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Abstract—Sepsis, a life-threatening illness, is estimated to be
the primary cause of death for 50,000 people a year in the
UK and many more worldwide. Managing the treatment of
sepsis is very challenging as it is frequently missed at an early
stage and the optimal treatment is not yet clear. There are
promising attempts to use Reinforcement Learning (RL) to learn
optimal strategies to treat sepsis patients, especially for the
administration of intravenous fluids and vasopressors. However,
some RL agents only take the current state of patients into
account when recommending the dosage of vasopressors. This
is inconsistent with clinical safety practice in which the dosage
of vasopressors is increased or decreased gradually. A sudden
major change of the dosage might cause significant harm to
patients and as such is considered unsafe in sepsis treatment.
In this paper, we have adapted one of the deep RL methods
published previously and evaluated whether the learned policy
contains these sudden, major changes when recommending the
vasopressor dosage. Then, we have modified this method to
address the above safety constraint and learnt a safer policy
by incorporating current clinical knowledge and practice.

Index Terms—Sepsis treatment, Reinforcement learning, Safe
policy

I. INTRODUCTION

Sepsis is a life-threatening organ dysfunction caused by a

dysregulated host response to infection [1]. A recent estimation

is that one in five deaths worldwide is caused by sepsis [2]

[3]. A major challenge is early detection of sepsis since the

earlier the treatment begins the greater the chance of patient

recovery. Once the condition has been detected, treatment

normally involves administration of antibiotics and infection

source control. When it turns into septic shock, administration

of intravenous fluids and vasopressors will be necessary, but

deciding on the treatment strategy for intravenous fluids and

vasopressors is often difficult. Different fluid and vasopressor

treatment strategies have been tested leading to quite different

results in terms of patient mortality [4]. Further, many health-

care agencies and communities have devoted significant efforts

to sepsis management, e.g. the Surviving Sepsis Campaign [5].

This project is funded by Bradford Teaching Hospitals NHS Foundation
Trust and supported by Assuring Autonomy International Programme.

Despite such efforts, the optimal strategy for the administration

of intravenous fluids and vasopressors remains unclear.

Some research groups have harnessed Reinforcement Learn-

ing (RL) to learn optimal strategies for recommending intra-

venous fluids and vasopressors. For example, the AI Clinician

[6] has been developed using RL to dynamically recommend

fluids and vasopressors for adult patients. RL is a very power-

ful machine learning (ML) technique which is widely used in

complex decision making tasks to find an optimal policy [7].

It assumes that the environment can be viewed as a Markov

Decision Process (MDP) in which an assumption is made that

the future state of the process depends only on the current

state; that is, given the current state, the future state does not

depend on the cumulative history of past states.

However, for a complex intervention to be safe and effective,

it is important for the technology to fit with accepted clinical

practices and workflows. In the case of sepsis treatment, when

recommending dosage for vasopressors, if we merely consider

the optimal action based on the current state, it might cause a

sudden major change in the dosage, which can be dangerous to

some patients, e.g. resulting in acute hypotension (arising from

rapidly decreasing doses), hypertension or cardiac arrhythmias

(arising from rapidly increasing doses) [8] [9] [10]. Because

the half life (the period of time for the concentration of

a drug in the body to reduce by 50%) of Norepinephrine

(a commonly used vasopressor) is measured in seconds or

minutes [11], changes in Norepinephrine can have rapid effects

on patients. The recommended dosage (and dosage changes)

for intravenous fluids is less sensitive than for vasopressors as

the half life of fluids is measured in hours [12], thus changes

in fluid take a lot longer to take effect. Therefore, in this work,

we focused on the safety of vasopressor administration.

