum probability) which together (both are
explained in detail in section IIIB) can be used as a confidence
measure and can be tuned to adjust the confidence level. We also
demonstrate that higher confidence results in lower coverage of
the classification, i.e., some images are rejected due to lack of
confidence. We propose that the tuple (accuracy, coverage, N,
P) can be our new evaluation criterion where (N, P) is the
confidence measure. We obtain the mammography images from
CBIS-DDSM [3] where the classification task is essentially
binary (benign vs malignant) and demonstrate our tool in effect.
The overall approach can in general be applicable to any domain
beyond medical imaging and any number of classes.

II. RELATED WORK

Tsochatzidis et al. [8] performed a comparative study on
applying CNNs for breast cancer diagnosis. They made use of
Alexnet, VGG, GoogLeNet, Inception Networks and
ResNet.They showed that under fine-tuning scenario,
pretrained networks achieve superior performance over
networks trained from scratch. Agarwal et al. [9] showed
similar results with transfer learning on VGG16, ResNet50 and
InceptionV3.

https://git.io/JvRqE

Xi et al. [10] performed binary classification of
mammography images using transfer learning. They made use
of AlexNet, VGGNet, GoogleLeNet and ResNet and showed
that VGGNet achieves the best overall accuracy while ResNet
performs best for computing class activation maps. Part of our
proposed framework has adopted this strategy.

Rampun et al. [11] performed classification of
mammographic microcalcification clusters with confidence
levels. They studied distribution of classifiers' probability
outputs and used it as an additional confidence level metric to
indicate reliability. They concluded that in breast CAD systems,
the accuracy or AUC metric alone does not provide a complete
representation of reliability. Although they do not make use of
Bayesian neural networks, our paper is greatly motivated by
this work given that we are also looking for a confidence
measure-based evaluation criterion for classification.

Although not particularly in the domain of medical imaging,
Harper and Southern [12] showed a Bayesian deep learning
framework for prediction emotion from heartbeats by
introducing a tunable confidence measure. Their confidence
measure is based on the percentage of the output distribution
that lies within a given class zone.

In terms of adopting a confidence or uncertainty measure in
the domain of medical image classification, the work of Leibig
et al. [13] has some similarity to ours. They showed a method
for capturing uncertainty in disease detection using drop-out
based Bayesian neural networks. Their method of measuring
Bayesian uncertainty was based on the recent finding [14] that
a multi-layer perceptron with added dropout after every weight
layer is mathematically equivalent to approximate variational
inference [15] in the deep Gaussian Process model [16, 17],
which holds for any number of layers and arbitrary non-
linearities. They extended this idea to incorporate convolutional
layers [18]. The uncertainty for a given test image was obtained
by simply keeping the dropout mechanism switched on at test
time and performing multiple predictions. They used the
Messidor dataset [19] for their experiments and manifested a
monotonic increase in prediction accuracy for decreasing levels
of tolerated model uncertainty. They pointed out that one of
their main motivations for resorting to a dropout-based
Bayesian approach, as opposed to a Gaussian process (GP)
approach was that while GPs theoretically seem more
appealing, they scale badly with both the dimensionality of the
feature space and the size of the dataset.

In our proposed framework, unlike [13] we rely on a
Gaussian process (Stochastic Variational Inference) for our
Bayesian posterior approximation, and then use a few hyper
parameters that work on networks sampled from that posterior,
to tune the level of uncertainty. For dealing with performance
and scalability issues (the main criticism against GPs in [13]),
we mainly rely on transfer learning, along with dividing our
network architecture into a deterministic portion which acts as
a lower-dimensional feature generator, and another relatively
small neural network on which the actual Bayesian inference is
performed. Dividing the network into a deterministic and a
Bayesian portion while employing transfer learning makes our
proposed method extremely modular, therefore giving it the
ability to be plugged into existing CAD systems which are

employed at hospitals or clinics. This modular approach is
inspired by the work of Riquelme et al. [20], where they apply
a Bayesian linear regression on the last layer of a deep neural
network.

III. PROPOSED FRAMEWORK

Our proposed framework has two main components – (i) A
modular network architecture with a feature generator
combined with a Bayesian network (ii) Tunable
hyperparameters on the posterior distribution learnt by the
Bayesian training to come up with a confidence measure.

