
A Case-Based Recommender for Task Assignment in Heterogeneous
Computing Systems

S. Ghanbari1 M. R. Meybodi1 K. Badie2

1Computer Engineering Department
Amirkabir University

Tehran Iran

2IT Research Faculty
Iran Telecommunication Research Center

Tehran, Iran

Abstract

Case-based reasoning (CBR) is a knowledge-based
problem-solving technique, which is based on reuse of
previous experiences. In this paper we propose a new
model for static task assignment in heterogeneous
computing systems. The proposed model is a
combination of the case based reasoning and the
learning automata model. In this new model a learning
automata model is used as adaptation mechanism
which adapts previously experienced cases to the
problem to be solved. The objective of the proposed
model is to reduce the number of iterations required to
find a semi-optimum solution. The application is
modeled as a set of independent tasks and the
heterogeneous computing system is modeled as a
network of machines. Using computer simulation, it is
shown that the combined model outperforms the model
that only uses learning automata.

1. Introduction

Mixed-machine heterogeneous computing (HC)
environments utilize a distributed suite of different
high-performance machines, interconnected with high-
speed links, to perform different computationally
intensive applications that have diverse computational
requirements. The matching of the set of tasks to
machines and scheduling the execution order of these
tasks is referred to as mapping. The general problem of
optimally mapping tasks to machines in an HC suite
has been known to be NP-complete[7].

Metatask is defined as a collection of independent
tasks with no inter-task data dependencies. Metatasks
occur in many situations. For example, all of the jobs
submitted to a supercomputer center by different users
would constitute a metatask. Another example of a
metatask would be a group of image processing
applications all operating on different images[5]. The
mapping of the Metatasks is being performed statically
(i.e., off-line, or in a predictive manner). The goal of
this mapping is to minimize the total execution time of
the metatask, which is referred to as makespan.

In the literature, varieties of mathematical
formulations have been developed for the task
assignment problem. Approaches to the problem based
on graph theoretic techniques, simulated annealing[9],
A* state space search[10], and genetic techniques[8]
have been proposed. In [1], a learning automata model
has been proposed, where the key feature of this model
is its ability to optimize multiple cost metrics. The
major problem with all the mentioned approaches
above is that for each task assignment, they build the
solution from the scratch and do not use their past
experiences. It should be noted that approaches like
GA and other evolutionary computing systems, despite
of their ability in finding the optimum structures for
problem solving, are not capable of handling directly
the experience management issue.

Case-based reasoning is an approach to use the
previous experiences of solving the problem in
someway to solve the current problem. This can be
achieved mainly through adapting the solutions of
those previous experiences which are similar to the
current problem.

This paper presents a novel model for task
assignment over a set of idle processors in a
heterogeneous computing environment by means of
case-based reasoning. Adaptation of stored cases and
searching for new solutions are done by using learning
automata. Using case-based reasoning approach
enables the model to incorporate its former cases to
find a suitable mapping in a relatively short time. The
proposed model is compared to the model reported in
[1].

The rest of the paper is organized as follows.
Section 2 introduces related works. Briefly reviewing
the discussed HC system model and the learning
automata concept, section 3 introduces the learning
automata model used for adaptation. In section 4, the
proposed case-based reasoning model is introduced.
Section 5 discusses experiments and results. The last
section provides conclusions.

2. Related Works

Proceedings of the Fourth International Conference on Hybrid Intelligent Systems (HIS’04)
0-7695-2291-2/04 $ 20.00 IEEE

Case-based reasoning (CBR) is a knowledge-based
problem-solving technique that is based on reuse of
previous experience [4]. Unlike traditional knowledge-
based techniques, which solve problems from scratch
by reasoning with general knowledge, CBR focuses on
specific problem-solving experience captured in cases
that are collected in a case base. New problems are
solved by retrieving cases that deal with previous
similar problems. The solutions recorded in those
similar cases are then adapted to become a solution for
the new problem (this process is known as adaptation).
Thus, the two basic hypotheses of CBR are similar
problems have similar solutions, and reuse is more
feasible than problem solving from scratch.

In recent years, case-based reasoning(CBR) which is
a sort of analogical learning have shown high
capabilities in different areas such as decision making,
prediction, diagnosis, planning, quality/process control,
decision support and information retrieval. However,
almost no CBR applications are reported for task
assignment and scheduling in distributed computing
systems up to the composition of this paper. Other
CBR applications in distributed computing are
reported, for example in [16] a case-based expert
system is reported which helps an organization assess
its computing alternatives.

