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Abstract 

Case-based reasoning (CBR) is a knowledge-based 
problem-solving technique, which is based on reuse of 
previous experiences. In this paper we propose a new 
model for static task assignment in heterogeneous 
computing systems. The proposed model is a 
combination of the case based reasoning and the 
learning automata model. In this new model a learning 
automata model is used as adaptation mechanism 
which adapts previously experienced cases to the 
problem to be solved. The objective of the proposed 
model is to reduce the number of iterations required to 
find a semi-optimum solution. The application is 
modeled as a set of independent tasks and the 
heterogeneous computing system is modeled as a 
network of machines. Using computer simulation, it is 
shown that the combined model outperforms the model 
that only uses learning automata.  

1. Introduction 

Mixed-machine heterogeneous computing (HC) 
environments utilize a distributed suite of different 
high-performance machines, interconnected with high-
speed links, to perform different computationally 
intensive applications that have diverse computational 
requirements. The matching of the set of tasks to 
machines and scheduling the execution order of these 
tasks is referred to as mapping. The general problem of 
optimally mapping tasks to machines in an HC suite 
has been known to be NP-complete[7]. 

Metatask is defined as a collection of independent 
tasks with no inter-task data dependencies. Metatasks 
occur in many situations. For example, all of the jobs 
submitted to a supercomputer center by different users 
would constitute a metatask. Another example of a 
metatask would be a group of image processing 
applications all operating on different images[5]. The 
mapping of the Metatasks is being performed statically 
(i.e., off-line, or in a predictive manner). The goal of 
this mapping is to minimize the total execution time of 
the metatask, which is referred to as makespan.  

In the literature, varieties of mathematical 
formulations have been developed for the task 
assignment problem. Approaches to the problem based 
on graph theoretic techniques, simulated annealing[9], 
A* state space search[10], and genetic techniques[8] 
have been proposed.  In [1], a learning automata model 
has been proposed, where the key feature of this model 
is its ability to optimize multiple cost metrics. The 
major problem with all the mentioned approaches 
above is that for each task assignment, they build the 
solution from the scratch and do not use their past 
experiences. It should be noted that approaches like 
GA and other evolutionary computing systems, despite 
of their ability in finding the optimum structures for 
problem solving, are not capable of handling directly 
the experience management issue. 

Case-based reasoning is an approach to use the 
previous experiences of solving the problem in 
someway to solve the current problem. This can be 
achieved mainly through adapting the solutions of 
those previous experiences which are similar to the 
current problem. 

This paper presents a novel model for task 
assignment over a set of idle processors in a 
heterogeneous computing environment by means of 
case-based reasoning. Adaptation of stored cases and 
searching for new solutions are done by using learning 
automata. Using case-based reasoning approach 
enables the model to incorporate its former cases to 
find a suitable mapping in a relatively short time. The 
proposed model is compared to the model reported in 
[1].

The rest of the paper is organized as follows. 
Section 2 introduces related works. Briefly reviewing 
the discussed HC system model and the learning 
automata concept, section 3 introduces the learning 
automata model used for adaptation. In section 4, the 
proposed case-based reasoning model is introduced. 
Section 5 discusses experiments and results. The last 
section provides conclusions. 

2. Related Works 
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Case-based reasoning (CBR) is a knowledge-based 
problem-solving technique that is based on reuse of 
previous experience [4]. Unlike traditional knowledge-
based techniques, which solve problems from scratch 
by reasoning with general knowledge, CBR focuses on 
specific problem-solving experience captured in cases 
that are collected in a case base. New problems are 
solved by retrieving cases that deal with previous 
similar problems. The solutions recorded in those 
similar cases are then adapted to become a solution for 
the new problem (this process is known as adaptation). 
Thus, the two basic hypotheses of CBR are similar 
problems have similar solutions, and reuse is more 
feasible than problem solving from scratch. 

In recent years, case-based reasoning(CBR) which is 
a sort of analogical learning have shown  high 
capabilities in different areas such as decision making, 
prediction, diagnosis, planning, quality/process control, 
decision support  and information retrieval. However, 
almost no CBR applications are reported for task 
assignment and scheduling in distributed computing 
systems up to the composition of this paper. Other 
CBR applications in distributed computing are 
reported, for example in [16] a case-based expert 
system is reported which helps an organization assess 
its computing alternatives.  

