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Abstract

Boosting is a general method for improving the accu-
racy of a learning algorithm. AdaBoost, short form for
Adaptive Boosting method, consists of repeated use of a
weak or a base learning algorithm to find correspond-
ing weak hypothesis by adapting to the error rates of
the individual weak hypotheses. A large, complex hand-
written data is under study. A repeated use of weak
learner on the huge data results in large amount of pro-
cessing time. In view of this, instead of using the entire
training data for learning, we propose to use only pro-
totypes. Further, in the current work, the base learner
consists of a nearest neighbour classifier that employs pro-
totypes generated using “leader” clustering algorithm.
The leader algorithm is a single pass algorithm and is lin-
ear in terms of time as well as computation complex-
ity. The prototype set alone is used as training data. In
the process of developing an algorithm, domain knowl-
edge of the Handwritten data, which is under study, is
made use of. With the fusion of clustering, prototype se-
lection, AdaBoost and Nearest Neighbour classifier, a
very high classification accuracy, which is better than re-
ported earlier on the considered data, is obtained in less
number of iterations. The procedure integrates cluster-
ing outcome in terms of prototypes with boosting.

1. Introduction

Boosting attempts to improve the accuracy of a learning
algorithm. It is based on the theoretical framework provided
by [16] for machine learning. [9], [10] observed that a
weak learning algorithm that could perform better than ran-
dom guessing can be boosted to an arbitrarily strong learn-
ing algorithm. [12] and [4] provided boosting algorithms
subsequently.

The Adaptive Boosting Algorithm was introduced
by [4]. Theoretical aspects of AdaBoost with a com-
plete overview were provided by [12, 13]. Adaptive Boost-
ing using Naive Bayes is carried out by [17].

Given a set of training data, AdaBoost makes use of a
weak learner or a base learner. The training data for the
weak learner is considered according to some weights and
classification is performed. Initially equal weights are as-
signed to each training pattern. At every subsequent itera-
tion, error in classification in the previous iteration is made
use to update the weights for the next iteration. The updates
of the weights is such that the weights of incorrectly clas-
sified examples are increased so that the weak learner is
forced to focus on the hard examples in the training set.
It was theoretically shown [12, 13] that with training algo-
rithm slightly better than random, training error drops ex-
ponentially. Section-4 and 5 discuss AdaBoost.

From the above discussion and also from [12, 13], it
is clear that in each iteration, choice of base learning algo-
rithm and amount of training data that is provided for learn-
ing, influence the efficiency. As the number of iterations in-
creases, the processing time becomes significant.

For the current study, a 10 category, 192 featured hand-
written data set of 10003 patterns is considered. Out of this
data 6670 patterns form the training data and 3333 patterns
form the test data. 40% of the training data is considered
as validation data. Preliminary analysis on the central ten-
dency and dispersion of the data is provided in Section-2.
Section-3 contains detailed discussion on the choice of base
learning algorithm.

While applying AdaBoost to the current data, one op-
tion is to use the entire data at each iteration subject to the
weight distribution. This would obviously consume large
amount of processing time. At this stage, three considera-
tions emerge. Firstly, if the training time could be reduced
by some manner, use of AdaBoost would be more efficient.
Secondly, efficiency also depends on the nature of base
learning algorithm. Thirdly, while dealing with 10-category
data, whether inherent similarities in the handwritten digits
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would help in designing an efficient algorithm, which brings
the domain knowledge of the data into use. These consider-
ations lead to an efficient, multi-stage algorithm. This is dis-
cussed in detail in Section-5.

Section-6 contains a discussion on the experimental re-
sults using the HW data as well as few datasets from UCI
repository [11]. Section-7 provides summary and conclu-
sions. Section-8 presents the scope for further work.

2. Preliminary Analysis of Handwritten Data

The handwritten digit data under study consists of train-
ing data of 6670 patterns. The data is equally divided into
10 classes, viz., 0 to 9. Each digit consisted of 192 binary
values, resulting into 16X12 Handwritten(HW) digit.