On the other hand, research on task assignment for
scientific computations on homogeneous as well as
heterogeneous systems has been extensively
investigated in the literature [12][13]. There are variety
of works done in this field such as: OLB(Opportunistic
Load Balancing), MET (Minimum Execution
Time)[14], MCT (Minimum Completion Time)[14],
Min_min[14], Max_min [14],GA[15],A*[10], Learning
automata[1].

3. Background

3.1. HC System Model

This section presents a general model of the
proposed framework for task assignment in the HC
system. Figure 1 depicts a schematic representation of
the framework. The environment consists of the
heterogeneous suite of machines that are used to
execute the application. The scheduling system consists
of the proposed case-based recommender, HC system
model and the learning automata model. These are used
by the scheduler to assign the subtasks to different
machines.

In the proposed model, some assumptions are made.
Firstly, the metatask is assumed to be decomposed into
multiple independent tasks. Secondly, the HC system is

assumed to consist of a set of heterogeneous machines,
which communicate by means of an underlying
interconnection network. Thirdly, the expected
execution time of the tasks on each machine in the HC
suite is known a priori. These execution times can be
obtained by task profiling and analytical benchmarking
techniques[11].

Figure 1. Model of the proposed framework

The estimate of the expected execution time for
each task on each machine is known prior to execution
and contained within a ×µ ETC (Expected Time to
Compute) matrix. One row of the ETC matrix contains
the estimated execution times for a given task on each
machine. Similarly, one column of the ETC matrix
consists of the estimated execution times of a given
machine for each task in the metatask. Thus, for an
arbitrary task si and an arbitrary machine mj , ETC(simj)
is the estimated execution time of si on mj. The
ETC(si,mj) entry could be assumed to include the time
to move the executables and data associated with task si

from their known source to machine mj.

3.2. The Learning Automata Model

This section deals with the concept of learning
automata first and then proceeds with a description of
the learning automata model used as the adaptation
mechanism.

Learning Automata are adaptive decision-making
devices operating on unknown random environments.
A Learning Automaton has a finite set of actions and
each action has a certain probability (unknown for the
automaton) of getting rewarded by the environment of
the automaton. The aim is to learn to choose the
optimal action (i.e. the action with the highest
probability of being rewarded) through repeated
interaction on the system. If the learning algorithm is
chosen properly, then the iterative process of
interacting on the environment can be made to result in

Proceedings of the Fourth International Conference on Hybrid Intelligent Systems (HIS’04)
0-7695-2291-2/04 $ 20.00 IEEE

selection of the optimal action. Learning Automata can
be classified into two main families: fixed structure
learning automata and variable structure learning
automata (VSLA) [3]. In the following, the variable
structure learning automata is described.

A VSLA is a quintuple < , , p, T(, ,p) >, where
, , p are an action set with s actions, an environment

response set and the probability set p containing s
probabilities, each being the probability of performing
every action in the current internal automaton state,
respectively. The function of T is the reinforcement
algorithm, which modifies the action probability vector
p with respect to the performed action and received
response. Assume ={0,1}. A general linear schema
for updating action probabilities can be represented as
follows. Let action i be performed then

If (n)=0,

ijjnpanp

npanpnp

jj

iii

≠∀−=+
−+=+
)()1()1(

)](1[)()1(

If (n)=1,

ijjnpbsbnp

npbnp

jj

ii

≠∀−+−=+
−=+

)()1()1()1(

)()1()1(

where a and b are reward and penalty parameters.
When a=b, the automaton is called LRP. If 0<a<<b<1
the automaton is called LP R, and if 0<b<<a<1, the
automaton is called LR P. For more Information about
learning automata the reader may refer to [3].

Figure 2. Learning automata model
while(true)
Begin

LAi selects action for all 1 i
Evaluate the makespan
If Tµ (n)<Tµ (n-1) then LAi.Signal(0) for all 1 i

Else LAi.Signal(1) for 1 i
If no change in makespan occurs for 150 consecutive
iterations or 10000 iterations is over then exit
End

Figure 3. General procedure for learning
automata model

As mentioned before, learning automata is used as
the case adaptation mechanism in the proposed task
assignment problem. Figure 3 shows the schematic of
the learning automata model. The model is constructed
by associating every task si, 1 i , in the metatask
with a variable structure learning automaton
((i), (i),A(i)).

