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Abstract
Creutzfeldt-Jakob disease (CJD) is a rapidly progressive and
fatal neurodegenerative disease, that causes approximately
350 deaths in the United States every year. In specific, it is
a prion disease that is caused by a misfolded prion protein,
termed PrPSc, which is the infectious form of the prion pro-
tein PrPC. Rather than being recycled by the body, the PrPSc

aggregates in the brain as plaques, leading to neurodegenera-
tion of surrounding cells and the spongiform characteristics
of the pathology. However, there has been very little research
done into factors that can a�ect one’s chances of acquiring
PrPSc. In this paper, Elastic Net Regression, Long Short-
Term Memory Recurrent Neural Network Architectures, and
Random Forest have been used to predict Creutzfeldt-Jakob
Disease Levels in the United States. New variables were cre-
ated as data for the models to use on the basis of common
factors that are known to a�ect CJD, such as soil, food, and
water quality. Based on the root mean square error (RMSE),
mean bias error (MBE), and mean absolute error (MAE) val-
ues, the study reveals the high impact of unhealthy lifestyle
choices, CO2 Levels, Pesticide Usage, and Potash K2O Usage
on CJD Levels. In doing so, the study highlights new av-
enues of research for CJD prevention and detection, as well
as potential causes.
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1 Introduction
First discovered between 1921 and 1923 by Hans Ger-

hard Creutzfeldt and Alfons Maria Jakob, Creutzfeldt-Jakob
disease (CJD), commonly known as mad cow disease, is
a rapidly progressive and fatal prion disease caused by
an abnormal prion in the brain, termed PrPSc. PrPC is
the harmless version of this prion and is found in abun-
dance throughout the body and the nervous system. When
ingested, PrPSc, that is often acquired from a non-native en-
vironment, attaches to the PrPC prion and causes a portion
of the U-helical and the coil structure of the PrPC protein to
refold into V-sheets, converting the PrPC into its misfolded

pathogenic isoform, PrPSc. Additionally, the misfolding
encourages a resistance to proteases in the C-terminal re-
gion, resulting in the body’s inability to destroy and remove
PrPSc from the brain. This structural change explains many
physicochemical properties of PrPSc, such as their fibrillar
structures, which reduces their susceptibility to degradation
[3].

As a result, in its spread throughout the brain, the build-
up and accumulation of PrPSc results in lesions, damage
to cells, gliosis, and neuronal loss. In specific, the accu-
mulation of amyloid plaques, a common lesion caused by
CJD, prompts neural and glial cell death and spongiform
degeneration in the hippocampus, neocortex, basal ganglia,
and thalamus. These areas of the brain control memory
function, proper muscle coordination, higher-order thought
processes, and transmission of information, respectively.
Hence, CJD results in degradation in various areas of the
brain, ultimately causing detrimental physiological e�ects
that result in its multifaceted clinical presentation. The
characteristics of the pathology often present increasingly
worse symptoms ranging from depression, disorientation,
motor di�culty, hallucinations, and can eventually de-
velop into dementia or Alzheimer’s. However, CJD has
notably lacked any hallmark features due to its similarities
to other neurodegenerative diseases. Unfortunately, this
has hindered clinicians and scientists from determining a
definitive diagnosis outside of a postmortem autopsy that
would allow for treatment, making it all the more necessary
to understand major factors that can implicate CJD [3].

In specific, physicians only understand the causation of
hereditary CJD and variant CJD (vCJD), which account
for 15% of CJD cases annually. In the hereditary form, a
genetic mutation in the PRNP prion gene on chromosome
20 brings rise to PrPSc. The mutation is then passed
down via autosomal dominant inheritance. In vCJD, the
consumption of cattle products with an agent of bovine
spongiform encephalopathy (BSE), is the underlying cause
of a buildup of infectivity in the the lymphoreticular tissues
and CNS. Furthermore, vCJD is linked to a methionine
homozygosity at codon 129 in the PRNP prion gene, as
the PrPSc variant of vCJD is closely related to the codon
129 genotype, whose methionine homozygosity has been
known to assist in prion strain propogation, allowing PrPC
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to be converted to PrPSc [3].

[3] has been able to build o� of this understanding,
by establishing a notably strong correlation between CJD
levels and beef production in the United States. Bhakta’s
findings reported an r of 0.7632. Given that the results
of the Pearson Correlation test provided an r greater than
0.7, it indicates a strong potential that beef production can
accurately predict CJD levels. However, to date, this is
the only study that delves into this topic. Given the strong
implications of Bhakta’s work, we believe that with the
proper combination of variables and a more diverse data
set, a greater predictive power can be achieved.

