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Abstract—As Autonomous Vehicles (AV) are becoming a real-
ity, the design of efficient motion control algorithms will have
to deal with the unpredictable and interactive nature of other
road users. Current AV motion planning algorithms suffer from
the freezing robot problem, as they often tend to overestimate
collision risks. To tackle this problem and design AV that behave
human-like, we integrate a concept from Psychology called
Social Value Orientation into the Reinforcement Learning (RL)
framework. The addition of a social term in the reward function
design allows us to tune the AV behaviour towards the pedestrian
from a more reckless to an extremely prudent one. We train the
vehicle agent with a state of the art RL algorithm and show that
Social Value Orientation is an effective tool to obtain pro-social
AV behaviour.

I. INTRODUCTION

In the past few years, an increasing number of automotive
industries and researchers are investigating how road safety
and performances may be affected by autonomous driving
systems. Even though we have witnessed a rapid spread
of Advanced Driver-Assistance Systems (ADAS), the Global
Status Report on Road Safety [1] reports an unacceptably high
number of deaths on the world’s roads, with an estimated 1.35
million people dying each year.

One of the major challenges in autonomous driving is
collision-free navigation in cluttered and interactive envi-
ronments. This requires solving a constrained optimisation
problem, where the time to reach a goal location is minimised
while being subject to collision avoidance constraints and the
vehicle’s dynamics. Although current motion control algo-
rithms can provide a solution to the problem, AV behaviour
usually suffers from two main issues. First, it can be overly
conservative, causing traffic congestion and allowing other
road users to exploit it for their advantage. Secondly, other
road users can have a hard time predicting the AV intentions,
as the behaviour can be very different from those of other
human drivers.

In this paper, we propose to solve the above issues by
integrating concepts from social psychology directly into the
AV motion controller design. Social psychology defines the
concept of Social Value Orientation (SVO) as a value that
describes how much a person values other people’s welfare
compared to their own. In a general perspective, we can think
of traffic participants as individuals that try to optimise their

Fig. 1: Scenario illustration. The vehicle measures the pedestrian
position and velocity and adjusts its longitudinal acceleration to
balance time efficiency and pedestrian safety.

own objective or utility function in relation to those of the
others.

A controller design framework that intrinsically uses the
concept of utility function is Reinforcement Learning (RL).
Agents trained with RL have been capable of exceeding
human-level performance in video games [2, 3], in the game
of Go [4], in continuous control problems [5], and robotics
[6, 7]. We let the vehicle agent learn the best control action
based on the experience of the dynamic interactions with a
pedestrian in a simulated environment. Rather than treating
the pedestrian as a mere moving obstacle, we emulate a real-
world pedestrian motion with a social force-based model and
add a social term in the reward function that is based on Social
Value Orientation.

We consider a typical road scenario with pedestrian crossing
and train a set of RL agents with different SVO. We show
how this reward choice produces a controller that naturally
exhibits human-like behaviour and how we can achieve various
behaviours for the Autonomous Vehicle by properly tuning
SVO value at training time, ranging from more aggressive to
more cautious ones.

This paper contribution is twofold:

1) We introduce the concept of SVO in the RL reward
function design to obtain control policies that take the
pedestrian goal into account, achieving egoistic or pro-
social AV behaviour;

2) We show a successful application of a state of the art



RL algorithm, called Soft-Actor Critic, to the pedestrian
collision avoidance problem.

II. RELATED WORK

Most traditional methods to compute safe trajectories for au-
tonomous vehicles can be classified into three main categories:
input space discretisation with collision checking, randomized
planning, such as rapidly exploring random trees, and con-
strained optimisation. A detailed survey about navigation for
autonomous vehicles can be found in [8]. Here we will focus
on recent learning-based approaches that are more relevant to
this work.

Reinforcement Learning applications in the field of au-
tonomous driving mainly focus on navigation amongst other
vehicles, and the problem of pedestrian collision avoidance
in structured environments is a less studied one. One of the
first RL applications to the field of autonomous driving can
be found in [9]. In this work, RL was used to train an AV
in the TORCS simulator to drive across a diverse range of
track geometries. In [10], [11], [12] Reinforcement Learning
is used to train a vehicle agent to successfully learn an
automated lane change policy. Deshpande et al. [13] trained
a Deep Q-Network vehicle agent at a typical intersection
crossing scenario. The pedestrian information is represented
in a grid-based approach as a state space input to the learning
agent. Sallab et al. [14], have used Recurrent Neural Networks
in the Reinforcement Learning framework to account for
Partially Observable scenarios and integrated attention models
in the framework, making use of attention networks to reduce
computational complexity. In [15] the authors used a two-level
hierarchical approach that integrates model-free deep learning
with model-based path planning. A local neural network
motion controller is trained with RL and, at the high level,
a path planner uses a 2D map to compute a path from the
robot’s current location to the goal. More recently, Chen et
al. [16] trained several state-of-the-art model-free deep RL
algorithms to tackle the problem of urban navigation, with
focus on a roundabout scenario with multiple vehicles. Their
method is trained and evaluated in the CARLA simulator [17].
Sun et al. developed a [18] courteous car model based on
Inverse Reinforcement Learning for lane merging scenarios.
A direct application of SVO to the RL has been explored in
the framework of Inverse Reinforcement Learning [19] with
the purpose of predicting other drivers’ behaviour. The optimal
car control law is then computed by approximating the Nash
equilibrium with a nonlinear optimiser, in a game-theoretic
setting.