Before embarking on to the algorithm development the
measures of central tendency and dispersion are computed.
They are computed by considering non-zero features of the
binary pattern. The analysis helps in understanding the data,
which is made use in developing the algorithm. For exam-
ple in case of class-0, the patterns consist of features ranging
from 39 to 121. High standard deviation values of around 12
are observed for the classes 0,2,3,5 and 8. Least standard de-
viation of 5.9 was observed for the class 1. Also, it was ob-
served that patterns in the data vary in terms of orientation
of the digit, width and height.

From this initial analysis and the knowledge of the char-
acter shapes, it is found that the sets of HW digits, viz.,
(0,6,3,5,8) and (1,2,4,7,9) share commonality, in terms of
shape,features,inter-pattern distance and size. This observa-
tion is made use further in designing the algorithm.

3. Choice of Prototype Selection Algorithm

Boosting C4.5 [14] and comparing boosting C4.5 and
boosting stumps [4] was earlier carried out. AdaBoosting
Naive Bayes scoring was tried in [17]. In the current work,
the base learner is a Nearest Neighbour Classifier(NNC)
that employs prototype set generated from training data us-
ing Leader algorithm. The prototype set is used for NNC
instead of entire data. One of the objectives of the cur-
rent work is to present only prototypes from the data to
the base learner instead of entire data. Prototype selection
with the same set of HW digit data using Partition Around
Medoids(PAM) [8], CLARA [8] and Leader [15] was ear-
lier reported [1]. It was brought out [1] that Leader per-
formed better than PAM and CLARA in terms of classi-
fication accuracy. Also the computation time for Leader is
much less compared to both PAM and CLARA for the same
HW data. The complexity of PAM is O(k��� ���� and that
of CLARA is of O(k��+k(n-k)). Leader has linear complex-
ity. Although CLARA can handle larger data than PAM, its

efficiency depends on sample size and unbiasedness of the
sample.

In the current Section, a comparison of two algorithms,
viz., Condensed Nearest Neighbour(CNN) [5] and Leader
[15] clustering algorithms is carried out for prototype selec-
tion.

The outline of CNN [2] is provided in Figure-1.

1. Set two bins called STORE and GRABBAG

2. The first sample is placed in STORE

3. The second sample is classified by NN rule, using cur-
rent contents of store as reference set. If the second
sample is classified correctly, it is placed in GRAB-
BAG; Otherwise it is placed in STORE.

4. Proceeding in this manner, the �
�� sample is classi-

fied by the current contents of STORE. If classified cor-
rectly, it is placed in GRABBAG; otherwise it is placed
in STORE.

5. After one pass through the original sample set, the pro-
cedure continues to loop through GRABBAG until ter-
mination, in one of the following ways

� The GRABBAG is exhausted, with all its mem-
bers, transferred to store, or

� One complete pass is made through GRABBAG
with no transfers to STORE.

6. The final contents of STORE are used as reference
points for the NN rule; the contents of GRABBAG are
discarded

Fig.1 Condensed Nearest Neighbour rule [5]

The Leader clustering algorithm [15] [7] is provided in
Fig. 2. It is evident from Fig.2 that number of leaders de-
pends on the choice of the threshold. As the threshold in-
creases, the number of leaders reduces.

A comparative study is conducted between CNN and
Leader, by providing entire 6670 patterns as training data
and 3333 as test data for classifying them with the help of
NNC. Table-1 provides the results.

1. Choose a dissimilarity threshold. Start with an arbi-
trary pattern. Call it Leader-k, where k=1

2. For i=1 to n(total number of patterns in the training
data)

� Find the dissimilarity between Leader-k and the
training pattern.

� If the distance is less than the threshold, place
the pattern in already classified set. Else, con-
sider the pattern as a new leader. Update k.

3. Repeat step 2 till end of training data
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Distance No. of C.A.(%) CPU
Threshold Prototypes Time(sec)

CNN

- 1610 86.77 942.76

Leader

5 6149 91.24 1171.81
10 5581 91.27 1066.54
15 4399 90.40 896.84
18 3564 90.20 735.53
20 3057 88.03 655.44
22 2542 87.04 559.52
25 1892 84.88 434.00
27 1526 81.70 363.00

Table 1. Comparison between CNN and
Leader

Fig.2 Leader algorithm [15]

In Table-1, C.A. refers to Classification Accuracy and
CPU Time refers the processing time taken on Pentium III
500 MHz computer. The table, apart from comparing both
the methods, demonstrates the effect of threshold on num-
ber of prototypes selected, C.A. and processing time. A dis-
crete set of threshold values is chosen to demonstrate the ef-
fect of distance threshold. For binary patterns, the Hamming
distance provides equivalent information as Euclidean dis-
tance metric, while avoiding the need to compute the square
root. Hence Hamming distance is chosen as dissimilarity
measure, in view of binary patterns.