A. Modular Network Architecture

To achieve a proper Bayesian training, we first need to make
sure we have a good architecture of a deterministic (non-
Bayesian) neural network, because the Bayesian neural network
will be based on the non-Bayesian one. There are already well
studied and researched neural network architectures like
AlexNet [21], ResNet [23], and VGG [22] (along with their pre-
trained versions. There are two avenues to transform one of
these architectures into a Bayesian network:

1. Try end-to-end Bayesian learning from scratch, not
leveraging the pre-trained version of the chosen network
architecture (i.e., not leveraging transfer learning).
Initialize the weights and biases with random priors (e.g
with normal distributions with zero mean and unit standard
deviation) and then apply a Gaussian Process like
Stochastic Variational Inference (SVI) end-to-end to learn
the posterior distributions.

2. Try leveraging transfer learning and do Bayesian learning
via the Gaussian process on top of that. We call this second
approach a modular approach.

However, there are a few empirical problems associated with
both of these approaches:

1. The problem with approach 1 above is time and resource
complexity. For example, a network architecture like
ResNet-18, with 3 additional fully connected layers, has
over 11 million parameters, so learning posterior
distributions via a Gaussian process for each of these
parameters will be very time consuming could be
impractical for wider deployment and re-training.

2. Approach 2, has not been investigated widely, other than
[20] provides results on simple numerical datasets.

In order to get around these issues, we decided to modify
approach 2 above to make it modular. The steps are outlined
below:

1. Select a pretrained deep neural network (such as ResNet-
18) and adapt it to leverage transfer learning. For example,
for ResNet-18, replace the fully connected layer with a
stack of trainable fully connected layers to leverage transfer
learning.

2. Train this network deterministically (non-Bayesian) to
reach a reasonable classification accuracy.

3. Now divide the network into 2 different independent
networks – one will be a network containing a majority of
the layers and convolutional blocks so that it can act as a
lower dimensional feature generator, and the other will be

a much simpler network consisting of a few fully connected
layers, which can be used for end to end Bayesian learning
using the lower dimensional features as input. For example,
when using an adapted version of ResNet, the feature
generator network will be the portion of the network before
the fully connected layers start, and the smaller network for
Bayesian learning will just be the fully connected layers
followed by softmax (e.g in our experiemnts it is a 512-
element feature vectors, as opposed to 224 x 224 images
for ResNet). A similar breakdown has to be applied if any
other network architecture is being used.

4. Now perform the Bayesian inference via a Gaussian
Process such as SVI on the smaller network and with lower
dimensional training data, to learn the posterior distribution
of the parameters.

This modular approach makes the Bayesian learning process
faster, since the Gaussian process (SVI) is now being applied to
a much smaller network and the input data for this network is
also lower dimensional. This Bayesian learning is easily
achievable within a reasonable time frame using off-the-shelf
tools (like Pyro [26]). Together, this end-to-end approach gives
us a way to do Bayesian learning on top of leveraging transfer
learning in an effective manner. This two-step approach is also
attractive in the sense that popular neural network architectures
are already being deployed at hospitals and clinics for
computer-aided diagnosis. The Bayesian network can be an
additional module to be tacked on to these existing architectures.
Fig. 1 summarizes the steps mentioned in this subsection.

Fig. 1: Framework for Bayesian Posterior Inference

B. Tunable Hyperparameters for Confidence Measurement

Once we have the posterior distributions of the network
parameters (weights and biases) calculated from section IIIA,
the next step is to come up with a confidence measure. Our
proposed confidence measure consists of two tunable
parameters. The steps to calculate these are described below:

1. Sample a reasonable number (1000 in our experiments) of
networks from the posterior distributions using Monte
Carlo sampling. Each of these sampled networks is a
deterministic network by itself.

2. Classify each image by each of the sampled networks.
Record the probabilities for both classes (benign and
malignant) for each image.

3. Use two parameters N and P, where N denotes the fraction
of the sampled number of networks that have a minimum
probability P on a certain image being of a particular class
(either benign or malignant).

4. With these two tunable parameters N and P, we can define
a confidence measure. For example, if we have 1000
sampled networks, then N = 0.6 and P = 0.7 would mean at
least 600 networks out of the 1000 have to have a
probability of at least 0.7 for an image being either benign
or malignant, otherwise the image will be skipped for
classification. In other words, by incorporating both N and
P in the confidence measure, we account for agreement
among a portion of the sampled networks and find out how
strongly each network feels about the classification.