In this paper, we have adapted a previously published deep

RL method [13] used to learn the optimal treatment strategy,

or policy, to investigate further the safety issues associated

with sepsis treatment. The data used for learning the optimal

policy is a large publicly available database - MIMIC III

[14], collected from USA hospitals. As the MIMIC III data



set was generated by recording the real clinicians’ actions,

we refer to it as the clinician policy in comparison with

the learnt optimal policy. We evaluated the learnt optimal

policy and compared it against the clinician policy, i.e. the

real patient trajectories in the test data set, including whether

or not they show this kind of sudden major change when

recommending vasopressor dosage for each patient. In doing

so we identified that the learnt optimal policy has many more

sudden major dosage changes than the clinician policy. As

a consequence, we modified the model to capture the change

between the current vasopressor dose and previous vasopressor

dose in the state space. In addition, we modified the RL cost

function to penalise the policy when this kind of behaviour is

learnt. The result shows that what we have learnt has fewer

sudden major changes and is therefore closer to the clinician’s

behaviour. Finally, we have evaluated both policies using

a regression-based procedure for off-policy evaluation [15],

which shows that the performance of our modified policy has

higher value than the clinician policy. However, although the

learnt optimal policy based on [13] seems to have higher value

than our modified policy, in terms of vasopressor delivery, our

modified policy is safer in the sense of being consistent with

clinicians’ knowledge, specifically in terms of avoiding sudden

vasopressor changes and their harmful effects.

II. BACKGROUND

RL consists of an agent interacting with its environment by

producing actions and discovering errors or receiving rewards

[7]. The environment is often represented by an MDP. An

MDP is defined by M = 〈S,A, P,R, γ〉, where S is the

state space, A is the action space, P is the transition function

with P (s′|s, a) denoting the probability of reaching state s′

if taking action a in state s. R is the reward function with

R(s, a) being the expected immediate goodness of (s, a) and

γ is the discount factor. A policy fully defines the agent’s

behaviour and maps the perceived states of the environment

to actions for the agent to take. It is often denoted as π. If

the agent is following policy π at time t, then π(a|s) will

be the probability that At = a if St = s. The action-value

function Qπ(s, a) = Eπ

[∑T

t′=t γ
t′−trt′ |St = s,At = a

]
, is

the expected discounted reward starting from state s, taking

action a, when following policy π, where rt is the reward

received when transitions from the state st to the state st+1

after taking action at and has mean R(st, at) conditioned on

(st, at), and T is the terminal time step.

A deep Q-Network (DQN) is a widely-used modern RL

algorithm, which combines Q-learning [16] with a deep arti-

ficial Neural Network (NN) [17]. It learns the optimal policy

by employing the same update rules and operating principles

as Q-learning but using an NN as its action function repre-

sentation. DQN uses the experiences or samples 〈s, a, r, s′〉
generated by interaction with the environment to train the NN.

It uses a squared error loss function, which is the difference

between the output of the network, Q(s, a, θ) and the desired

target Qtarget = r + γ maxa′Q(s′, a′, θ) to update the NN.

The parameters θ of the NN are updated as follows:

θk+1 ← θk − α∇E[(Qtarget −Q(s, a; θ))2], (1)

where k is the iteration step when training the NN. Simple

DQNs have some shortcomings and there are various ways

of refining them to improve their performance. One way to

improve them is to use double DQNs which employ two NNs,

one produced as in standard DQN, which is the main network

with parameters θ, and the other a copy of the network from

the last iteration used to obtain the Q-value, which is the target

network with parameters θ′. The standard double Q-network

loss is shown in (2).

L(θ) = E[(Qdouble−target −Q(s, a; θ))2], (2)

where Qdouble−target = r+ γQ(s′, argmaxa′Q(s′, a′; θ); θ′).
In this work, we extended this equation to include a term

which accounts for safety (see section IV).

III. RELATED WORK

Much previous work in identifying the best treatment

for sepsis patients has focused on clinical trials. In [18]

they carried out a random trial to investigate the effect of

the discontinuation of vasopressors in management of septic

shock and found that tapering Norepinephrine rather than

Vasopressin may be associated with a higher incidence of

hypotension in patients recovering from septic shock who are

on concomitant Norepinephrine and Vasopressin. However, the

study was stopped early due to a significant difference in the

incidence of hypotension between the control and experimental

group, which also reveals the difficulty of conducting clinical

trials to find the optimal treatment for sepsis patients. A recent

review found that, in the last decade, the physiopathology of

sepsis has become better understood. However, it concluded

that clinical trials had yielded no satisfactory results [19].