In this work, 3 techniques – Elastic Net Regression
(ENR), Long Short-Term Memory (LSTM) Recurrent Neu-
ral Network (RNN) Architectures, and Random Forest
(RF) – have been used for prediction. Prior work with
these techniques i.e. Stock Price Prediction, have shown
very promising results in terms predictive power [9, 25].
The models introduce new variables, created via common
factors that are known to a�ect ones susceptibility to prion
and neurodegenerative diseases. With the introduction of
these new variables, we believe that the we will achieve
a higher degree of accuracy compared to those of prior
works [3]. The accuracy of our models will be tested by 3
methods: RMSE, MAE, and MBE.

We found that without proper knowledge of disease
contraction and pathophysiology, there is an inability to
properly diagnose and e�ectively treat this fatal condition.
Our study aims to broaden our understanding of CJD
to allow for correct diagnosis and treatment. With the
information we have compiled in this study, we believe we
will be successfully able to determine which environmental
and lifestyle factors can contribute to contracting CJD.
Ultimately, we predict these findings will aid physicians
and researchers to determine specific causes of CJD and
identify symptoms of CJD that lead to early diagnosis and
treatment.

The rest of this paper is organized as follows. Section
2 discusses the data set and pre-processing properties of
this study, such as new variables and training and testing
sizes. Section 3 provides preliminaries to deep learning
and machine learning, before explaining the ENR, LSTM,
and RF models that we use in this study. Section 4 gives the
results of each model as well as compares the accuracy of
each model based on the methods highlighted above, with
section 5 concluding the paper and talking about future
opportunities that the work provides.

2 Data Set and Data Pre-Processing

In this section, we will discuss the data set used in this
study, new variables that were introduced, and intrinsic
properties of the data set.

2.1 Data Set and New Variables

In this work, we introduce eight new variables to predict
CJD levels in the United states from 1979 to 2015, that
along with beef production levels from Bhakta’s work, form
our data set. The eight new variables have been created
to aid in more accurate prediction of CJD levels, based
on common factors that are known the a�ect similar prion
and neurodegenerative diseases, such as the environmental
contamination of soil, food, and water [6]. The new
variables are:

1. CO2 Levels (Yearly) [21]
2. Nitrogen Usage (Yearly) [12]
3. Potash K2O Usage (Yearly) [12]
4. Pesticide Usage (Yearly) [11]
5. Beer Consumption (Yearly) [15]
6. Obesity Levels (Yearly) [14]
7. Smoking Levels (Yearly)[13]
8. Smoking Less Than 1 Pack (Yearly) [13]

Sources for each variable are included next to them.
Data for CO2 Levels was taken from the National Oceanic
and Atmospheric Administration’s Global Monitoring Lab-
oratory. Data for Beer Consumption was taken from the
National Institute on Alcohol Abuse and Alcoholism. Data
for Obesity Levels was taken from the National Center for
Health Statistics-Centers for Disease Control and Preven-
tion. Data for Smoking Levels and Information was taken
from the Gallup’s Tobacco and Smoking Database. Data
for Pesticide Usage, Potash K2O Usage, and Nitrogen Us-
age were taken from the Food and Agriculture Organization
of the United States’s Database.

Given that habits such as smoking and drinking, and an
overall unhealthy lifestyle can cause one to be susceptible to
diseases like Alzheimer’s and Dementia, which share very
common characteristics to CJD, we believe that introducing
such variables to our model, will greatly improve predic-
tive power. Additionally, as Pesticide, Nitrogen, Potash
K2O, and CO2 usage can all contribute to soil and water
contamination, we feel that introducing such variables will
greatly improve accuracy and reveal possible sources of
the currently unknown causes of CJD.

Yearly CJD case levels were taken from the Centers for
Disease Control and Prevention’s (CDC) Creutzfeldt-Jakob
Disease, Classic (CJD) database [5]. All of the data was
normalized using Standard Scalar fit to ensure consistency
in the data set and that each data type has the same format.
Information about the training and testing set are shown in
Table 1. The training data is used to construct the model,
while the testing data tests the validity of the trained model.

2.2 Intrinsic Data Set Properties

Looking at the variables that we propose, it is important
to understand the relationship between them and the po-
tential impact this has on the study. We first consider the
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Table 1: Relationship between variables on CJD Levels (rounded to 3 decimals)

Variables A '
2

C � BC0C8BC82 U ?