Under the above settings, naïve expectation would be that as N
and P go higher (higher confidence, lower uncertainty), we
should be getting higher accuracy, while as N and P go lower
(lower confidence, higher uncertainty), the accuracy should
decrease. However, raising the value of N and P might also
result in some images being skipped for classification. For
example, consider a case where we have 1000 sampled
networks, N = 0.9 and P = 0.9, which demands that at least 900
out the 1000 networks must have a probability of at least 0.9 for
an image being either benign or malignant. This might result in
a number of images being skipped for classification, since we
are demanding too high of a confidence. This is the case of
lower coverage. At higher values of N and P (higher
confidence), we will have lower coverage (many images
skipped), but the accuracy on the covered images will be high.
On the other hand, at lower values of N and P (lower
confidence), we will have (higher coverage not too many
images skipped) but the accuracy on the covered images would
be lower. In short, tuning the values of N and P gives us a way
to decide where in the accuracy-coverage tradeoff we want to
settle. Therefore, the N and P values, along with the accuracy
and coverage, comprise our new evaluation metric, which can
be formalized as a tuple (accuracy, coverage, N, P) where N
and P comprise the confidence measure.

Although in this paper we are using classification accuracy
as the primary evaluation criterion, in general, the framework
allows any evaluation criterion to be paired with a confidence
measure. Other possible candidates include precision, recall,
F1-score, ROC AUC score etc., some of which might make
more sense for an imbalanced classification case. Ours being a
relatively class-balanced classification case, we chose to go
with accuracy for our task.

IV. EXPERIMENTAL SETUP

A. Dataset

The data has been obtained from the CBIS-DDSM (Curated
Breast Imaging Subset of DDSM) [3] dataset. For the purpose
of our classification problem, we utilize the cropped Region-of-
Interest (ROI) image patches containing the mass that are
provided with the dataset. The ROI-cropped dataset contains
1696 labelled grayscale images. Of those, 912 are labelled as
benign and 784 are labelled as malignant. Therefore, the dataset
is reasonably class-balanced. Fig. 2 shows samples of one
benign and one malignant image patch.

 (a) Benign (b) Malignant

Fig. 2: Sample benign and malignant images patches

B. Data Preprocessing

1) Image Resizing: We have resized all images to 224 x 224
pixels to match with the input image size of popular deep
networks.

2) Normalization: We have performed standard
normalization on all the images with zero mean and unit
standard deviation in order to reduce the chance of overfitting.

3) Train-Validation Split: Although CBIS-DDSM comes
with a pre-division of the dataset into training/test, for more
generalization, we merged these two datasets and then split
them again, into our own training and validation datasets. This
was done to ensure similar class ratio (benign to malignant) of
the images in the training and validation sets. This splitting was
done 80:20 training to validation ratio and in a stratified manner
with regards to the class (benign vs malignant) distribution. We
created 5 such stratified splits so that each such split can be used
for cross-validation to test the generalization of our approach.
For each of the 5 splits, we have 1357 training image and 339
validation images.

4) Data Augmentation: We have performed data
augmentation by applying random rotation (from 0 to 360
degrees) and random vertical and horizontal flips on the images.
Note that this was done for training data only. This
augmentation was done on the fly during the training process,
meaning that each epoch would have training images with
different orientations, effectively increasing the training set size
manifold (as opposed to the actual 1357 training images) and
making the training process more robust.

C. Network Architecture Selection and Adaptation

Referring to the framework described in section IIIA, the
first step was to select and adapt a deep neural network
architecture on which we would perform non-Bayesian
training. We have experimented with pre-trained AlexNet [21],
VGG-16 [22] and ResNet-18 [23]. To adapt these networks to
a binary classification problem, we followed [10] and in each
case (AlexNet, VGG-16 and ResNet-18), we have dropped the
last fully connected layer and replaced that with our own block
of trainable fully connected layers. We also made a few later
convolutional blocks trainable while freezing the earlier part of
the networks. This setting allows us to learn domain specific
features on top of the pretrained networks. For the CBIS-
DDSM dataset, ResNet-18 provided the best performance. For
this reason, in this paper, we will confine the discussion to the
results obtained by ResNet-18 only. We replaced the fully
connected layer of ResNet-18 with 3 new fully connected
layers. Also, of the four residual convolutional blocks, we
made the latter 2, namely Conv3 and Conv4 as trainable. We

froze the earlier part of the network. We also modified the
softmax layer to have only 2 classes as per our need.