More recently, researchers have utilised RL to learn the

optimal treatment for sepsis patients. The application of an

RL approach could reduce the time and cost to identify good

treatment strategies by finding new insights in large patient-

related clinical data sets, compared with clinical trials. For ex-

ample, the AI Clinician [6] was built using RL on the MIMIC

III database to explore the optimal treatment strategy for

administering intravenous fluids and vasopressors. The state

space included patients’ demographics, Elixhauser premorbid

status, vital signs, laboratory values, fluids and vasopressors

received. The action space for the MDP is discretised into 25

possible actions with 5 possible choices for intravenous fluids

and vasopressors respectively. This work used policy iteration

to find an optimal policy. The group have also applied double

DQN to determine the optimal policy, where they learned the

treatment policy over continuous spaces using an NN with

the same 25 actions [13]. They used SOFA (Sequential Organ

Failure Assessment) score and Arterial Lactate (the level of

lactate from arterial blood) to determine the intermediate

reward and a terminal reward of +15 or -15 depending whether

or not the patient survived their stay in hospital. The SOFA

score is a measurement of organ failure with high values



associated with poor outcome; similarly, high levels of lactate

are associated with poor outcomes in sepsis treatment. In detail

the intermediate reward function is:

r(st, st + 1) = C01 (sSOFA
t+1 = sSOFA

t & sSOFA
t+1 > 0)+

C1(s
SOFA
t+1 − sSOFA

t + C2 tanh(s
Lactate
t+1 − sLactate

t )

(3)

In this work, we have adapted the methods in [13] to

train an agent to learn the optimal policy based on the same

data set and the same patient cohort taken from MIMIC III

and used this as a basis for evaluating and enhancing our

approach. The patient cohorts are defined based on the sepsis-

3 criteria – suspected infections combined with SOFA score

≥ 2. Patients who satisfy the sepsis-3 criteria, but with any one

of the following conditions, 1. not adult, 2. intravenous fluid

intake not documented, 3. possible withdrawal of treatment, 4.

erroneous intake or output data, were excluded. The resulting

patient cohorts were divided into a training dataset (80%,

20938), a validation dataset (10%, 2149) and a testing dataset

(10%, 2160). For detailed patient features included in the state

space, see the supplement to [6].

IV. METHOD AND RESULTS

For ease of presentation, we combine the description of our

method and the results of the work.

A. Evaluation of the learned optimal policy

First, we have adapted the method in [13] to train the

agent to learn the optimal policy. The main adaptation was

considering 90-day mortality rather than deaths in hospital,

as some patients might choose to be discharged in order to

return home when they are unlikely to survive, so this is

more appropriate when learning the optimal policy. We also

used 47 features to represent the state space (as against 48

in the original work [13]) as one of the features is the time-

steps to treat the patient, and we believe this is less relevant

when clinicians are treating patients in reality, as they would

not decide to stop treating the patient just because they have

been treating the patient for a long period of time. Indeed,

they have also made this kind of alterations in their later

work [6]. The action space includes 25 possible actions with

five discretised choices for the dose of intravenous fluids and

five for vasopressors respectively, which is shown in Table I.

Table I also shows the detailed dose range and dose median

for the five vasopressor choices; this is important as this

work is focused on the safety of vasopressor administration.

Note that vasopressor dosage is shown in mcg/kg/min of

Norepinephrine equivalent. Fig. 1 shows the comparison of

the clinician policy and the learnt optimal policy on the test

data set. As can be seen, the clinicians tended to prescribe less

vasopressors and more intravenous fluids to patients than the

learnt optimal policy (note the high frequencies in the clinician

policy – 0,5,10,15,20 correspond to zero vasopressor dose).

The proportion of time the clinicians prescribed vasopressors

to patients was only 15% compared to 38% if the optimal

policy recommendation was followed.

Fig. 1. Action frequency over all patient trajectories in test data set, where
all actions are aggregated recommended by the clinician and optimal policies.