To summarise, studies in the field of pedestrian collision
avoidance mainly focus on unstructured scenarios, where the
vehicle and the pedestrians share a common space. In our
study, we focus on a typical lane-crossing scenario, where the
pedestrian and the vehicle usually occupy separate regions of
space, i.e. the road and the pavement, and interact only at
some predefined regions, for example, at crossings. To the
knowledge of the authors, this is the first time that SVO is

Fig. 2: The RL framework. As the agent interacts with the envi-
ronment, the RL algorithm updates the policy function based on the
experience gathered in order to improve the policy and achieve better
cumulative reward in the future.

used to shape the reward function in RL to the problem of
pedestrian collision avoidance in structured scenarios.

III. TECHNICAL BACKGROUND

A. Reinforcement Learning

In a typical reinforcement learning framework, see Figure 2,
an agent, which our case represents the ego-vehicle, interacts
with its environment at discrete time steps. The agent performs
an action at which causes a change in the environment state
st. The action taken is chosen according to a policy π(a|s),
which is a probabilistic function that maps the current state to
an action. In turn, the environment gives the agent a numerical
reward rt and an observation of the current environment state
ot. The goal of an RL algorithm is to learn an optimal policy
π∗ that maximises the expected future total rewards, which is
defined as:

J(π) = Eπ[
∞∑
k=0

γkrt+k] (1)

A reinforcement learning problem is formulated as a
Markov Decision Process (MDP) (S,A, P,R), where S is the
set of states, A is the set of actions, P is the state transition
probability, and R is the reward function.

B. Soft-Actor Critic Algorithm

The Soft-Actor Critic algorithm (SAC) is an RL algorithm
that combines the RL framework with the principle of maxi-
mum entropy. The policy seeks to maximise a modified version
of the expected future reward which is defined as:

max
π

J(π) =
∑
t=0

Eπ[r(st, at) + αH(π(·|st))] (2)

J(π) maximises both the expected cumulative reward and an
entropy term H(π(·|st)), to encourage exploration at the time
of training and improve training speed. The parameter α is
known as the temperature and it affects the weight of the
entropy term. Precisely, SAC aims to learn three functions:
the policy network with parameter θ, πθ, a soft Q-value
function parametised by w, Qw, and a soft state value function
parametrised by ψ, Vψ . The experience gathered by the agent
is stored in a replay buffer and, similar to DQN and DDPG, the
Q network and the value network are trained using supervised



learning with the data contained in a replay buffer. The targets
for the network update are defined as:

Q̂(st, at) = r(st, at) + γEst+1∼ρpi(s) [Vψ(st+1)] (3)

V̂ (st) = Eat∼πθ [Qw(st, at)− α log πθ(at|st)] (4)

The policy is parametrised as stochastic neural network

at = fθ(εt, st) (5)

where εt is an input noise vector, sampled from a Gaussian
distribution. Then objective function for policy optimization
can be rewritten as:

Jπ(θ) = Est,εt [α log(πθ(fθ(εt, st)|st)−Qθ(st, fθ(εt, st))]
(6)

IV. METHODOLOGY

In social psychology, Social Value Orientation (SVO) is a
value that describes how much a person values other people’s
welfare in relation to their own. With SVO theory in mind,
we can model each individual as a decision-making agent that
maximises their own utility function. Such a utility function
can be expressed as a combination of the ego agent’s utility
Uself and other agents’ utility Uother:

Utotal = cos(ϕ)Uself + sin(ϕ)Uother (7)

where ϕ is the SVO. It is an angle, whose value affects the
weights of the two utility terms, and therefore the balance
between the selfish reward and the altruistic reward. As we
can see in Figure 3, we can characterise the personality of
each individual with the SVO value. For example, an SVO
value of 90° corresponds to fully altruistic behaviour, whereas
an SVO value of 0° corresponds to an individualistic agent.
In our work, we focused on SVO values between 0° and 90°,
as we want the AV to exhibit pro-social behaviour and yield
to the pedestrian if necessary to avoid dangerous situations.