From the exercises, it is clear that CNN consumes more
time as compared to Leader algorithm for obtaining same
Classification Accuracy. On the other hand, CNN generates
fewer but fixed set of prototypes for a given order of input
data. Leader algorithm offers a way of improving classifi-
cation accuracy by means of threshold value based proto-
type selection and thus provides greater flexibility to oper-
ate with. In view of this, Leader is considered in the base
learner in the current study.

4. AdaBoost Procedure

The AdaBoost algorithm [14] iteratively calls a given
weak or base learning algorithm. The outline of the algo-
rithm is provided in Fig.3.

1. Input: m-labeled two-class patterns, ���� ���,i=1,2...m,
where �� are training data belonging to an instance
space X and �� are the corresponding two-class labels,
belonging to Y=�-1,+1�

2. Initialize weights, ����� �
�
�

3. For each of iteration,t=1,... T, carry out the following

� Train weak learner using distribution ��

� Weak learners finds a weak hypothesis, �� : X
������ �� for the given weight distribution,
��.

� The error in the weak hypothesis is given by,
��=���� [ �� �� �� ]
Here, D represents current weight distribution

� Choose �� � �
� ��
�
����
��

�

� Update

������� �
�����
��

� 	��� � if ������ � ��

������� �
�����
��

� 	�� � if ������ �� ��

� �������	����
��������
��

where 
� is such that
��

���������� � �

4. Output the final hypothesis:

���� � ��
��

��
���

��������

Fig.3 AdaBoost algorithm [14]

In the current implementation, selection of prototypes is
made according to the weights ��, instead of using them di-
rectly on the training examples [14].

4.1. Bootstrapping of data

The training data of 6670 samples is subdivided into a
training data set of 4000 samples and validation data set of
2670 samples. A bootstrapped data set [6] of 10000 sam-
ples is generated from the 4000-sample training data set by
means of simple random sampling with replacement. The
proposed algorithm is trained on the leaders generated from
this set of 10000 samples and validation is carried out with
2670 samples. The leader set, which provides best CA with
validation dataset, is tested against the test data and the re-
sults are presented. The 10000-sample data is hereafter re-
ferred to as training data set and original 6670-sample data
set as original training data.

5. Proposed Algorithm

The proposed procedure divides entire clustering
and classification procedure as multiple 2-class prob-
lems. Based on the preliminary analysis on the data, sim-
ilarity is observed among the two sets of classes, viz.,
set-1:(0,6,5,3,8) and set-2:(1,2,4,7,9). This observa-
tion is made use in devising the method.

At stage-1, the method consists of AdaBoost procedure
for finding prototypes that would classify the given data
into one of above two sets. The method is based on the
base learner of NNC employing prototype set generated by
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leader-clustering algorithm in every iteration. In doing so,
it considers complete training data of 10000 samples as in-
put. The classes of set-1 are termed as an equivalent class
of A and those of set-2 as B.

The input data for training the base learner is se-
lected according to the weight distribution, � �. Lead-
ers are computed with such selected data and the chosen
distance threshold as inputs. The leaders form proto-
types. The learning based on NNC and prototypes is tested
against complete training data. This is repeated at every it-
eration.

At each iteration of AdaBoost, the error in weak hypoth-
esis “��” and the parameter “��”, which is the weight as-
signed to the each weak hypothesis, are computed. Depend-
ing on the error in classification, the weights of training
dataset are re-computed at every subsequent stage. This pro-
cedure will pass through multiple iterations. At the end of
the chosen number of iterations, the iteration-wise data of
leaders, �� parameters are obtained.