The results of this revision were generally consistent with

the AI Clinician [6] and [13] in that the learnt optimal policy

recommended more vasopressor than the clinicians’ policy.

Fig. 2 shows the correlations between the observed patient

mortality and the difference between the doses suggested

by the learnt optimal policy and the actual doses given by

clinicians (i.e. the clinician policy). It shows that the minimum

mortality rate is observed when there is no difference between

the optimal policy and the clinician policy, which means

patients who received doses similar to the doses recommended

by the optimal policy have the lowest mortality. This implies

that the learnt optimal policy is effective, which is the same

as indicated in [13].

Fig. 2. Observed mortality rate variation with the difference between the
doses recommended by the optimal policy and the actual doses, calculated by
considering 90-day mortality.

Based on this comparison, the policy we have learnt can

be seen to be similar to that in [13] in terms of optimality

and validity. However, in contrast to [13], we have evaluated

this policy from the safety perspective, specifically in terms

of sudden changes in the recommended vasopressor dosage.

According to [20], doses of Norepinephrine over 0.5

mcg/kg/min are usually considered to be “high” and suggest

the need for rescue or second-line therapy. Doses over 1.0

mcg/kg/min are rarely used. In the action space, shown in table

I, the maximum dose change occurs when the recommendation

changes from action 0 to action 4 in the following step for

the same patient, or vice versa. This change is 0 to 0.786



TABLE I
DOSAGE ACTIONS

Dose of vasopressor (mcg/kg/min)

No.: 0 1 2 3 4
Range: 0 (0.002, 0.079) (0.08, 0.2) (0.201,0.449) (0.45, 1.005)

Median: 0 0.04 0.135 0.27 0.786

Dose 0 0 1 2 3 4
of 1 5 6 7 8 9
IV 2 10 11 12 13 14

fluid 3 15 16 17 18 19
4 20 21 22 23 24

mcg/kg/min as 0.786 mcg/kg/min is the median of the fourth

quartile and is clearly in a dangerous range.

We evaluated the maximum vasopressor dose change for

the clinician policy and the learnt optimal policy on the test

data set, which has 2,160 patients, by calculating the max

absolute vasopressor dose change in one step for each patient

during their treatment. In the clinician policy, we found 2.6%

(57 patients) among 2,160 patients have this maximum dose

change – 0.786 mcg/kg/min. In contrast, in the learnt optimal

policy, we found 35% (756 patients) among 2,160 patients

have this sudden change. Fig. 3 shows the comparison of max

absolute vasopressor dose change between the clinician policy

and the learnt optimal policy for these 2,160 patients. The

max absolute vasopressor dose change following the learnt

optimal policy is substantially higher than that of following the

clinician policy. Further, many of the max absolute vasopressor

dose changes in the learnt optimal policy reach 0.786, while

there are only a few patients whose max absolute vasopressor

dose change reaches 0.786 in the clinician policy. This implies

that the learnt optimal policy may not be safe if used for

treating sepsis patients, because of the prevalence of these

sudden major dose changes and its harmful clinical effect.

Fig. 3, also shows that there are a lot of patients whose max

absolute vasopressor dose change was zero in the test data set

(i.e. following the clinician policy). This is consistent with Fig.

1 in that clinicians tended to give less vasopressors, so some

patients never got any vasopressors. However, if the learnt

optimal policy was followed, many more patients would move

out of the zero vasopressor “bucket”. This also indicates that

the learnt optimal policy tends to give more vasopressor to the

patients than the clinician policy does. The apparent “noise” in

Fig. 3 arises because the patients are sorted (ordered) first by

the maximum change in the test data (i.e. the clinician policy),

then by the maximum change in the optimal policy and, for

some patients, the clinician policy gave a higher maximum

change than the optimal policy.

B. Modification of the learnt optimal policy

In response to the above clinical safety concerns, we have

modified the model to embrace the safety constraint, which

is to reduce the rate of sudden major vasopressor dose

changes, particularly to avoid the maximum change of 0.786

mcg/kg/min. We made two alterations to enable the agent to

learn a safer policy.