Beef Production -0.824⇤⇤ 0.679 -8.489¶ 0.904†† 6.478⇥10�10 ‡
Beer Consumption -0.879⇤⇤ 0.773 -10.746¶ ¶ 0.936†† 1.789⇥10�12 ‡

CO2 Levels 0.909⇤⇤⇤ 0.826 12.735¶ ¶ 0.953†† 1.706⇥10�14 ‡
Nitrogen Usage -0.808⇤⇤ 0.653 -8.000¶ 0.894† 2.535⇥10�9 ‡
Obesity Levels 0.837⇤⇤ 0.701 8.924¶ 0.911†† 1.979⇥10�10 ‡
Pesticide Usage 0.916⇤⇤⇤ 0.840 13.356¶ ¶ 0.956†† 4.394⇥10�15‡

Potash K2O Usage -0.753⇤ 0.567 -6.470¶ 0.859† 2.796⇥10�7 ‡
Smoking Less than 1 Pack 0.849⇤⇤ 0.721 9.376¶ 0.918†† 5.908⇥10�11 ‡

Smoking Levels -0.825⇤⇤ 0.681 -8.512¶ 0.904†† 6.086⇥10�10 ‡
⇤
A � 0.7 ⇤⇤

A � 0.8 ⇤⇤⇤
A � 0.9 ‡?  0.001 †U � 0.85 ††U � 0.9

¶ C � BC0C8BC82 � 5 [ C � BC0C8BC82  -5 ¶ ¶ C � BC0C8BC82 � 5 [ C � BC0C8BC82  -5

Table 2: Statistics for the Data Set

Data Set Training Data Set Testing Data Set
1979-2015 70% 30%

relationship between the proposed variables. Figures 1 and
2 depict the correlation between the proposed variables.
As seen, although all the variables used in this study are
unique, there are high degrees of correlation between them
(A � 0.5). Current Recurrent Neural Networks and Random
Forest techniques are not a�ected by multicollinearity ,
however, standard MSE multivariate regression models
are greatly impacted by multicollinearity, due to its ability
to reduce precision in estimating coe�cients and ergo,
weaken the statistical significance of the model. Thus, in
this paper, we will not use a standard MSE multivariate
regression, but will instead favor an ENR model, which
performs favorably with multicollinearity, as we will see
in section 3.2.

Next, we investigate the correlation between proposed
variables and CJD levels, to ensure their use will yield
accurate and significant results. We determined this using
Pearson Correlation and Cronbach’s Alpha. The findings
for these tests are summarized in Figure 2 and Table 2.

All variables exhibited an A value greater than 0.7, with
22% yielding an A value greater than 0.9. Additionally,
all variables had a ? value less than 0.001 (less than the
minimum value of 0,05), indicating that our results were
significant. Such high A values lead us to believe that
our proposed variables may have potential in providing
an accurate prediction of CJD levels, but also highlight
that individually all of these variables serve as potential
markers for CJD prediction (as we will explore more in
section 4). Moreover, U values greater than 0.85 and
C � BC0C8BC82 values greater than 5, reveal high degrees
of internal consistency and low levels of variance, which
emphasizes that the data is accurate and consistent over the
span of all columns and that all of our proposed variables
have potential as strong predictors of CJD levels.

3 Preliminaries
In this section, we first provide background informa-

tion about deep learning and neural networks, specifically,
RNNs. Then we give an overview of Elastic Net Regres-
sion, Long Short-Term Memory Recurrent Neural Network
Architectures, and Random Forest.

3.1 Deep Learning and Neural Networks

RNNs are a subset of Deep Learning that have found
tremendous accuracy in pattern recognition and feature
extraction. Conventional neural networks, such as Convolu-
tional Neural Networks (CNNs) and Deep Neural Networks
(DNNs) have been known to be incapable of using prior
outputs to better process and understand inputs in the cur-
rent step, due to their fixed-size vectors as inputs and fixed
number of computational steps. However, RNNs bypass
this restriction with a unique operation over a sequence of
vectors over time that uses outputs from the output units
as inputs of the hidden layer [2]. Formally, this can be
represented via the following equation:

⌘C = f⌘ (F⌘GC + D⌘Ht-1 + 1⌘)
HC = fH (FH⌘C + 1H)

(1)

Where GC is a vector of inputs, ⌘C are hidden layer vectors,
HC are output vectors, F andD are weight matrices, and 1 is
the bias vector.

Hence, the loop utilized by RNNs that passes information
from one step of the neural network to the next, allows for
greater pattern recognition and predictive modeling, which
will permit us identify the most significant environmental
and lifestyle habits that contribute to CJD infection.