Since the tasks can be assigned to any of the µ
machines, the action set of all learning automata are
identical, Therefore, for any task si, 1 i ,

(i)=m1,m2,…,mµ. It is assumed that the environment is
a P-model so the input set for each learning automaton
A(i) is {0,1}, where (i) equal to 0 indicates a
favorable, and equal to 1 indicates an unfavorable
response. If the value of makespan at iteration n is less
than the value of makespan at iteration n-1, then the
input to each automaton is favorable; otherwise it is
unfavorable. The general procedure for learning
automata model is shown in figure 4.

4. The Case-Based Reasoning Model

In CBR, a set of cases stored in a case base is the
primary source of knowledge. Cases represent specific
experience in a problem-solving domain, rather than
general rules. The main activities when solving
problems with cases are described in the case-based
reasoning cycle[4]. This cycle proposes the four steps:
retrieve, reuse, revise, and retain. First, the new
problem to be solved must be formally described as a
case (new case). A case consists of three parts: Problem
situation including the initial conditions and the goal,
solution and the performance. Then, a case that is
similar to the current problem is retrieved from the case
base. In the next step, the solution contained in this
retrieved case is reused to solve the new problem; i.e.,
the solution is adapted in order to come to a solution of
the current problem. Thereby, a new solution is
obtained and presented to the user, who can verify and
possibly revise the solution. The revised case (or the
experience gained during the case-based problem
solving process) is then retained for future problem
solving; e.g., the case can be stored in the case base.
The last step realizes the learning phase of a CBR
application. It should be noted that CBR does not offer
a definite solution but proposes hypotheses and ideas to
go through the solution space. There are various
approaches for solution adaptation where
transformation and combination are among well-known
techniques[2]. In the proposed model, the adaptation,
which is performed by means of learning automata, is a
hybrid combinational transformational adaptation.

Proceedings of the Fourth International Conference on Hybrid Intelligent Systems (HIS’04)
0-7695-2291-2/04 $ 20.00 IEEE

Figure 5 shows the schematic of the proposed case
based recommender. The three parts of a case are ETC,
Mapping and makespan; which is denoted by a 3-tuple
(ETC,π,C). Similarity criterion is defined as the
similarity between two matrixes: ETC of the newly
arrived metatask and ETCs of the stored cases, which is
evaluated as the Euclidian distance of the two matrixes.
In general, calculating Euclidian distance of two
matrixes of size ×µ has the time complexity of order
O(×µ). To reduce computation cost of seeking in the
case base, we define similarity criterion as the
Euclidian distance of the first columns of two matrixes.
Due to the fact that tasks in a metatask are arbitrary,
without loss of generality, it is assumed that an ETC
matrix is sorted on the first column on a descending
bases, i.e ETC[1][i] ETC[1][j] for all 1 i < j ., in
order to make the Euclidian distance meaningful as a
similarity criterion.

Figure 4. The proposed case-based
recommender model

After retrieval of a set of cases, adaptation phase
starts. Adaptation is the process of transforming the
map of retrieved cases so as to find a mapping for the
newly arrived metatask. This process is done by means
of the learning automata model described in previous
section.

Let be the set of selected cases. To build up the
adaptation model for each case k, 1 k | |, every
task si is associated with a variable structure learning

automata)(iA kϕ
 and it is set biased to the mapped

machine mj where)(im k
j

ϕπ= . It is done by

initializing the automaton action probability vector near
one for the action corresponding to mj. For a biased
automaton, the rate of penalizing is set to a value much
greater than the rate of rewarding. It helps a wrongly

biased automaton correct itself rapidly. On the other

hand, if)(ikϕπ is not available (i.e. in the retrieved

case no corresponding machine is defined for si), action
probabilities of the associated automaton are set equal
(i.e. left unbiased). Learning automata models for each

k start iterating in the way explained in the previous
section until one of the termination conditions is
fulfilled.

The mappings adapted by each learning automata
model are used for the next step, proposing a solution.
Mappings derived from are compared and the
mapping with the minimum makespan is selected as the
final solution. If the final solution has a major
difference with its original case, it is stored as a new
case.

Due to starting from a point near the solution in the
solution space, the proposed model reduces number of
iterations. In the next section, our assertion is
investigated through some experiments.

