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Abstract

We introduce a procedure for mapping general data
records onto Boolean vectors, in the philosophy of ICA pro-
cedures. The task is demanded of a neural network with
double duty: i) extracting a compressed version of the data
in a tight hidden layer of a self-associative multilayer ar-
chitecture, and ii) mapping it onto Boolean vectors that op-
timize an entropic target. We prove that the components of
these vectors are approximately independent and appreci-
ate their ability to preserve data information in a statisti-
cally driven solution of benchmark classification problems.

1. The BICA algorithm

A suitable way of taking decisions based on data is to
split the decision process in two steps. The first is devoted
to mapping original variables onto propositional variables.
The second step combines them into a suitable Boolean
function [1]. The benefit of this procedure is twofold.

e From a strictly operational point of view, it depends
on the ability to rely on short formulas that describe
this function, which stands for its easy usability and
understandability. This calls, among other things, for
efficient compression of the data into Boolean vectors
to be considered as assignments to the above proposi-
tional variables.

e From a cognitive perspective, we may map the two
phases onto the environment-representation and rule-
identification tasks of a cognitive system. The former
is a key step in enabling the cognitive system to behave
as a truly autonomous agent. As a matter of fact, its
autonomy resides mostly in the ability to build its own
identification and representation of the environments it
is embodied into [4].
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Cognitive perspective is highly compliant with the strategy
we use for compressing data. Consider a multi-agent sys-
tem (MAS) [9] where artificial agents are called on to co-
operate in achieving a task. The first thing they must do
is communicate their goals with each other. Now, if their
ontologies [8] are completely unknown to each other, they
must discover ex novo a common vocabulary for interpret-
ing the signals they exchange whose sole feedback is the
suitability of the joint actions they perform. We too, in our
approach, do not bother with the semantics of the symbols
we produce in the first step, because we expect that it will
emerge from the statistics on their use. Rather, we are look-
ing for an actual random mapping with some semantic and
entropic constraints that come from an efficient use of the
new variables precisely for taking decisions (which we as-
sume here to be binary) based on them. Namely, we look for
a vector of Boolean variables v whose assignments reflect
(possibly through a distorting mirror) the relevant features
of the original — possibly continuous — data pattern x. This
means that a correspondence must exist between the two
parts, where Boolean assignments may coincide when they
code data patterns having the same value of a 0/1 decision
variable. It is precisely to improve the decision’s correct-
ness for new patterns that we need the mapping in order to
compute independent Boolean variables. This seems like a
typical task for unsupervised vector quantization methods
[7]. But we want to avoid unnecessary topological clus-
tering constraints at the basis of competitive methods such
as self organizing maps [11] or radial basis functions [10].
In summary, on the one hand, we want to extract indepen-
dent components of the signals, as the noble part of their
information content. On the other hand, stressing the fact
that independence is a property of the representation of the
data that we use, we search for this property precisely on a
Boolean representation of them suitable for correctly parti-
tioning them into positive and negative inputs of our deci-
sion rule. Accordingly, we call our method Boolean Inde-
pendent Component Analysis, BICA for short.
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1.1. The architecture

We split the mirroring of the original data into the target
Boolean vector in two parts: a true mirroring of the pat-
terns and a projection of a compressed representation of
them (obtained as an aside result of the first part) into the
space of Boolean assignments. The whole process is done
by a neural network with an architecture shown in Fig. 1
sharing the same input and hidden layer with the two output
segments A and B computing the Boolean assignments and
a copy of the input, respectively.

Part A:
Propositional Variable
Vector v = (v, v, . ..

Part B:
Mirroring of

,Un) Pattern Vector

N i |

/\/

| l

/ Hidden Layer \

I |

Pattern Vector x = (z1,x2,...,%q)

Figure 1. Layout of the neural network map-
ping features to symbols.

1.2. The learning algoritm

We train this network with a backpropagation algorithm
[18] whose § function is specified as follows.
Error backpropagation in part B Mirroring is a usual
functional requirement for an MLP [14]. We structured our
network as a three-layer network with the same number of
units in both input and output layers and a smaller number
of units in the hidden layer. Therefore the hidden layer con-
stitutes a bottleneck which collects in the state of its nodes
a compressed representation of the input. This part of the
network is trained according to a quadratic error function.
Hence the error 0, ; which is backpropagated to the hidden
layer from each unit j of this part upon presentation of s-th
input pattern is:

0sj = fau(nets j) (s j — 25 ) (1

where net, ; is a weighted sum of the inputs to the unit j
upon presentation of s-th pattern suitably normalized, z; ;
the corresponding output, and f, is the sigmoid function
[3].