D. Non-Bayesian Training

We trained via our 1357 training images (for each split
separately and with random augmentation applied on them) we
used a batch size of 8 and an initial learning rate of 0.0001 for
the earlier part of the network (except for the fully connected
part). For the fully connected part we gradually increased the
initial learning rate layer by layer, 0.0001 for the first layer,
0.001 for the second one and 0.002 for the last one. We also
used an exponential learning rate decay scheme and an Adam
optimizer. The training was done using the PyTorch [25]
framework on Google Colab platform which uses a Nvidia
Tesla K80 GPU and took approximately 12 minutes to finish
with 25 epochs. This provided a reasonable accuracy of 81% on
the validation set on average. Since achieving the best possible

 (a) Feature Generator (b) Bayesian Neural Network

Fig. 3: Neural Network Architecture for Bayesian Inference

accuracy is not the focus of our work, we did not experiment
with the parameters any further, and utilized this trained
network with 81% accuracy as a baseline feature extractor for
our Bayesian network.

E. Network Split

As per the framework from section IIIA, the network splitting
is done so that we have a feature generator consisting of mainly
convolutional blocks which takes in 224 x 224 sized images and
generates 512-element feature vectors, and a separate small
fully connected network which has just 3 fully connected layers
followed by a softmax. Notice that this small network only has
just over 164 thousand parameters as opposed to the over-11
million parameters in the full network, making the subsequent
steps easily executable on commodity hardware. Fig. 3
summarizes the split.

F. Bayesian Training

We re-initialized the weights of the small fully connected

network with normally (Gaussian) distributed priors having

zero mean and unit standard deviation. We then generated the

512- element features using the feature generator. Here we

applied random augmentation in a way that we have 10

augmented images for every original training image (no

augmentation was done for validation images). Since we have

1357 training images, we effectively ended up generating

13570 training images and correspondingly 13570 number of

512-element vectors from the feature generator. These 512-

element vectors were fed to the small network and SVI was

applied using Pyro software package [26] to learn the posterior

distribution of the weights. The hyper-parameters (optimizer,

learning rate) were the same as those we used during the non-

Bayesian training, and we let it run for 10 epochs on the same

Google Colab environment. The process took approximately 30

minutes to finish. The code to reproduce the results is available

at the following anonymized Github repository:

 https://github.com/ICHISubmission/Metric-Breast-Cancer

V. EVALUATION AND RESULTS

As per the framework presented in section IIIB, we sampled
1000 networks from the posterior distributions and performed
evaluation by tuning the values of N and P.

As a first check, we performed forced prediction by
ignoring N and P and forcing Bayesian network to predict a
class for every image by taking the average predicted
probability for both classes for each image, and taking the class
that has the higher average as prediction. This gives us 100%
coverage and a prediction accuracy of 81%. Note that this is the
same accuracy we got by using the single deterministic network
in section IV, proving that our proposed network can also be
converted to a traditional classifier if need be.

Next, we demonstrate the value of our control parameters N
and P. We have 339 validation images on average. We found
that when we set N above 0.9, all test images were skipped and
the Bayesian network had no coverage, regardless of the value
of P, which is expected, because it’s unlikely that 95% of the
networks would have a minimum probability for a class for any
image. In general, if we kept N to a moderate value like 0.5 and
then varied P, we noticed an upward trend in accuracy and a
downward trend in coverage, which is expected. An almost
similar trend shows up if we held P at 0.5 and varied N instead,
which is also expected. The results have been summarized in
Table I and Fig. 4. Table Ia and Fig. 4a capture the accuracy
and coverage values and trends for varying N, keeping P at 0.5,
while Table Ib and Fig. 4b capture the accuracy and coverage
values and trends for varying P, keeping N constant at 0.5
(standard deviation is over the 5 splits of cross-validation).

Based on the observations, the conceptual expectation we
laid out in section IIIB is verified. Thus, instead of only
accuracy, a tuple (accuracy, coverage, N, P) can be our new
evaluation criterion with (N, P) being the measure of
confidence. We should point out that practically it might make
more sense to keep P at a constant value (e.g. 0.5) and tune N,
as opposed to keeping N constant and tuning P; this is because
tuning N and keeping P constant effectively means varying the
degree of polling on the sampled set of networks while
expecting a fixed minimum classification probability
agreement among the polled ones, whereas tuning P keeping N

constant means freezing the polling space and varying the value
of the minimum classification probability agreement in that
frozen network space. In other words, it is N that allows us to
choose how much of the sampled network distribution we will
cover, and hence is a better measure of practical uncertainty.