5. Experimental Results

5.1. Simulation Environment

For the simulation studies, characteristics of the
ETC matrices were varied in an attempt to represent a
range of possible HC environments. The ETC matrices
used were generated using the method introduced in
[6].

To generate different mapping scenarios, the
characteristics of the ETC matrix were varied based on
several different methods from[5]. The amount of
variance among the execution times of tasks in the
metatask for a given machine is defined as task
heterogeneity. Machine heterogeneity represents the
variation that is possible among the execution times for
a given task across all the machines.

To further vary the characteristics of the ETC
matrices in an attempt to capture more aspects of
realistic mapping situations, different ETC matrix
consistencies were used. An ETC matrix is said to be
consistent if whenever a machine mj executes any task
si faster than machine mk, then machine mj executes all
tasks faster than machine mk [6]. In contrast,
inconsistent matrices characterize the situation where
machine mj may be faster than machine mk for some
tasks and slower for others.

Eight different cases for ETC matrix characteristics
are used in this study: high or low task heterogeneity,
high or low machine heterogeneity, and one type of
consistencies; consistent or inconsistent. The
experiments are done over 16 machines and 512 tasks.

Proceedings of the Fourth International Conference on Hybrid Intelligent Systems (HIS’04)
0-7695-2291-2/04 $ 20.00 IEEE

5.2. Experiment No.1

In this experiment the impact of combination of case
based reasoning and learning automata over iteration
and makespan is examined. The iteration needed to
resolve a mapping is compared with the model that
uses learning automata only, where the learning
automata model uses reinforcement algorithm LR P with
a=0.1 and b=0.01.

The reinforcement scheme of the learning automata
model used for adaptation is LP R with a=0.05 and
b=0.1. For conducting the experiment, the case bank is
initially filled with 100 cases, and each experiment is
done for 20 runs.

As shown in table 1, in the worst case i.e.
experiment No.7, at least 10 percent reduction in the
number of iterations is gained and it peaks to 17
percent in experiment No.2.

Table 1. Iteration enhancement for each model
(Case-base of size 100)

E
xperim

ent

M
achine

H
eterogeneity

T
ask

H
eterogeneity

C
onsistent

M
akespan

Increase

Iteration
E

nhancem
ent

1 Low Low Yes 4.8% 12.7%
2 Low High Yes 3.8% 16.8%
3 High Low Yes 3.6% 13.1%
4 High High Yes 4.2% 12.6%
5 Low Low No 5% 12.5%
6 Low High No 3.5% 11.7%
7 High Low No 4.03% 10.35%
8 High High No 4.01% 11.82%

5.3. Experiment No.2

As mentioned in the previous section, to adapt a
case to the problem, a learning automaton is assigned
to each task, and set biased to the mapping recorded in
the case. This may raise a question: setting LA biased
to an action, can it escape from it? The answer is
shown in table 2. The experiment is made for 10 cases
with low task and machine heterogeneity. It is seen that
95 out of 512 assignments changed after adaptation.
This shows that wrongly biased automata can correct
themselves.

Table 2. Assignments change after adaptation
Case
No.

Iterations
reduced

changed unchanged

1 53 96 416
2 168 92 420
3 -32 101 411
4 136 100 412
5 189 93 419
6 151 110 402
7 9 97 415
8 214 85 427
9 -23 92 420

10 26 85 427

5.4. Experiment No.3

This experiment shows that by gradually filling the
case base with new cases, the system improves its
performance over time. The experiment starts with a
case base with only one case and continues until the
case base contains 50 cases. This experiment is
performed for low task and machine heterogeneity and
results reported are the average of 20 runs. Figure 6
shows the difference between the number of iterations
made for the retrieved case and the number of
iterations made for the newly adapted case. A rapid
decline in the difference indicates that the proposed
model enhances its performance overtime.

-100

-50

0

50

100

150

200

250

300

350

0 10 20 30 40 50

Number of cases

D
if

fe
re

n
ce

 in
 it

er
at

io
n

Figure 5. Iteration reduction over time

6. Conclusion

In this paper, a case-based reasoning model for task
assignment in heterogeneous computing system based
on learning automata is proposed. Previously stored
cases speed up the process of finding a semi-optimized
mapping from metatask to HC. The main idea is to use
mappings of experienced cases to find a solution for
newly introduced cases. By conducting some
experiments we showed that the proposed model which
is a combination of case based reasoning and a learning
automata model outperforms the model that only uses
learning automata. Experiments showed 10% reduction

Proceedings of the Fourth International Conference on Hybrid Intelligent Systems (HIS’04)
0-7695-2291-2/04 $ 20.00 IEEE

in the number of iterations needed to find the solution,
which is significantly cost-effective.