Fig. 3. Comparison of max absolute vasopressor dose change in one step for
each patient in the test data set between the clinician and the learnt optimal
policy.

Firstly, we added an extra feature in the state feature space,

which is the relative dose change compared with the previous

vasopressor dose for each patient. This enables the agent to

take account of the difference between the current step and

the previous step in terms of vasopressor dose while learning

the optimal policy, rather than merely using the current step

state features.

Secondly, we have also altered the cost function used for

training. In [13], the authors added a regularisation term to the

standard double Q-network loss (see equation (2)) to penalise

output Q-values when it was outside the allowed thresholds

(|Qthresh| = 20). On this basis, we have added a second

regularisation term to penalise the output Q-values when the

recommended dose is higher or lower than the previous dose

by 0.786 mcg/kg/min (i.e., a jump from action 0 to action 4 or

vice versa in one step when recommending vasopressor doses

for the patients). The altered loss function is as follows:

L(θ) = E[(Qdouble−target −Q(s, a; θ))2] + λ1max

(|Q(s, a; θ)| −Qthresh, 0) + λ2max(|Vchange| − 0.75, 0)

(4)

Vchange is the agent recommended dose (argmax of Q(s, a; θ))
minus the vasopressor dose in the previous step.

After the implementation of these two alterations we have

learnt a new modified policy. Fig. 4 shows the comparison of



the clinician policy and the learnt modified policy on the test

data set. It shows that the modified policy also recommends

more vasopressor than the clinician policy. However, in con-

trast to the learnt optimal policy in Fig. 1, the proportion of

time the modified policy recommended vasopressor to patients

was 24% compared to 38% in the learnt optimal policy.

Fig. 5 shows the relationship between observed mortal-

ity and the difference between the modified policy and the

clinician policy, which also shows that when there is no

difference between the modified policy and the clinician policy

the observed mortality is reduced to a minimum. This also

implies the validity of the modified policy.

Fig. 4. Action frequency over all patient trajectories in test data set, where all
actions are aggregated recommended by the clinician and modified policies.

Fig. 5. Observed mortality rate variation with the difference between the
doses recommended by the modified policy and the actual doses, calculated
by considering 90-day mortality.

Having made these modifications we evaluated the new

modified policy on the test data set to assess how many patients

are subject to the sudden major change of vasopressor dosage,

i.e. 0.786 mcg/kg/min. In total there are 7.87% (170 patients)

amongst the 2,160 patients found with this change. Thus, the

modified policy has reduced the rate of such sudden major

changes of vasopressor dose by 77.5% when compared with

the previous learnt optimal policy. Fig. 6 shows the maximum

absolute vasopressor dose change in one step for each patient

between the clinician policy and the modified policy. It shows

a clear reduction in sudden major dose changes and the

absolute change is much more reasonable compared to Fig. 3.

However, it also shows an overall increase in the recommended

vasopressor dose by comparison with the clinician policy,

but the recommendations are much smoother. This is also

consistent with the previous findings that it might be better

to administer more vasopressor for sepsis patients but this

modified policy behaves in a much safer way and is more

consistent with clinical reality.

Fig. 6. Comparison of max absolute vasopressor dose change in one step for
each patient in the test data set between the clinician and the modified policy.

Fig. 7. Feature importance (from out of bag score) for clinician policy and
the modified policy

In order to further assess the interpretability of the modified

policy, we built classification random forest models to under-

stand the relative importance assigned to the features in the

state space when recommending vasopressor. Then, we com-

pared the results with those of the clinician policy, see Fig.7.

For both random forest models (clinician and modified policy),

the current dose of vasopressor was discarded as the concern

here is on what features influence whether or not vasopressor

is recommended, not the size of the recommended dose. The

relative importance of each feature was estimated using an

out-of-bag score on the whole dataset, while we permuted the



values of each predictor, i.e. permutation feature importance

[21]. In both policies, SOFA plays the most important role,

which is as expected as SOFA describes sepsis-related organ

failure. Shock index is also among the top rankings as it

has been shown to indicate the need for vasopressor therapy.