The validation patterns are classified based on the leaders
and the �� parameters. The classification is carried out us-
ing a Nearest Neighbour Classifier [3] [2] , which forms the
weak hypothesis. The sign of linear combination of prod-
ucts of �� and the weak hypotheses provides the final hy-
pothesis. This is compared against the labels of validation
patterns to obtain the classification accuracy(CA) with the
validation data. The entire procedure is repeated for differ-
ent distance threshold values. The set providing best CA
with validation data is used to compute CA with the test
data.

At stage-2, two possibilities emerge. The given test pat-
tern is classified to belong to either of the two sets. In case
of set-1, it is further considered as five 2-class problems,
viz., 0 vs. rest of set-1, 3 vs. rest of set-1, 5 vs. rest of set-1,
6 vs. rest of set-1, 8 vs rest of set-1. Alternately, if it be-
longed to set-2, it is again considered as five 2-class prob-
lems, viz., 1 vs. rest of set-2, 2 vs.rest of set-2, 4 vs. rest of
set-2, 7 vs rest of set-2 and 9 vs. rest of set-2. AdaBoost pro-
cedure is applied in a similar manner as discussed above.

Thus at the end of the two stages, the given test pattern
is classified into one of the 10 classes.

5.1. Training and Validation Data

In case of stage-1, the training data consists of 10000 pat-
terns of bootstrapped data belonging all 10 classes. The val-
idation data consists of 2670 patterns. In case of stage-2,
depending on the classification, the training data consists of
5000 patterns belonging to one of the sets of 5 classes and
validation data consists of 1335 patterns corresponding to
the same set.

Distance Ave. No. of Ave. CA with CA with
Threshold prototypes trg data validn data

2.0 1623 97.50 97.60
2.5 1568 97.60 97.60
3.0 1523 97.30 97.68
3.5 1335 97.21 97.38
4.0 1222 96.86 97.12
4.5 861 95.95 96.33
5.0 658 93.96 95.36

Table 2. Results for set-1 vs set-2

Distance Ave. No. of Ave. CA with CA with
Threshold prototypes trg data validn data

2.0 1288 99.19 98.58
2.5 1277 99.13 98.50
3.0 1255 99.14 98.43
3.5 1174 99.18 98.43
4.0 1006 98.90 98.28
4.5 706 97.88 98.20
5.0 536 97.28 98.28

Table 3. Results for 0 vs rest of set-1

5.2. Test Data

The case which provided best classification accuracy
with the validation is considered for testing against the test
data. The test data consists of 3333 patterns.

6. Results and Discussion

In the first step, the entire data is considered. The train-
ing consisting of 10 classes is labeled into two equivalent
classes. AdaBoost is applied to the data. The exercise is re-
peated for different threshold values. The threshold values
affect the number of prototypes and thereby the classifica-
tion accuracy on validation data. Table-2 contains the re-
sults.

It can be observed from Table-2 that with increasing
threshold the number of prototypes reduces. The exercises
carried out by changing threshold values from 2.0 to 5.0
in steps of 0.1. The table contains summary of the results.
Out of different threshold values, the best C.A. with valida-
tion is obtained is 97.68% for the distance threshold of 3.0.
The corresponding C.A. with test data is 97.30%.

Table-3 and 4 contain, distance threshold-wise classifi-
cation accuracy with validation data, average classification
accuracy on training data during learning, average number
of prototypes for Classes 0 and 1 respectively. Table-5 pro-
vides summary of results of the entire exercise. The table
contains best classification accuracy obtained with valida-
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Distance Ave. No. of Ave. CA with CA with
Threshold prototypes trg data validn data

2.0 1148 99.32 98.43
2.5 1054 99.42 98.65
3.0 966 99.39 98.80
3.5 827 99.22 98.80
4.0 645 98.25 98.65
4.5 417 97.40 98.05
5.0 317 91.73 98.28

Table 4. Results for 1 vs rest of set-2

Class Distance Ave. num. CA with CA
of proto- valida- with

Thrshld types per tion test
iteration data data

set-1 vs
set-2 3.0 1523 97.68 97.30

0 3.5 1174 98.43 98.20
1 3.5 827 98.80 99.04
2 5.0 358 98.88 98.68
3 3.5 1176 95.21 95.74
4 3.5 867 96.93 96.10
5 3.5 1152 95.51 95.38
6 4.5 727 99.26 98.26
7 3.0 1060 95.66 95.92
8 3.5 1190 95.58 96.70
9 2.0 1216 94.90 94.00

Table 5. Summary of class-wise results

tion data with each class and the corresponding classifica-
tion accuracy with the test data.