3.2 Elastic Net Regression

In traditional regression modeling, variable selection
and prediction from high dimensional data sets can be
problematic with low sample sizes, as is the case in this
paper, due to the rarity of CJD. However, Elastic Net
Regression generalizes many shrinkage-type regression
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Figure 1: Scatter plots between newly proposed variables and CJD Levels on each other

methods, such as Ridge and Lasso regression, to bypass
this issue. In specific, using the least angle regression
algorithm, it estimates coe�cients in a biased manner and
improves accuracy by shrinking the estimated parameters,
to reduce variance [10]. This is done though the tuning of
the penalty term:

( 1
2
(1 � U)V2 + U |V | (2)

through the parameter U, which has been generalized into
the following equation.
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Where U controls the type of shrinkage, and the penalty
parameter _ controls the amount of shrinkage.

As previously stated, Elastic Net Regression is the com-
bination of Lasso and Ridge regression. Lasso (U = 1)
has an ;1 penalty to control both parameter shrinking and
variable selection, whereas Ridge (U = 0) only has an ;2

penalty on the parameters. By combining both regression
methods, U can be 0 < U < 1, Elastic Net Regression

allows for the integration of di�erent weights of automatic
variable selection and no variable selection into the model.
Furthermore, in utilizing both Lasso and Ridge regression,
Elastic Net Regression is able to overcome the traditional
problem of of correlated predictors, by subtracting a small
number n from U, so that in its parameter shrinkage, more
correlated predictors can be incorporated in the model.
Essentially, Elastic Net Regression allows for a balance
between penalties by amalgamating feature elimination
and feature coe�cient reduction to enable a model to have
more e�ective and powerful prediction [10].

An Elastic Net Regression model’s ability to properly
handle multicollinearity, suits our work’s needs, due to the
high levels of multicollinearity in the model (see section
2.3). Additionally, we believe that its integration of di�erent
weights for variables will allow us to understand which
variables hold the most weight in CJD prediction.

3.3 Long Short-Term Memory

As mentioned in section 3.1, RNNs allow for greater pat-
tern recognition and predictive modeling, when compared
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Figure 2: Correlation between variables in the model

to more traditional neural networks; however, a recurring
problem with RNNs has been the vanishing gradient prob-
lem. The problem stems from the fact that as more layers
are added to neural networks with certain activation func-
tions, the gradient of the loss function approaches zeros,
contributing to a larger degree of inaccuracy in a model.
In looking at certain activation functions, a large input
is scaled into a small input space between 0 and 1. By
doing so, although a large change may occur in the input,
there will be a small change in the output, leading to the
derivative becoming smaller than expected. As a result,
since the gradients of neural networks are derived via back-
propogation, due to chain rule, as an increased amount
of layers are added to the network and the derivatives are
multiplied from the final layer to the initial to calculate the
derivative of the initial layers, there will be an exponential
decrease in the gradient that directly correlates with the
propagation to the initial layers:
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Where Y is the di�erent outputs of the model, G is the the
di�erent inputs, and ,A42 represents the backpropogation
algorithm [16].

Consequently, the weights and biases will not be updated
correctly with each training layer, leading to a much lower
degree of accuracy [16]. Nonetheless, LSTM models look
to overcome the vanishing gradient problem by allowing for
a constant error flow though self-connected units that are
capable of learning long-term dependencies, and in turn,
avoid them. As opposed to the standard RNN that has a
very simple chain of repeating modules, LSTMs introduce

a much more chain-like repeating module that consists of
4 layers [17].

The main purpose of doing so, is to maintain the cell
state of the model, or a linear set of information flowing
from cells states, ⇠C�1 to ⇠C . This state is heavily regulated
and is only a�ected by minor linear interactions at 3 gates
composed of a sigmoid neural net layer and a point wise
multiplication operation. In the first step, a sigmoid layer,
referred to as the "forget gate layer" looks at the inputs
from ⌘C�1 and GC and outputs a value between 0 and 1 for
each number in the ⇠C�1 state, that indicates whether to
keep certain inputs in the model. Then, a sigmoid layer,
known as the "input gate layer" determines which values
in the model will be updated and a C0=⌘ layer produces
a vector, ⇠̃C , for new candidate values. Next, the model
multiplies the ⇠C�1 state by 5C to forget the values that had
already been determined as unnecessary, before adding the
new canidate values, 8C ⇥ ⇠̃C , to update the cell state to ⇠C .
Finally, using a sigmoid layer to decide which components
of the cell state to output, the model then runs the cell state
through C0=⌘ and multiplies it by the output of the sigmoid
gate to generate an output [17]. This multi-step LSTM
process can be represented with the following equation:

5C = f(, 5 ⇥ [⌘C�1, GC ] + 1 5 )
8C = f(,8 ⇥ [⌘C�1, GC ] + 18)

⇠̃C = tanh(,⇠ ⇥ [⌘C�1, GC ] + 1⇠ )
fC = f(,> ⇥ [⌘C�1, GC ] + 1>)

⌘C = >C ⇥ tanh⇠C

(5)

Where ⇠C�1 and ⇠ are the old and new cell states,
respectively, ⌘C�1 and GC are the inputs, f is the sigmoid
layer, 5C is the input to the first gate, 8C and ⇠̃C and 8C are
the inputs to the second gate, fC is the input to the third
gate, and ⌘C is the output.