We also compare our results with a baseline, where instead
of picking the most confident test samples, we picked an equal
number of test samples randomly.For example, the case where
P = 0.5 and N = 0.85 in Table Ia, out of 339 images, only 28
images were classified with 96% accuracy and the rest were
skipped. In our baseline, instead of the Bayesian network, we
take 10 different random samples of 28 images from the 339
validation images (from each split) and calculate the averace
accuracy of those samples by the non-Bayesian neural network
(from section IVD).

TABLE I. ACCURACY AND COVERAGE VS N AND P VALUES

N P

Total

Images

Skipped

Images

Accuracy

±st. dev. Coverage

Baseline

Accuracy

0.95 0.5 339 339 NA 0.00 NA

0.85 0.5 339 311 96±0.8 0.08 80

0.75 0.5 339 257 94±1 0.24 81

0.55 0.5 339 31 85±0.8 0.91 80

0.35 0.5 339 0 82±0.9 1.00 81

0.2 0.5 339 0 82±0.8 1.00 81

(a) Accuracy and Coverage vs N (at P = 0.5)

N P

Total

Images

Skipped

Images

Accuracy

±st. dev. Coverage

Baseline

Accuracy

0.5 0.95 339 85 88±0.8 0.75 80

0.5 0.85 339 55 86±0.9 0.84 81

0.5 0.75 339 35 85±0.8 0.90 81

0.5 0.55 339 10 82±0.8 0.97 81

0.5 0.35 339 0 81±1 1.00 81

0.5 0.2 339 0 81±0.9 1.00 81

(b) Accuracy and Coverage vs P (at N = 0.5)

As can be seen in Table I, the accuracy of our proposed
framework is always higher than the baseline. The baseline
accuracy stays close to around 81%, whereas the Bayesian
accuracy clearly grows with lower coverage. The baseline
trends are also shown in Fig. 4a and 4b as dotted lines.

This proves that the increase in accuracy for the confident
images is not just due to a small size effect. This is a clear
demonstration of the confidence measure working as expected.

We should also point out that setting N and P to 0.5 while
varying the other was a conscious choice to identify trends. A
value too low (such as 0.2) is impractical and a value too high
might be too aggressive. We have also created separate graphs
for each pair of N and P values for all (N, P) pairs we used. A
clear trend emerges only when one of them is set closer to 0.5.
Due to lack of space we only present the best trends, which were
found at 0.5.

The takeaway from the findings is that the parameters N and
P can be tuned to a desirable level and the higher the values of
these parameters, the higher confidence we will have in the
predictions/classifications, in exchange for possibly lower
coverage. For a domain like medical mammography image
classification, it will be up to the mammography experts to
determine what value of N and P is reasonable. After setting

https://github.com/ICHISubmission/Metric-Breast-Cancer

reasonable values for N and P, previously unseen images that
will be classified by the Bayesian network (either as benign or
malignant) are more likely to be correctly classified, whereas
images that will be skipped and denied classification would
need further investigation. Notice that the overall approach
described in sections III and IV can in general be applied to any
domain (beyond mammography) and any number of classes,
and thus can be used as a skeleton framework for an
uncertainty/confidence measurement task.

Due to resource constraints, we could not run a full Bayesian
network identical to the modular architecture we have. It is
highly likely that a full Bayesian network will result in
increased accuracy, but with significantly higher computational
cost. Hence, we put forward the idea of a modular architecture.