Error backpropagation in part AThings are different for
the units of part A of the output. In this case we require that
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Figure 2. Graph of the function E, with n = 2.

the network minimizes the following error:

n
_ —Zsk
E;=1In H Zg e
k=1

This function, which we call the edge pulling function, has
the shape of an entropy measure that finds its minima in the
vertices of the neural network output space (see Fig. 2). The
error which is backpropagated from the units of part A is:

(1- zs,k)“%vk)) @)

68,]6 = fa(ct(nets,k)as,k (3)
where o
s Zs,k
= — =1 2 4
gk 6Zs,k 2t (1 — Zs,k) )

1.3. Directing the mapping

Using o i, as in (4), we let the network decide indepen-
dently about the values of part A to which it will converge
for each input pattern. Of course, parameters such as the
learning rate, the initial weights and the influence from part
B (through the hidden nodes) play an important role in this
decision and constitute at the same time the source of ran-
domness of our compression. But we want to govern this
sub-symbolic process also with syntactic feedbacks that we
distinguish in two kinds: local and global. At a local level,
the general idea is to insert into the av expression an extra
term which has the form of ‘directed noise’ added to the
initial value of o when we are not satisfied with the ‘cor-
rectness’ of the result. Effectively, when the convergence
value for some unit is not satisfactory we ‘shake’ the net-
work in order to search for a new equilibrium. Namely, we
relate this ‘punishment’ action with the Hamming distances
of the formed propositional vectors in order to avoid incon-
sistency. We want to force different vectors, with a Ham-
ming distance over a given threshold, in correspondence to
patterns that we know to belong to different categories of
our interest. Namely, we introduce a punishment action that
for an incorrect pattern s is set to 7, j either uniformly on
all output nodes or on a subset of those non contributing
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to the Hamming distance increase. Its value contributes to
s, with the following function 6 5.

es,k - (1 - QF(ZS,]C)) Ts,k (5)

where I is a threshold function. The first term in the brack-
ets specifies the sign of 0, j, so that the contribution to the
network parameters is in the opposite direction from the one
the unit is moving in. Finally, using a tuning parameter 7 4
to balance the mutual relevance of corrections coming from
parts B and A, we get the complete expression of s ,, Which

reads:
Zs,k

Qs = TA <99k + In ( Z ))
’ 1- Zs,k

1.4. In search of independent components

(6)

The joint goal of diminishing E and maintaining the
patterns well separated into positive (label 1) and negative
ones (label 0) brings the Boolean assignments to figure as
samples of independent random variables, thus we may say
that these variables are expectedly independent.

Lemma 1.1. With reference to the neural network and
training algorithm described above, if the neural net-
work outputs are correct and all close to the vertices of
the Boolean hypercube then their values stretched to the
vertices constitute assignments to expectedly independent
Boolean variables.

Proof. Via Jensen inequality [16] on the function g(z) =
zInz we prove that the normalized sum H of E; over the
patterns is majorized by the empirical entropy H of the joint
distribution of the propositional variables Zj, !, when they
are supposed to be Bernoulli i.i.d. In formulas:

-pmeex] (s

_ (1_Z%> In (1—szk>] = H(Z)

The left part of (7) has a minimum when each z, is
Boolean. The right part has a minimum when the assign-
ments are pushed towards independent Z;,’s, still preserving
the entropy of the features we are observing. Namely, de-
noting by L the Bernoulli variable recording the training set
labels, and by H(X), H(X/Y) and I(X,Y") the entropy
of X, the conditional entropy of X given Y and the mutual
information between X and Y [5] respectively, by defini-
tion I(Z,L) = H(L) — H(L/Z). Moreover, apart from
rare pathologies the maximization of I(Z, L) leads to the

(7

IBy default capital letters (such as X, Z) will denote random variables
and small letters (x,z) their corresponding realizations.
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computation of independent components Zj, of the feature
vector (which stands for a reduction of their redundancy),
see [2]. Now, H(L) is independent of the coding of the
patterns. Thus we aim to decrease H (L/Z) by decreasing
H (Z) with the additional constraint of separating the codes
of positive patterns from those of negative patterns. Indeed

e H(Z) overestimates H (Z) by a positive term account-
ing for the mutual information between Zj compo-
nents, that vanishes for Zj’s independent;

e we have

Epklnpk— > pilnpi=) pilnp;

i€A icA

>n)