On the other hand, research on task assignment for 
scientific computations on homogeneous as well as 
heterogeneous systems has been extensively 
investigated in the literature [12][13]. There are variety 
of works done in this field such as: OLB(Opportunistic 
Load Balancing), MET (Minimum Execution 
Time)[14], MCT (Minimum Completion Time)[14],
Min_min[14], Max_min [14],GA[15],A*[10], Learning 
automata[1]. 

3. Background 

3.1. HC System Model 

This section presents a general model of the 
proposed framework for task assignment in the HC 
system. Figure 1 depicts a schematic representation of 
the framework. The environment consists of the 
heterogeneous suite of machines that are used to 
execute the application. The scheduling system consists 
of the proposed case-based recommender, HC system 
model and the learning automata model. These are used 
by the scheduler to assign the subtasks to different 
machines. 

In the proposed model, some assumptions are made. 
Firstly, the metatask is assumed to be decomposed into 
multiple independent tasks. Secondly, the HC system is 

assumed to consist of a set of heterogeneous machines, 
which communicate by means of an underlying 
interconnection network. Thirdly, the expected 
execution time of the tasks on each machine in the HC 
suite is known a priori. These execution times can be 
obtained by task profiling and analytical benchmarking 
techniques[11]. 

Figure 1. Model of the proposed framework 

The estimate of the expected execution time for 
each task on each machine is known prior to execution 
and contained within a ×µ ETC (Expected Time to 
Compute) matrix.  One row of the ETC matrix contains 
the estimated execution times for a given task on each 
machine. Similarly, one column of the ETC matrix 
consists of the estimated execution times of a given 
machine for each task in the metatask. Thus, for an 
arbitrary task si and an arbitrary machine mj , ETC(simj)
is the estimated execution time of si on mj. The 
ETC(si,mj) entry could be assumed to include the time 
to move the executables and data associated with task si

from their known source to machine mj.

3.2. The Learning Automata Model 

This section deals with the concept of learning 
automata first and then proceeds with a description of 
the learning automata model used as the adaptation 
mechanism. 

Learning Automata are adaptive decision-making 
devices operating on unknown random environments. 
A Learning Automaton has a finite set of actions and 
each action has a certain probability (unknown for the 
automaton) of getting rewarded by the environment of 
the automaton. The aim is to learn to choose the 
optimal action (i.e. the action with the highest 
probability of being rewarded) through repeated 
interaction on the system. If the learning algorithm is 
chosen properly, then the iterative process of 
interacting on the environment can be made to result in 
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selection of the optimal action. Learning Automata can 
be classified into two main families: fixed structure 
learning automata and variable structure learning 
automata (VSLA) [3]. In the following, the variable 
structure learning automata is described. 

A VSLA is a quintuple < , , p, T( , ,p) >, where 
, , p are an action set with s actions, an environment 

response set and the probability set p containing s
probabilities, each being the probability of performing 
every action in the current internal automaton state, 
respectively. The function of T is the reinforcement 
algorithm, which modifies the action probability vector 
p with respect to the performed action and received 
response. Assume ={0,1}. A general linear schema 
for updating action probabilities can be represented as 
follows. Let action i be performed then 
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where a and b are reward and penalty parameters. 
When a=b, the automaton is called LRP. If 0<a<<b<1
the automaton is called LP R, and if 0<b<<a<1, the 
automaton is called LR P. For more Information about 
learning automata the reader may refer to [3]. 

Figure 2. Learning automata model 
while(true)
Begin 

LAi selects action for all 1  i 
Evaluate the makespan 
If  Tµ (n)<Tµ (n-1) then LAi.Signal(0) for all 1  i 

Else LAi.Signal(1) for 1  i 
If no change in makespan occurs for 150 consecutive 
iterations or 10000 iterations is over then exit
End

Figure 3. General procedure for learning 
automata model 

As mentioned before, learning automata is used as 
the case adaptation mechanism in the proposed task 
assignment problem. Figure 3 shows the schematic of 
the learning automata model. The model is constructed 
by associating every task si, 1  i , in the metatask 
with a variable structure learning automaton 
( (i), (i),A(i)).