Gender and re-admission in both polices shows the least

importance as these parameters are expected not to affect the

decision of whether recommending vasopressor or not. This

confirmed that the decisions suggested by the modified policy

were clinically interpretable and relied primarily on sensible

clinical parameters, such as SOFA, shock index, mean blood

pressure, or white blood cells count (WBC count) as shown

in the figure.

C. Performance evaluation

It is not feasible to evaluate the policy on real patients

because of ethical, legal and risk issues. Instead, we have

carried out off-policy evaluation to assess the performance of

the initial learnt optimal policy and the modified policy by

fitting an MDP model M̂ from the current data to approxi-

mate the environment. Then the value function is computed

using the estimated parameter transition probability P̂ and the

reward R̂ recursively. The final estimated value averaged the

resulting value function across all the observed trajectories in

the test data set (refer to [15] [22] for a detailed description

of the method). The average discounted reward of the chosen

actions under the clinician policy across all of the trajectories

in the test data set is also calculated as the benchmark, as

shown in table II. It shows that the learnt optimal policy has a

higher value than our modified policy. However, our modified

policy is still higher than the clinician policy and in terms of

vasopressor delivery, it is safer in the sense of avoiding sudden

vasopressor changes and its dangerous effects on patients.

TABLE II
PERFORMANCE COMPARISON FOR DIFFERENT POLICIES

Policy Estimated Discounted Reward

Clinician policy 7.16

Optimal policy 10.9

Modified policy 8.07

V. DISCUSSION

Effective treatment of sepsis is extremely important as it is

one of the major causes of fatalities in hospitals. As noted

above, clinical trials are expensive and are unlikely to identify

effective treatment strategies quickly [19]. ML methods, such

as RL, applied to clinical data have the potential to identify

good treatment strategies more cost-effectively, but there are

some potential pitfalls of ML which can give rise to unsafe

outcomes, and some challenges in introducing ML into a

clinical context.

First, the policies learnt in this case are produced by

optimising the cost function. The cost function used in [13]

does not address the rate of change of delivering vasopressor

which is known to be potentially hazardous. The approach

we have taken here enriches the cost function to take into

account this important factor in clinical safety. There may

be other factors that could beneficially be taken into account

in identifying optimal treatment policies thus it is vital to

combine knowledge of ML with clinical and patient safety

expertise.

Second, if ML-based approaches are to be used in practice,

in clinical settings, then it is necessary to assess their safety

prior to deployment. A key element is to assure the safety of

the ML-based system, potentially by producing a safety case

[23] dealing with the specific challenges of ML, as illustrated

in [24]. A second element is to engage with the clinicians in

such a way that they are able to trust the recommendations

produced by the system and are thus willing to use it in

practice. We will address both these issues in conjunction

with the team who developed the AI Clinician as part of the

Assuring Autonomy International Programme [25].

Third, in settings as complex as sepsis care it is unrealistic

to think that any treatment strategy learnt from historical

clinical data will be “perfect” and also stable over time. Thus,

it is important to learn from the behaviour of the system

as observed, as opposed to the behaviour we anticipated

(imagined), and to update our knowledge about the system as

it evolves. The framework presented in [24] is intended to give

a basis for monitoring and evaluating such complex systems

to reflect the evolution of the system and its environment, and

may therefore be helpful in this context.

VI. CONCLUSIONS

The work reported here illustrates both the potential value

of ML in clinical settings, especially where clinical trials are

costly and time-consuming, and the potential pitfalls of using

ML to recommend treatment strategies. We have shown how to

enrich the learning process with additional information about

the safety of the treatment strategy and this is an important

step forward in understanding how to integrate the notion of

patient safety into the ML process. Further work will consider

whether or not the learning process needs to be enriched

further, taking into account other clinically relevant factors.

It will also address the key challenge of assuring that the

system is acceptably safe to use, prior to deployment, and how

safety can continue to be improved by refining the treatment

strategies in use.

The code for learning the modified policy and for pro-

ducing the figures shown in the paper is available at:

https://github.com/Yanjiayork/sepsisRL.
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