 (a) Accuracy and Coverage vs N (at P = 0.5)

 (b) Accuracy and Coverage vs P (at N = 0.5)

Fig. 4: Accuary and Coverage Trends vs N and P values

VI. DISCUSSION AND FUTURE WORK

In this paper, we propose a confidence measure-based
evaluation metric for computer-aided diagnosis systems. We
propose a modular network architecture, where a traditional

neural network (ResNet-18) is used as a feature extractor with
transfer learning, followed by a simple Bayesian neural
network. By utilizing a two-stage approach, we reduce the
computational complexity significantly, which makes the
proposed framework an attractive option for wider deployment,
or simply as an add-on to existing systems that utilize
deterministic networks. We show that by providing a tool to
tune two hyperparameters of the Bayesian neural network,
namely, fraction of sampled number of networks and minimum
probability, the framework can be adapted to the liking of the
domain experts. Finally, we argue that instead of just a single
number such as accuracy, a tuple of accuracy, coverage,
sampled number of networks, and minimum probability can be
utilized as an evaluation metric of our framework.
Experimental results provide an in-depth analysis of the effect
of tuning the parameters on the accuracy-coverage tradeoff. We
also compare with a baseline non-Bayesian network to show
that our confidence tuning process can effectively filter out
images with less confidence to increase accuracy.

During the training of our deterministic and Bayesian neural
networks, we noticed that the more accurate the deterministic
network is, the more consistent the behaviour of the Bayesian
network is. This means that without a reasonably good feature
extractor that we used as a precursor, the expected accuracy-
coverage trade-off behaviour cannot be observed. It was only
after we achieved over 80% accuracy through the deterministic
neural network (and hence the feature generator) that the
expected upward and downward trends in Fig. 4 were achieved
via the Bayesian neural network. This implies that before a
Bayesian approach can be relied upon, we first need to train a
good network architecture with proper hyper parameter tuning.
We settled on ResNet-18. However, more complex network
architectures can be explored including some in the ResNet
family (ResNet-50, ResNet-152). During transfer learning, we
also noticed that the more layers we make trainable, the
accuracy generally increases. With a more complex network
architecture, tuning how many layers to freeze would be one
interesting avenue to explore.

The prior distributions we assigned to the Bayesian layer
parameters were simple Gaussian distributions with zero mean
and unit standard deviation. Ideally, these priors should come
from a more rigorous estimation, possibly based on the nature
of the input data along with domain knowledge. Work such as
[24] can be investigated for this purpose.

To make the approach computationally achievable with limited
available resources, we performed training in two separate
stages for the feature extractor and the Bayesian network. An
end-to-end Bayesian learning approach on top of transfer
learning to keep the computational requirement manageable is
something we would be exploring in future. In that case, the
priors to be assigned to the Bayesian layer parameters could
come from the parameter values learnt for deterministic
training.

REFERENCES

[1] World Health Organization. “Breast Cancer: Prevention and Control”.
https://www.who.int/cancer/detection/breastcancer/en/

0

0.2

0.4

0.6

0.8

1

0.2 0.3 0.4 0.5 0.6 0.7 0.8

A
cc

u
ra

cy
 /

 C
o

ve
ra

ge

N

Accuracy
Coverage
BaseLine Accuracy

0.7

0.75

0.8

0.85

0.9

0.95

1

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

A
cc

u
ra

cy
 /

 C
o

ve
ra

ge

P

Accuracy

Coverage

Baseline Accuracy

https://www.who.int/cancer/detection/breastcancer/en/

[2] J. Tang, R. M. Rangayyan, J. Xu, I. E. Naqa and Y. Yang. “Computer-
aided detection and diagnosis of breast cancer with mammography: recent
advances”. IEEE Transactions on Information Technology in
Biomedicine, vol. 13 no. 2, pp. 236-51, 2009.

[3] Cancer Imaging Archive.

 https://wiki.cancerimagingarchive.net/display/Public/CBIS-DDSM

[4] R. A. Castellino. “Computer Aided Detection (CAD): An Overview”.
Cancer Imaging, vol. 5 no. 1, pp. 17–19, 2005.

[5] B. M. Geller, A. Bogart, P. A. Carney, J. G. Elmore, B. S. Monsees and
D. L. Miglioretti. “Is Confidence of Mammographic Assessment a Good
Predictor of Accuracy?”. American Journal of Roentgenology, vol. 199
no.1, pp. 134-141, 2012.

[6] K. Sridhar. “Bayesian neural network series”.

 https://medium.com/neuralspace/bayesian-neural-network-series-post-
1-need-for-bayesian-networks-e209e66b70b2

[7] M. D. Hoffman, D. M. Blei, C. Wang and J. Paisley. “Stochastic
Variational Inference”. Journal of Machine Learning Research, volume
14, pp. 1303 – 1347, 2013.