In the current set of exercises, in some cases, more than
one threshold provided same classification accuracy. In such
a scenario, largest threshold value which provides least
number of prototypes is considered for reporting. This is
because less number of prototypes decreases classification
time.

It can be observed from results that at any stage of the it-
eration, the number of prototypes is much smaller than the
entire data. For example, in case of set-1 vs set-2(Table-
2), best classification accuracy is obtained with an average
number of prototypes per iteration as 1523 against the en-
tire training data of 10000 patterns. Also it can be observed
from Table-2, that in any iteration, the classification accu-
racy with validation data is always higher than 95%.

6.1. Results using bench mark data

The proposed algorithm is applied on three different
datasets other than the above mentioned HW data, viz.,

Name of Training Test Number Number
data data of of

Dataset size size features classes
WINE 100 78 13 3

THYROID 3772 3428 21 3
SONAR 104 104 60 2

Table 6. Details on bench mark data

Name of Case Dist. Average
the Descrip- Num. of C.A.

Dataset tion Thrshld leaders (%)
WINE 1 vs non-1 3.0 23 98.72%

2 vs non-2 1.5 43 93.59%
3 vs non-3 3.7 8 98.72%

THY 1 vs non-1 2.0 261 98.83%
2 vs non-2 3.7 104 94.31%
3 vs non-3 3.0 156 93.84%

SONAR 0 vs non-0 4.0 65 95.19%

Table 7. Results with bench mark data

WINE, THYROID and SONAR. The data is obtained from
UCI Repository [11] .

Table-6 consists of details on each of the bench mark
data. Table-7 contains CA(Classification Accuracy) ob-
tained using the current method.

The datasets are all numerical. Each feature-wise
value across all the training and test patterns, are normal-
ized to have zero mean and unit standard deviation. Eu-
clidean dissimilarity measure is employed. The proposed
algorithm is applied on the data. Classification Accura-
cies(CA) with NNC on WINE, THYROID and SONAR
are 92.31%, 93.26% and 95.19% respectively. It should
be noted that these CAs are obtained by considering en-
tire data.

It can be observed from Table-7 that in the first two data
sets of WINE and THYROID, the average CAs obtained
viz., 97.01% and 95.66% are higher than those of NNC. The
average number of leaders 25 and 174 is much less than the
full data size of 100 and 3772 respectively. In case of the
third data set, viz., SONAR, the CA obtained is same as
NNC, but with average number of prototypes, viz., 65 is
less than original data size of 104 patterns. The CA values
are higher than those reported in [18].

7. Summary and Conclusions

AdaBoost was earlier used with different base learners.
In the current work, NNC employing prototypes using clus-
tering based on leaders is proposed as base learner. The
clustering provides summarization of the entire data. The
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leaders computed on the large bootstrapped training data
are used as prototypes. The current study proposed a multi-
stage dichotomizer, based on AdaBoost and leader based
clustering algorithm. In order to prove the proposed pro-
cedure, a large bootstrapped training data of 10000 pat-
terns are considered. The design phase consists of data be-
ing classified into two categories at every stage of the al-
gorithm and classification accuracy assessed using valida-
tion data. The test phase consists of considering set provid-
ing highest CA with validation data. This set is used to clas-
sify the test data of 3333 patterns. The overall average clas-
sification accuracy thus obtained is 96.85%. The values are
higher than those achieved earlier [1, 18] on the same data.

In addition, the leader algorithm has a memory require-
ment of O(L) and is scalable. Efficient clustering algorithm
is integrated in the overall fusion framework. This is being
reported for the first time.

8. Future work

The selection of training examples from iteration to it-
eration is carried out based on the distribution � �. The se-
lection is based on cumulative distribution(weights) and the
random numbers following Uniform Distribution. The dif-
ferent selection schemes that are used in Genetic Algo-
rithms can be experimented in future. This could provide
better representatives for the next iteration and reduce num-
ber of iterations.
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