This study makes use of this improvement, by creating
3 layers in our model: an input layer, hidden layer, and
output layer. The input layer consists of our newly proposed
variables, as stated in section 2.2. The weights on each
input are calculated and then sent to the hidden layer. At
each gate, the total weight is derived and sent to the output
layer, which consists of one neuron, being the predicted
value. By overcoming the vanishing gradient problem, we
anticipate that it will allow us to observe the high levels of
accuracy that our newly proposed variables provide.

3.4 Random Forest

Random Forest is an ensemble of decision tree predictors
that is capable of regression and classification tasks. The
main idea behind the ensemble approach is that multiple
individual classifiers can merge together to form a much
stronger classifier and more accurate and stable prediction.
However, rather than rely on individual decision trees, in
which an input traverses down the tree into smaller sets to
determine the output, Random Forest reduces variance in
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((a)) ((b)) ((c))

Figure 3: CJD Level Predicted with (a) Random Forest (b) Long Short-Term Memory Recurrent Neural Network
Architecture (b) Elastic Net Regression

the model by training multiple decision trees in parallel
with bootstrapping proceeded by aggregation, which is
known as bagging. In specific, the bootstrapping allows for
the individual decision trees to be trained using di�erent
subsets of available features in the data set while also
guaranteeing that each such decision tree is unique of every
other [22].

It does this by taking a random subset with replacement
from the input, and then taking another random subset of
predictor variables at each node. Then, using the predictor
variable that gives the best split, it performs a binary
split at the node. In doing so, as each new input enters
the model, it is put through all of the trees to output a
weighted average of all the terminal nodes, or when there
are categorical variables, a voting majority. Accordingly, by
aggregating the outputs from each individual decision tree,
the Random Forest classifier ensures a good generalization.
In addition, because of its vigorous selection process for
training samples, Random Forest classifiers reduce noise
in the training data set, and in turn, are able to increase the
overall accuracy without over fitting the model. [22].

In this work, our proposed variables are provided for
training in each tree, in order to determine each decision
at each node. Further, due to the lack of prior information
about CJD, the trees reduce error by approaching the analy-
sis as a classification problem and basing forecasts on prior
training variables. In doing so, we believe that the Random
Forest will reveal the true extent to which select environ-
mental and lifestyle choices a�ect ones susceptibility to
CJD.

4 Results

In this section, we study the e�ects of introducing our
new proposed variables on the Random Forest model,
the Long Short-Term Memory Recurrent Neural Network
Architecture, and the Elastic Net Regression model.

To evaluate the e�ect that our newly proposed variables
have on the precision of the model in predicting CJD levels,
we use 3 methods to measure error. These methods include
Root Mean Square Error (RMSE), Mean Bias Error (MBE),

and Mean Absolute Error (MAE).
RMSE is calculated using the following equation:

'"(⇢ =

sÕ
=

8=1 ($8 � �8)2

=

(6)

Where $8 refers to the actual CJD levels, �8 refers to the
predicted CJD levels, and = refers to the total window size.
In this paper, we define an RMSE value of less than 1 as
statistically significant.

MBE is computed using:

"⌫⇢ =
1
=

=’
8=1

($8 � �8) (7)

Where $8 is the actual CJD level, �8 is the predicted CJD
level, and = refers to the total window size. We define take
an MBE value of less than 5 as statistically significant.

MAE has also been used to performance of the models,
via the following equation:

"�⇢ =
1
=

=’
8=1

|$8 � �8 | (8)

Where $8 refers to the actual CJD levels, �8 refers to the
predicted CJD levels, and = refers to the total window size.
In this paper, we define an MAE value of less than 5 as
statistically significant.

Figure 3 (a) represents the original CJD levels with
respect to the predicted CJD levels using RF. Figure 3(b)
represents the original CJD levels with respect to the
predicted CJD levels using LSTM. Figure 3 (c) represents
the original CJD levels with respect to the predicted CJD
levels using ENR. In building our ENR model, we found
that anU value of 0.0017 provided for optimal predictions,as
seen in Figure 4. Comparative analysis of RMSE, MBE,and
MAE values obtained using RF, LSTM, and ENR is shown
in Table 2. It can be observed that ENR performs with the
most accuracy, as seen by having the lowest RMSE and
MAE values of 0.179 and 0.136 respectively.