Di In i
zeA zeApi) ZieApi ‘
Pi
ZEA pz
= —pa Zpi/A Inp;/a —PzZpi/z lnpi/z

€A i€A
H(Z/L)+ H(L)

Z’LEA p'L sz

—palnpa —pglnpg = (®)

where A is the set of positive pattern indices, A its
complement, and p, is the probability of the pattern or
set denoted by the index x. Hence a reduction of H(Z)
induces a reduction of H(Z/L) for a correct labeling
of the coded patterns (hence constant H (L)), which
might occur when the codes are well separated;

e H(Z/L) and H(L/Z) jointly decrease with an in-
creasing correlation between L and Z induced by a
reduction of H (Z).

Moreover, for z, . close to either 0 or 1 and binary vec-
tors almost orthogonal (so that also ) 22k g close to 0),
g(x) behaves in (7) almost linearly, maklng the inequality
almost an equality. Thus, within this range of values, i.e.
when the network is well trained, the cost function comes
close to promoting the extraction of Boolean independent
components from the original data. O

Remark 1.1. The key points of the above lemma is an al-
most trivial consideration that, since

H(Z,L)=H(Z/L)+ H(L) 9)
we obtain (8) if the partitioning of the data patterns’ space
through z is correct — in the sense that patterns mapping
into a same assignment of z have a same label. In this case
indeed, H(Z, L) = H(Z). Vice versa, a mapping from {x}
to {z} brings to independent components depending on the
functional definition of z, i.e. on the use we will do of it.
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Remark 1.2. The assumptions in the lemma hide the strong
condition that the patterns are well separated by the neural
network, which stands for a good generalization capabil-
ity of the trained network, provided that it performs well
on the training set. In an approximate satisfaction of this
constraint, the claim of the lemma gives an operational way
of fitting the usual goal of a clustering: great distance (in
a proper metrics) between clusters, and small distance —
hence minimum entropy — inside them. Actually the task we
require for the network is less hard than to correctly clas-
sify the input patterns — whose success would vanish the
subsequent rule building phase. We just require gathering,
through their Boolean assignments, the patterns in groups
that are not labeled by the network, but in own turn do not
contradict the labels, such as they obviously do not for in-
stance groups constituted by a single pattern each.

2. StatEx learning algorithm

The variables we produce are optimized in function of
their subsequent use. Hence to check the method we
also considered the second step of the decision procedure.
Namely, we refer to binary classification (i.e. decision)
whose solution is represented in terms of Disjunctive Nor-
mal Forms (DNF). Once the original input has been binary
coded as described before, our problem consists of inferring
these formulas from labeled examples {s}, each consisting
of a Boolean vector (our code) plus a bit saying whether it
corresponds to as “yes” (label = 1) or “not” instance (la-
bel = 0) of the problem. Notwithstanding the sophisticated
learning algorithms proposed in the literature for solving
this problem, we set up a very essential algorithm, that we
call StatEx, in order to remove the value of the inferring
algorithm from the considerations we will do on the effi-
ciency of the compression algorithm. StatEx infers sequen-
tially the DNF monomials vj, ... v;,, onaset {v,...,v,}
of propositional variables, for any n and any %, mainly on
the basis of the frequencies with which the single variables
take value 1 in the positive examples. Identifying a mono-
mial with the set of its literals, this algorithm is character-
ized by two steps: a forward one in which, starting from the
empty monomial, it builds a new monomial adding literals
to it, and a backward one in which it simplifies the mono-
mial removing not necessary literals.

For uniformity reasons we duplicate and complement the
assignments v in each example setting v, = 1 — vj. Ac-
cordingly we work with monotone monomials on 2n propo-
sitional variables, with the understatement that v, has to
be read the negated of vy, in the original set of variables. So,
we exclusively work with monotone monomials.

Given a set of positive examples, in the forward phase
the algorithm iteratively adds left to right to the set of the
monomial literals (initially empty) the one matching the
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maximum number of 1 assignments in the examples until
all variables are added. Given the set of negative examples,
in the backward step the algorithm removes right to left all
literals that leave the monomial consistent with the negative
examples (i.e. that are not satisfied by any of them).

After the backward step, every positive example that is
verified by the already built monomial is removed from the
set of the positive examples and, until this set is empty, the
algorithm restarts building a new monomial.