Since the tasks can be assigned to any of the µ
machines, the action set of all learning automata are 
identical, Therefore, for any task si, 1  i ,

(i)=m1,m2,…,mµ. It is assumed that the environment is 
a P-model so the input set for each learning automaton 
A(i) is {0,1}, where (i) equal to 0 indicates a 
favorable, and equal to 1 indicates an unfavorable 
response. If the value of makespan at iteration n is less 
than the value of makespan at iteration n-1, then the 
input to each automaton is favorable; otherwise it is 
unfavorable. The general procedure for learning 
automata model is shown in figure 4. 

4. The Case-Based Reasoning Model 

In CBR, a set of cases stored in a case base is the 
primary source of knowledge. Cases represent specific 
experience in a problem-solving domain, rather than 
general rules. The main activities when solving 
problems with cases are described in the case-based 
reasoning cycle[4]. This cycle proposes the four steps: 
retrieve, reuse, revise, and retain. First, the new 
problem to be solved must be formally described as a 
case (new case). A case consists of three parts: Problem 
situation including the initial conditions and the goal, 
solution and the performance. Then, a case that is 
similar to the current problem is retrieved from the case 
base. In the next step, the solution contained in this 
retrieved case is reused to solve the new problem; i.e., 
the solution is adapted in order to come to a solution of 
the current problem. Thereby, a new solution is 
obtained and presented to the user, who can verify and 
possibly revise the solution. The revised case (or the 
experience gained during the case-based problem 
solving process) is then retained for future problem 
solving; e.g., the case can be stored in the case base. 
The last step realizes the learning phase of a CBR 
application. It should be noted that CBR does not offer 
a definite solution but proposes hypotheses and ideas to 
go through the solution space. There are various 
approaches for solution adaptation where 
transformation and combination are among well-known 
techniques[2]. In the proposed model, the adaptation, 
which is performed by means of learning automata, is a 
hybrid combinational transformational adaptation. 
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Figure 5 shows the schematic of the proposed case 
based recommender. The three parts of a case are ETC,
Mapping and makespan; which is denoted by a 3-tuple 
(ETC,π,C). Similarity criterion is defined as the 
similarity between two matrixes: ETC of the newly 
arrived metatask and ETCs of the stored cases, which is 
evaluated as the Euclidian distance of the two matrixes. 
In general, calculating Euclidian distance of two 
matrixes of size ×µ has the time complexity of order 
O( ×µ). To reduce computation cost of seeking in the 
case base, we define similarity criterion as the 
Euclidian distance of the first columns of two matrixes. 
Due to the fact that tasks in a metatask are arbitrary, 
without loss of generality, it is assumed that an ETC 
matrix is sorted on the first column on a descending 
bases, i.e ETC[1][i] ETC[1][j] for all 1   i < j ., in 
order to make the Euclidian distance meaningful as a 
similarity criterion.  

Figure 4. The proposed case-based 
recommender model 

After retrieval of a set of cases, adaptation phase 
starts. Adaptation is the process of transforming the 
map of retrieved cases so as to find a mapping for the 
newly arrived metatask. This process is done by means 
of the learning automata model described in previous 
section. 

Let  be the set of selected cases. To build up the 
adaptation model for each case k, 1  k  | |, every 
task si is associated with a variable structure learning 

automata )(iA kϕ
 and it is set biased to the mapped 

machine mj where )(im k
j

ϕπ= . It is done by 

initializing the automaton action probability vector near 
one for the action corresponding to mj. For a biased 
automaton, the rate of penalizing is set to a value much 
greater than the rate of rewarding. It helps a wrongly 

biased automaton correct itself rapidly. On the other 

hand, if )(ikϕπ  is not available (i.e. in the retrieved 

case no corresponding machine is defined for si), action 
probabilities of the associated automaton are set equal 
(i.e. left unbiased). Learning automata models for each 

k start iterating in the way explained in the previous 
section until one of the termination conditions is 
fulfilled.  

The mappings adapted by each learning automata 
model are used for the next step, proposing a solution. 
Mappings derived from  are compared and the 
mapping with the minimum makespan is selected as the 
final solution. If the final solution has a major 
difference with its original case, it is stored as a new 
case.  

Due to starting from a point near the solution in the 
solution space, the proposed model reduces number of 
iterations. In the next section, our assertion is 
investigated through some experiments. 

5. Experimental Results 

5.1. Simulation Environment 

For the simulation studies, characteristics of the 
ETC matrices were varied in an attempt to represent a 
range of possible HC environments. The ETC matrices 
used were generated using the method introduced in 
[6].