Given that the ENR model provided the most accurate
results via the comparative analysis, we will be utilizing its
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Figure 4: Alpha Value for the Elastic Net Regression Model

Table 3: Comparative analysis of RMSE, MBE, and MAE
values obtained by ENR, LSTM, an RF Models (rounded
to 3 decimals)

Model Type RMSE MBE MAE
RF 0.204 0.041 0.154

LSTM 0.297 0.118 0.224
ENR 0.179 0.046 0.136

variable weightings to see which of the newly introduced
variables were weighted with the most significance, and
hence, have the greatest impact on predicting contraction
of CJD. The absolute value of each coe�cent represents its
weight in terms of predicting CJD. Larger values therefore
represent factors that increase risk of CJD contraction,
while lower values represent lower risk of CJD contraction.
The weightings obtained by the ENR model are shown in
Table 4.

Table 4: Coe�cients of the Elastic Net Regression Model
(rounded to 3 decimals)

Variable Coe�cient
Beef Production 0.101

CO2 Levels 0.895
Nitrogen Usage 0.005

Potash K2O Usage -0.125
Pesticide Usage 0.729

Beer Consumption -0.396
Obesity Levels -1.391
Smoking Levels -0.251

Smoking Less Than 1 Pack 0.102

The weightings of the ENR model indicate that lifestyle
choices, such as Beer Consumption (-0.396), Obesity (-
1.391), and Tobacco Usage (-0.251), can lead to a host of
pathologies - ultimately leading to a weakened immune sys-
tem and increasing risk of contracting CJD. Additionally,
the coe�cients provided that pollution and CO2 Levels

(0.895) also greatly impact CJD levels. However, the
weightings also show that factors such as Pesticide Usage
(0.729) and Potash K2O Usage (-0.125) also a�ect ones
susceptibility to contracting CJD. The implications of these
weightings are discussed in Section 5. Variables such as
Beef Production (0.101) and Nitrogen Usage (0.005) had
the lowest weightings, suggesting that they may not have a
large impact on whether one acquires CJD. Moreover, the
weighting for the Beef Production variable is consistent
with the known percentage of vCJD cases caused by BSE
each year (10% to 15% each year). As BSE and gene
transfer are the only known causes for CJD (vCJD and
hereditary CJD, respectively) a proper weighting for the
Beef Production variable suggests that in addition to having
highly significant RMSE, MBE, and MAE values, the mod-
els are also in accordance with the current understanding
for the causes of CJD.

5 Discussion

In this section, we discuss the importance of our findings,
their implications, and how they relate to lifestyle factors,
environmental factors, and agricultural production. Our
findings elucidate several factors which predict increased
chance of contracting CJD. Our hope is that these results
can provide evidence for regulating agricultural products,
and providing information for the general public regarding
the impacts of improper diet and poor lifestyle habits.

Our results provided that Beer Consumption, Obesity,
and Tobacco Usage all have a great impact on CJD levels.
It is known that a person su�ering from chronic obesity
is at higher risk of developing diseases such as diabetes,
high cholesterol and high blood pressure. Likewise, reg-
ular smokers are often susceptible lung disease and heart
disease. Moreover, alcoholism, as seen in regular beer
consumption, has been known to chronically damage the
stomach lining, digestive tract, and liver leading to a host
of chronic diseases such as fatty liver or gastritis. Chronic
alcohol consumption has been known to inhibit the body’s
ability to extract important nutrients from food, therefore
contributing to more disease in the long run. These patho-
logical conditions enable an infectious host, such as CJD,
to utilize the host’s susceptibility to disease to its advantage
and successfully invade healthy brain tissue. Given that
the majority of energy is being expended to correct these
already existing pathologies, any co-morbid infections are
more likely to cause disease as the immune system is al-
ready overwhelmed. As the body already contains a high
degree of PrP2 , we believe that the body’s inability to
fight o� the pathological variant of CJD is due to PrP(2’s
similarity to the physiological prion that is common in the
CNS; the immune system therefore does not recognize that
it has a pathophysiological condition invading and thus,
does not respond in the appropriate manner, providing an
explanation for why the adaptive immune system does not
respond to CJD.
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Though CO2 is a natural component of our body’s
metabolic processes, rising levels of environmental CO2