[8] L. Tsochatzidis, L. Costaridou and J. Pratikakis. “Deep Learning for
Breast Cancer Diagnosis from Mammograms - A Comparative Study”.
Journal of Imaging, vol. 5 no.3, 2019.

[9] R. Agarwal, O. Diaz, X. Llado, M. H. Yap and R. Marti. “Automatic Mass
Detection in Mammograms using deep convolutional neural networks”.
Journal of Medical Imaging, vol. 6 no. 3, 2019.

[10] P. Xi, C. Shu and R. Goubran. “Abnormality Detection in mammography
using Deep Convolutional Neural Networks”. IEEE International
Symposium on Medical Measurements and Applications (MeMeA),
2018.

[11] A. Rampun, H. Wang, B. Scotney, P. J. Morrow and R. Zwiggelaar.
“Classification of Mammographic Microcalcification Clusters with
Machine Learning Confidence Levels”. 14th International Workshop on
Breast Imaging, 2018.

[12] R. Harper and J. Southern. “A Bayesian Deep Learning Framework for
End-to-End Prediction of Emotion from Heartbeat”. arXiv: 1902.03043,
2019. Retrieved from https://arxiv.org/abs/1902.03043

[13] C. Leibig, V. Allken, M. S. Ayhan, P. Berens and S. Wahl. “Leveraging
uncertainty information from deep neural networks for disease detection”.
Nature Scientific Reports vol. 7 no. 17816, 2017.

[14] Y. Gal and Z. Ghahramani. “Dropout as a Bayesian Approximation:
Representing Model Uncertainty in Deep Learning”. International
Conference on Machine Learning, 2016.

[15] C. M. Bishop. “Pattern Recognition and Machine Learning”. Springer-
Verlag New York, Inc., Secaucus, NJ, USA, 2006.

[16] C. K. I. Williams. “Computing with infinite networks”. Advances in
neural information processing systems, pp. 295-301, 1997.

[17] A. C. Damianou and N. D. Lawrence. “Deep Gaussian Processes”.
Artificial Intelligence and Statistics, pp. 207-215, 2013.

[18] Y. Gal and Z. Ghahramani. “Bayesian Convolutional Neural Networks
with Bernoulli Approximate Variational Inference”. arXiv: 1506.02158,
2012. Retrieved from https://arxiv.org/abs/1506.02158

[19] E. Decencière, X. Zhang, G. Cazuguel, B. Lay, B. Cochener, C. Trone, P.
Gain, R. Ordonez, P. Massin, A. Erginay, B. Charton and JC Klein.
“Feedback on a publicly distributed database: the Messidor database”.
Image Analysis & Stereology, vol. 33, pp. 231–234, 2014.

[20] C. Riquelme, G. Tucker and J. Snoek. “Deep Bayesian bandits
shutdown”. International conference on learning representations, 2018.

[21] A. Krizhevsky, I. Sutskever and G. E. Hinton. “ImageNet Classification
with Deep Convolutional Neural Networks”. Proceedings of the 25th
International Conference on Neural Information Processing Systems , vol.
1, pp. 1097-1105, 2012.

[22] K. Simonyan and A. Zisserman. “Very Deep Convolutional Networks for
Large-Scale Image Recognition”. Computational and Biological Learning
Society, pp. 1–14, 2015.

[23] K. He, X. Zhang, S. Ren and J. Sun. 2015. “Deep Residual Learning for

Image Recognition”. Proceedings of the IEEE conference on computer
vision and pattern recognition, pp. 770-778, 2016.

[24] B. Coker, M. F. Pradier and F. Doshi-Velez. “Towards Expressive Priors
for Bayesian Neural Networks: Poisson Process Radial Basis Function
Networks”. arXiv: 1912.05779, 2019. Retrieved from
https://arxiv.org/pdf/1912.05779.pdf

[25] PyTorch. https://pytorch.org/

[26] Pyro. https://pyro.ai/

https://wiki.cancerimagingarchive.net/display/Public/CBIS-DDSM
https://medium.com/neuralspace/bayesian-neural-network-series-post-1-need-for-bayesian-networks-e209e66b70b2
https://medium.com/neuralspace/bayesian-neural-network-series-post-1-need-for-bayesian-networks-e209e66b70b2
https://arxiv.org/abs/1902.03043
https://arxiv.org/abs/1506.02158
https://arxiv.org/pdf/1912.05779.pdf
https://pytorch.org/
https://pyro.ai/