To generate different mapping scenarios, the 
characteristics of the ETC matrix were varied based on 
several different methods from[5]. The amount of 
variance among the execution times of tasks in the 
metatask for a given machine is defined as task 
heterogeneity. Machine heterogeneity represents the 
variation that is possible among the execution times for 
a given task across all the machines. 

To further vary the characteristics of the ETC
matrices in an attempt to capture more aspects of 
realistic mapping situations, different ETC matrix 
consistencies were used. An ETC matrix is said to be 
consistent if whenever a machine mj executes any task 
si faster than machine mk, then machine mj executes all 
tasks faster than machine mk [6]. In contrast, 
inconsistent matrices characterize the situation where 
machine mj may be faster than machine mk for some 
tasks and slower for others. 

Eight different cases for ETC matrix characteristics 
are used in this study: high or low task heterogeneity, 
high or low machine heterogeneity, and one type of 
consistencies; consistent or inconsistent. The 
experiments are done over 16 machines and 512 tasks. 
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5.2. Experiment No.1 

In this experiment the impact of combination of case 
based reasoning and learning automata over iteration 
and makespan is examined. The iteration needed to 
resolve a mapping is compared with the model that 
uses learning automata only, where the learning 
automata model uses reinforcement algorithm LR P with 
a=0.1 and b=0.01.

The reinforcement scheme of the learning automata 
model used for adaptation is LP R with a=0.05 and 
b=0.1. For conducting the experiment, the case bank is 
initially filled with 100 cases, and each experiment is 
done for 20 runs.  

As shown in table 1, in the worst case i.e. 
experiment No.7, at least 10 percent reduction in the 
number of iterations is gained and it peaks to 17 
percent in experiment No.2. 

Table 1. Iteration enhancement for each model 
(Case-base of size 100)

E
xperim

ent

M
achine

H
eterogeneity

T
ask

H
eterogeneity

C
onsistent

M
akespan

Increase

Iteration
E

nhancem
ent

1 Low Low Yes 4.8% 12.7% 
2 Low High Yes 3.8% 16.8% 
3 High Low Yes 3.6% 13.1% 
4 High High Yes 4.2% 12.6% 
5 Low Low No 5% 12.5% 
6 Low High No 3.5% 11.7% 
7 High Low No 4.03% 10.35% 
8 High High No 4.01% 11.82% 

5.3. Experiment No.2 

As mentioned in the previous section, to adapt a 
case to the problem, a learning automaton is assigned 
to each task, and set biased to the mapping recorded in 
the case. This may raise a question: setting LA biased 
to an action, can it escape from it? The answer is 
shown in table 2. The experiment is made for 10 cases 
with low task and machine heterogeneity. It is seen that 
95 out of 512 assignments changed after adaptation. 
This shows that wrongly biased automata can correct 
themselves. 

Table 2. Assignments change after adaptation
Case 
No.

Iterations 
reduced

changed unchanged 

1 53 96 416 
2 168 92 420 
3 -32 101 411 
4 136 100 412 
5 189 93 419 
6 151 110 402 
7 9 97 415 
8 214 85 427 
9 -23 92 420 

10 26 85 427 

5.4. Experiment No.3 

This experiment shows that by gradually filling the 
case base with new cases, the system improves its 
performance over time. The experiment starts with a 
case base with only one case and continues until the 
case base contains 50 cases. This experiment is 
performed for low task and machine heterogeneity and 
results reported are the average of 20 runs. Figure 6 
shows the difference between the number of iterations 
made for the retrieved case and the number of 
iterations made for the newly adapted case. A rapid 
decline in the difference indicates that the proposed 
model enhances its performance overtime. 
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Figure 5. Iteration reduction over time 

6. Conclusion 

In this paper, a case-based reasoning model for task 
assignment in heterogeneous computing system based 
on learning automata is proposed. Previously stored 
cases speed up the process of finding a semi-optimized 
mapping from metatask to HC. The main idea is to use 
mappings of experienced cases to find a solution for 
newly introduced cases. By conducting some 
experiments we showed that the proposed model which 
is a combination of case based reasoning and a learning 
automata model outperforms the model that only uses 
learning automata. Experiments showed 10% reduction 
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in the number of iterations needed to find the solution, 
which is significantly cost-effective. 
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