have contributed to rising CJD levels. Over the past
40 years, CO2 levels have increased 20% from 339 part
per million to 410 parts per million [20]. In saying so,
an increased concentration of atmospheric CO2 causes
increased levels in urban and indoor levels, which can lead
to its build up in poorly ventilated spaces over long periods
of time. When this occurs, one is more likely to breathe
air with high CO2 levels, causing an increased amount
of CO2 to be in their blood stream. This in turn reduces
the amount of O2 that reaches one’s brain and can cause
significant cognitive impairment, such as di�culties with
decision-making and planning, all of which are common in
CJD cases [19]. Those whose vocation involves working in
industrial or secluded areas are more likely to contract CJD
due to decreased ventilation and air supply, and hence a
higher chance for an increased concentration of CO2 to be in
the air [7]. We believe that this lends itself to the proposition
that a higher probability of an increased amount of CO2

in the bloodstream of those with CJD can lead to their
susceptibility to the disease. This is because the immune
system depends on O2 in the blood as a regulator of immune
responses and energy consumption of immune e�ectors, by
controlling the immunoregulatory activity in the body [23].
Hence, a decreased amount of O2 being delivered to the
brain, may lead to an under performing immune system in
neural tissue and the immune system’s inability to properly
detect and react to the pathophysiological condition, much
like for the unhealthy lifestyle factors we have identified.

In identifying potential areas that contribute to the im-
mune system’s inability to properly detect and react to a
CJD infection, one key question remains: what leads to
CJD’s neurodegenerative properties? Our results provide
a potential contributor to these characteristics. It has pre-
viously been identified that CJD originates from a source
outside of the body and can be caused by contamination
of soil, food, and water [3, 6]. Our study identified Pes-
ticide Usage and Potash K2O Usage as key contributors
to predicting CJD levels and potential contributors to CJD
infection. Given the extremely high weighting of the Pes-
ticide Usage variable (0.729) in the ENR model, and the
relatively moderation weighting of the Potash K2O Usage
variable, we believe that there is a likelihood that features
of both substances contribute to CJD’s neurodegenerative
properties. Prior studies have highlighted how acute high-
levels of exposure to pesticides have neurotoxic e�ects, can
cause decreases in neurobehavioral performance, reflected
in cognitive and psychomotor disfunction [18]. However,
no previous studies have linked exposure to pesticides to the
characteristic spongiform neurodegeneration of CJD. We
suspect that it can be linked to 3 main common compounds
that are present in pesticides: organochlorine compounds,
organophosphate, and neonicotinoids.

Organochlorine compounds, also known as chlorinated
hydrocarbons, work by opening the sodium ion channels

of neurons and causing them to fire spontaneously and
degenerate. As pesticides are designed to kill insects, they
often cause them to spasm and eventually die.

Likewise, organophosphates also work on the nervous
system, but they prevent nerve cells from communicating
with each other. Under normal conditions, nerve cells in
the brain send electrical pulses down the tendril, where
the pulse jumps across the synapse to another nerve cell.
Additionally, a chemical compound know as ACh moves
from one to the other and binds with the adjacent neuron,
transferring the electrical impulses. This propagation
of signals allows for communication amongst neurons.
However, organophosphates prevent the transfer of ACh
and limit the activity in certain parts of the brain. These
e�ects can impair communication so significantly that
widespread paralysis can be seen in those infected with
large amounts of organophosphates.

Similarly, neonicotinoids are the synthetic version of
nicotine. They a�ect nerve cells by strongly binding to
nicotinic acetylcholine receptors in the central nervous
system, causing overstimulation of the nerve cells, and
eventual disorientation, paralysis, and death

Much like drugs derived from plants that instantaneously
kill animals and insects, we hypothesize that these com-
mon chemicals have a more longitudinal impact on hu-
mans. Rather than cause an immediate neurodegenera-
tion, a continual consumption of chlorinated hydrocarbons,
organophosphates, and neonicotinoids, whether in food or
in an agricultural setting, can accumulate to lead to long-
term pathologies. As highlighted above, organochlorines
and neonicotinoids overstimulate the sodium ion channels
and nicotinic acetylcholine receptors, respectively, to cause
a slow disorientation, paralysis, and death that is charac-
teristic of CJD. Additionally, we believe that the ultimate
spread of the PrP(2 prion throughout the brain is caused in
part by organophosphates. Rather than being able to signal
to the rest of the nervous system that it is degenerating,
organophosphates avert electrical impulses of nerve cells
and hence reduces the reactivity of the immune system.
In doing so, as well as unhealthy lifestyle choices and
environmental changes that divert the immune system’s
response, the nerve cells’ inability to signal their distress
allows the PrP(2 prion to cause spongiform degeneration
throughout the nervous system, without an activation of
the adaptive immune system.