7. References

[1]. R. D. Venkataramana and N. Ranganathan, "Multiple
Cost Optimization for Task Assignment in Heterogeneous
Computing Systems Using Learning Automata," IEEE 8th
Heterogeneous Computing Workshop, 1999, pp.137.
[2]. W. Wilk, R. Bergmann, "Techniques and Knowledge
Used for Adaptation During Case-Based Problem Solving
Techniques and Knowledge Used for Adaptation During
Case-Based Problem Solving," Lecture Notes in Artificial
Intelligence, Springer-Verlag, Vol. 1416, 1998, pp. 497-506.
[3]. K. Narendra and M. A. L. Thathachar. Learning
Automata: An Introduction, Prentice Hall, Englewood Cliffs,
New Jersey, 1989.
[4]. R. Bergman, "Engineering Applications of Case-Based
Reasoning," Journal of Engineering Applications of
Artificial Intelligence, Vol. 12, 1999, pp.805.
[5]. T. D. Braun, H. J. Siegel, and N. Beck, "A Comparison
of Eleven Static Heuristics for Mapping a Class of
Independent Tasks onto Heterogeneous Distributed
Computing Systems," Journal of Parallel and Distributed
Computing, Vol.61, 2001, pp. 810-837.
[6]. M. Maheswaran, S. Ali, H. J. Siegel, D. Hensgen, and
R. F. Freund, "Dynamic mapping of a class of independent
tasks onto heterogeneous computing systems," Journal of
Parallel Distributed Computing, Vol.59, 1999, pp.107-121.
[7]. D. Fernandez-Baca, "Allocating Modules to Processors
in a Distributed System," IEEE Transaction on Software
Engineering, Vol.15, 1989, pp.1427-1436.

[8]. H. Singh and A. Youssef, "Mapping and Scheduling
Heterogeneous Task Graphs Using Genetic Algorithms," 5th
IEEE Heterogeneous Computing Workshop, 1996, pp.86-97.
[9]. M. Coli and P. Palazzari, "Real Time Pipelined System
Design through Simulated Annealing," Journal of Systems
Architecture, Vol.42, 1996, pp.465-475.
[10]. K. Chow and B. Liu, "On Mapping Signal Processing
Algorithms to a Heterogeneous Multiprocessor System,"
International Conference on Acoustics, Speech, and Signal
Processing, Vol.3, 1991, pp.1585-1588.
[11]. A. A. Khokhar, V. K. Prasanna, M. E. Shaaban, and C.
L. Wang, "Heterogeneous Computing: Challenges and
Opportunities," IEEE Computing, Vol.26, 1993, pp.18-27.
[12]. T. Cavasant and J. Kuh, "A Taxonomy of Scheduling in
General-Purpose Distributed Computing System," IEEE
Transactions on software Engineering, Vol.12, 1996,
pp.662-675.
[13]. D. Gupta and P. Bepari, "Load Sharing in Distributed
Systems," National Workshop on Distributed Computing,
1999.
[14]. R. Armstrong, D. Hensgen, and T. Kidd, "The Relative
Performance of Various Mapping Algorithms is independent
of sizable variances in run-time predictions," 7th IEEE
Heterogeneous Computing Workshop, 1998, pp. 79-87.
[15]. L. Wang, H. J. Siegel, V. P. Roychowdhury, and A. A.
Maciejewski, "Task Matching and Scheduling in
Heterogeneous Computing Environments Using a Genetic-
Algorithm-based Approach," Journal of Parallel Distributed
Computing, Vol. 47, 1997, pp.1-15.
[16]. R. S. Freeman and R. DiGiorgio, "Assessing
Alternative Technologies for the Cost-Effective Computation
of Derivatives," Applied Artificial Intelligence, 1997,
pp.491-503.

Proceedings of the Fourth International Conference on Hybrid Intelligent Systems (HIS’04)
0-7695-2291-2/04 $ 20.00 IEEE