3. Numerical results

We compare the parameters obtained with our method
with those deriving from the methods used in the literature
for processing the same benchmarks. This brings us to con-
trast BICA with

e the well known C4.5 (ID3 in some cases) method [15],
where a decision tree in terms of IF-THEN-ELSE rules
is drawn directly by iterated partitioning of the sam-
pled data on the basis of mutually exclusive tests on
their range.

e the Hamming Clustering (HC) [12], that computes the
shortest possible Boolean formulas describing with no
misclassifications patterns seen in the training phase.

e a multilayer perceptron trained with backpropagation
method (NN), to show a performance comparison with
subsymbolic algorithms even if no rules are supplied.

Results in the literature concern exclusively the accuracy of
the classification methods, apart HC that consider also the
length of the formulas. Moreover they often report only one
value for the considered parameters (presumably the best
one obtained with the method). We write in bold the origi-
nal values and fill up the empty cells by repeating the exper-
iment by ourselves. In case the training set and test set are
predefined and unique, and the procedure is deterministic
(NN and C4.5), we proceed in a conservative way, by cou-
pling to the possibly optimized accuracy a formula length
unconstrained by the above optimization. When training
and testing sets are not fixed we adopt usual random parti-
tioning schemes of the database in order to capture the sta-
tistical behavior of the methods through mean and standard
deviation of the results. We obtain these parameters still in
case of single pair of sets when the procedure is stochas-
tic (BICA and HC) by rerunning more times the procedure.
The length of the signals processed by BICA is in bits. Still
in a conservative way, we conventionally attribute a length
of 4 bits to continuous variables to account the lengths of
the data to be compared with those compressed by BICA.
We assume indeed that these bits are sufficient to the con-
sidered methods to discriminate the data w.r.t. the classi-
fication problem they are questioned on. We compute the
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BICA Neural Network

C4.5

Hamming

Clustering

Length Correct % Length

Correct %

Length

Correct %

Length

Correct %

Signal Formula Signal Formula

Signal

Formula

Signal

Formula

o o “w o e o e

o

M o

M o

o o

o

Breast 11 114 2.6 91.7 1.7

36

153 35

97.9 0.6 81

"
133.4

39.7 93.3

1.3

Sonar 50 101.2 9.8 75.3 19.9 240 n.a. n.a. 84.7

5.7

240

27.9 2.3

72.1 9.7

Tono 42 40.8 7.3 84.8 6.1

136

28 n.a.

94 n.a.

Monk | 9 83.6 8.3 68.1 1.3 24 n.a. n.a. 100

n.a.

24

15 n.a.

98.6 n.a. 17

=

0 100

Monk 2 9 130 7.6 68.5 1.5 24 n.a. n.a. 100

n.a.

24

47 n.a.

67.9 n.a. 17

249.38

4.81 75.5

Monk 3 9 49.5 5.6 79 1.3 24 n.a. n.a. 93.1

n.a,

24

9 n.a.

974 n.a. 17

67.5

6.3 92.8

1.31

Table 1. BICA experimental profile in comparison with other information management methods. . :
mean value when ¢ is available, single trial value when ¢ is not available (n.a.) o: standard deviation.
Correct%: % of correctly classified patterns of the test set.

length of a formula as the number of literals involved in.
Moreover, we binarize the non binary antecedents occur-
ring with C4.5, such as “0.3 < z; < 0.7” in conjunction
with “0.5 < z; < 0.8” by introducing dummy variables.

The choice of a suitable size of the Boolean vector is
done by trials. The entire procedure lasts a few seconds on
a standard PC.

3.1 Wisconsin Breast Cancer database

It is a collection of 699 patterns of 9 discrete features
to be used for cancer diagnosis. 458 patterns belong to the
“benign” class, and the remaining to the “malignant” class.
The features take values from 1 to 10, and refer to: clump
thickness, uniformity of cell size, uniformity of cell shape,
marginal adhesion, single epithelial cell size, bare nuclei,
bland chromatin, normal nucleoli and mitoses. A multiple
hold out scheme is realized through 50 replicas of training
and testing sets obtained by randomly splitting the data-
bench into 372 and 311 patterns respectively [19], while
16 patterns with empty fields have been deleted. C4.5 uses
data as they are. Hamming Clustering algorithm uses a a
unitary encoding of 9 bits.

BICA reduces the lengths of both data representation and
formulas description w.r.t. both reference methods at the ex-
penses of a few percentage points loss in accuracy. Litera-
ture values with HC are length = 130, correct = 95.5 [12].