Moreover, our results provided that Potash K2O has
potential as a contributor to CJD. Although little is known
about the e�ect of Potash K2O on the brain, we speculate
that it acts through 2 main mechanisms. First, much like
how organochlorines and neonicotinoids overstimulate the
sodium ion channels and nicotinic acetylcholine receptors,
respectively, an increased consumption of compounds of
Potash K2O could cause the potassium sodium pumps
in the nervous system to shoot irregularly. The body
contains many oxidation chains, through which K2O can
be converted to a potassium (K) containing output. As
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a result, the K concentration in the plasma can cause an
irregular stimulation of the the potassium sodium channels,
which are integral for information processing and cell-
to-cell communication in the nervous system. Hence,
similar to the proposal of the impact that an increased
concentration of organophosphates compounds has on the
body, an increased consumption of Potash K2O can skew
the body’s immune response.

Second, we believe that Potash K2O contributes to
CJD’s neurodegenerative properties via its inhibition of
the activity of aldehyde dehydrogenase (ALDH) in the
brain. ALDH detoxifies 3,4-dihydroxyphenylacetaldehyde
(DOPAL), the oxidized form of the neurotransmitter
dopamine. Dopamine is vital for a variety of biologi-
cal functions, including motor function. However, when
it oxidizes via monoamine oxidase, dopamine transforms
into a highly toxic compound, known as DOPAL. ALDH
enzymes work to reverse the toxic production of DOPAL
by carbonyl metabolism and convert it into a less toxic
acid product. An inhibition of ALDH though, causes an
accumulation of DOPAL in the brain that results in an
alteration to dopaminergic cells, by modifying proteins and
enabling protein aggregation [8]. As cellular prion pro-
teins are present in dopaminergic neurons and modulate the
dopaminergic system, we theorize that in combination with
high levels of pesticides in the surrounding envionment,
substantial levels of Potash K2O could also be contribut-
ing to the neurodegenerative properties of CJD [24]. As
mentioned above, in being oxidized, K2O is converted
to K. It has previously been discerned that K can inhibit
ALDH, while promoting dopamine production [4, 1]. In
turn, Potash K2O is enabling the spread and build up of
DOPAL throughout the brain, which with its toxic prop-
erties is causing the degeneration of prion proteins, that
accumulate into amyloid plaques. As a result, Potash K2O
aids in neurodegeneration and allows for the formation of
characteristic lesions of CJD.

6 Conclusion
Identifying unique biomarkers and characteristic causes

of CJD is a challenging task due to the historic lack of infor-
mation around the disease. Prior studies have highlighted
BSE as a cause for vCJD and genetic mutations on the
PRNP prion gene as a cause for hereditary CJD. However,
these findings only account for 10% to 15% of CJD cases
annually.

To obtain a more in-depth understanding of where the
PrP(2 prion’s neurodegenerative qualities stem from, we
introduced 8 new variables to a data set with existing
variables (Beef Production). These new variables are cate-
gorized as factors that cause environmental contamination
of soil, food, and water, which has previously been iden-
tified as causes of similar prion and neurodegenerative
diseases. Using the new data set as testing and training sets,
RF, LSTM, and ENR are used to to predict historic CJD

levels. The comparative analysis based on RMSE, MBE,
and MAE values clearly indicated that the ENR model gave
the best prediction of CJD levels. Results showed that the
ENR model gives RMSE (0.179), MBE (0.046), and MAE
(0.136), which we defined as being extremely accurate and
significant comparative analysis values.

In observing the accuracy of the ENR model, its weight-
ing of variables was further investigated. These weight-
ings revealed that unhealthy lifestyle habits, such as obe-
sity, smoking, and beer consumption, along with rapid
greenhouse gas emission and pollution contribute to CJD
infection. Nonetheless, it was also revealed pesticides
and fertilizers, in specific, their chlorinated hydrocar-
bons, organophosphates, neonicotinoids, and potash K2O
compounds, as potential contributors to the characteristic
spongiform degeneration of CJD. In specific, chlorinated hy-
drocarbons and neonicotinoids were attributed to nerve cell
death, while organophosphates and potash K2O compounds
were found to mitigate the nerve cell communication and
activation of the adaptive immune system. Furthermore, it
was proposed that potash K2O contributed to the inhibition
of ALDH in the brain, which likewise aided in neurode-
generation but ultimately may be an underlying reason for
the accumulation of PrP(2 and the formation of amyloid
plaques.

For future work, further clinical studies can be per-
formed for those in the presence of high concentrations
of chlorinated hydrocarbons, organophosphates, neonicoti-
noids, and potash K2O compounds. In particular it will
be important to investigate how those in an agricultural
setting are more vulnerable to CJD infection. Furthermore,
deep learning models could be developed, which using the
identified variables, could provide an opportunity for early
diagnosis of CJD. Upon diagnosis, developing case studies
to understand the disease model of CJD could be pertinent
in contributing to treating symptoms and delaying disease
disease progression.
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