3.2 Sonar database

The goal is to discriminate sonar signals denoting a mine
among 208 patterns, each made up of 60 continuous fea-
tures between 0 and 1. The patterns are grouped in 13 ran-
dom sets of 16 patterns each. According to cross validation
scheme, 12 of these sets are used for training and the re-
maining set for testing, and this is repeated for 13 times
changing every time the test set. In this way Gorman and
Sejnowski trained a three-layer neural network with 12 hid-
den nodes. We cannot compete with the accuracy of the
neural network, by definition. However we reduce to 1/5
the length of the data representation paying less than 10

BICA Sonar
Length Correct %
Signal Formula
1 o L o
50 | 1012 98| 753 199
60 | 833 23| 733 154

Table 2. Trade-off between different compres-
sion targets. Same notation as in Table 1.

percentage points. Actually the classification problem is
difficult per se as it is denoted by the length of the DNFs
discovered by our method, on one side, and the high num-
ber of hidden nodes on the other side. Also the goal to hit
is not univocal. As shown in Table 2 we may compress the
data either into 50 Boolean variables, getting an optimal ac-
curacy or into 60 Boolean variables, getting an optimal for-
mula concision. Note that C4.5 is able to compute a shorter
formula using the much longer original variables, but it pays
in accuracy.

3.3 Ionosphere database

The benchmark consists of 351 patterns of 34 real vari-
ables each. The (sole) training set consists of 100 patterns
belonging to the class “good” and 100 to the class “bad”,
while remaining points (26 “good” and 125 “bad”) are put
in the test set. In this case we obtain almost the same for-
mulas description length with our and C4.5 method, but we
work with much compressed data. Actually it is the worst
benchmark for us, but it may be biased by the particular
training set selection.

3.4 The Monk’s Problem

Itis a set of three problems to explore the principal weak-
ness points of a learning algorithm. The research space is
made up of 6 features (al, ..., a6) ranging in discrete sets,
two of them of cardinality 2, three of cardinality 3, and last
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Alg. \ # vars. 7 8 9 10 17

Monkl 64.24 | 68.65 | 68.14 | 67.52 | 71.42
Monk2 66.95 | 68.47 | 73.94 | 76.32
Monk3 7222 | 7895 | 69.05 | 77.93

Table 3. Course of mean accuracy in percent-
age with length of Boolean assignment vec-
tors; # vars: number of variables the features
map onto.

one of cardinality 4 for a total of 432 records; the concepts
to be discovered by analyzing ad hoc built training and test-
ing sets are:

e Monkl: (al = a2)or (a5 =1)

e Monk2: EXACTLY TWO of {al = 1,a2 = 1,a3 =
1,a4 =1,a5 =1,a6 =1}

e Monk3: (a5 =3 and a4 = 1) or (a5 # 4 and a2 # 3)
(5% class noise added to the training set)

The reference accuracies are obtained in [6] using ID3 al-
gorithm [15] that is a previous version of C4.5. We add
companion formula lengths (missing in the original paper)
by rerunning the data on C4.5.

From Table 1 we see that the comparative classification
accuracy, hence the capability of extracting relevant infor-
mation from the data, grows with the complexity of the clas-
sification problem (M2 > M3 > M1, as denoted both by the
above formalization of the problems, and by the length of
the formulas discovered by C4.5). Namely, our procedure
outperforms ID3 in M2 though requiring a very long formu-
las to manage the variables, while with simpler problems we
pay. Table 3 shows that the drawback is almost monotone
with the compression rate, specially with the most complex
problem. HC gets generally the best accuracies with ques-
tionable effects on the lengths.

4. Conclusions

Meeting at a pub for the first time, a terrestrial and a Mar-
tian human (if such exists) may decide either to tell each
other the beauty of their respective lives or to share a beer.
We opt for the second task because it is driven by a com-
mon intention that we expect will supply a common code-
book for interpreting the signals that they exchange [17, 13].
In this framework there is no discontinuity between data
received and rules expressly built on so as to cope with a
given task. However, we manage the process in two phases,
symbol extraction and rule construction. We then focus on
the former. To portray the efficiency of our compression
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method we also instantiated the second phase in a very el-
ementary way, within the general philosophy that no data
compression method is wonderful per se but depends rather
on how suitably the compressed data may be used. In com-
parison with well assessed classification methods we dis-
cover that the compression of the data we propose has in
general the side benefit of working with small formulas for
classifying them, with a general bearable as expectable re-
duction of the classification accuracy.
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