SVO has been previously used to design controllers in a
game-theoretic setting [19], but this demands long complex
computations to solve for a Nash equilibrium. In our work,
we try to mitigate the computational cost of the optimisation
problem by using SVO in the RL framework, thereby moving
the computational cost from execution time to training time,
in a learning-based fashion. We integrate the SVO concept
directly in the MDP model formulation, by constructing a
reward function that is composed of two terms, one that
models the car’s own objective Uself and one that models the
pedestrian’s objective Uother. As model-free RL algorithms
are computationally less complex and do not require an
accurate representation of the environment to be effective,
we choose the SAC algorithm, which has proven to be very
effective for autonomous car traffic navigation [16]. The SAC
has also the advantage of using a continuous action space,
which is more suitable for our problem. To generate realistic
and interactive experience at training and test time, we use
social forces to model the pedestrian’s behaviour. We adopted
a model similar to the one used in [20], where we considered a

Fig. 3: Social Value Orientation ring. The SVO value ϕ affects the
behaviour of the ego-vehicle.

single vehicle and neglected the interaction with other pedes-
trians. We include an awareness probability for the pedestrian
to improve robustness to collisions and avoid overfitting of
the pedestrian behaviour. This way, the trained policy will be
able to deal with dangerous situations where the pedestrian
starts crossing without seeing the vehicle. In the next section,
we introduce the state and action spaces of the MDP and in
section IV-B we describe the social reward function design
with SVO.

A. MDP Formulation
1) State Space:

In our model, we focused on a scenario consisting of a straight
lane and a single pedestrian, see Figure 1. We assume the
ego-vehicle can access a reference path computed by a Path-
Planning module using the GPS and global map information
and that it is able to locate itself with respect to this reference
path. The purpose of the control algorithm is to adapt the
vehicle current trajectory to the reference track based on the
pedestrian’s behaviour. As for pedestrian detection, we assume
that the vehicle is equipped with a LiDAR, which measures the
pedestrian position relative to the vehicle. Therefore, we make
the assumption that the state space available to the ego-vehicle
consists of:
• the offset dt of the vehicle centre of gravity from the

vehicle reference path;
• the vehicle orientation relative to the reference path

direction ψt;
• the vehicle longitudinal velocity vegot ;
• the pedestrian position rpedt and velocity vpedt relative to

the vehicle.

st = [dt, ψt, v
ego
t ,pt,v

ped
t ]T ∈ R7 (8)

2) Action Space: We adopted a continuous state-space
representation for the action space. In particular, the action
space consists of the longitudinal acceleration at. The action
at, computed by the policy network is normalised in the
interval [−1, 1] and than rescaled in the interval [−g/2, g/2].



Fig. 4: Pedestrian and vehicle agent trajectories for two episodes and three SVO values. Figures in the same row refer to the same episode
and share the same initial conditions but have different SVO values. The temporal progression is indicated by coloring the trajectories from
lighter to darker colors. In Fig. (b), (c), and (f) the car yields to the pedestrian, whereas in (a), (d), and (e) the pedestrian crosses after the
car has passed. We can see that the car has a mixed behaviour with an SVO value of 40° ( Fig. (b) and (e)).

B. Social Reward Function

In order to design an AV that behaves similarly to a human
driver, we introduce the SVO concept directly inside the
reward function. In particular, the designed reward function
consists of two terms:

r(st, at) = cosϕ · rcar(st, at) + sinϕ · rp(st, at) (9)

where rcar indicates a reward function that takes the vehicle
own performance parameters into account and the rp term is
a term that favours the pedestrian’s goal.

In particular, the car’s reward function is also a combination
of multiple terms:

rcar(st, at) = rc + rg + rv (10)

For avoiding collisions with pedestrians, a penalty rc of
−30 is given to the car in case of collision and the episode is
terminated. A positive reward rg of +30 is given to the agent
when it reaches the goal. Finally the term rv is a speed reward
that encourages the car to reach the goal in the minimum
amount of time. It is expressed as:

rv = c1vt · n̂ = c1 cosψtvt (11)

The term vt · n̂ is the dot product between the vehicle
velocity and a unit vector representing the reference path
forward direction. This encourages the car to go as fast as
possible and at the same time discourages the car from moving
backwards.

The second term of equation 9 is used to model the pedes-
trian’s objective. We assume that if a pedestrian is crossing,
they are trying to reach their goal in the minimum amount of
time possible. Also, since we want our RL agent to behave
pro-socially, it is reasonable to give a positive reward only if
the pedestrian is crossing in front of the vehicle. Let vp be the
pedestrian velocity, then the pedestrian reward function can be
expressed as:

rp =

{
c2||vpedp ||, if pedestrian is crossing and xp > xv

0, otherwise
(12)

C. Network Training

We trained a total of 9 different policies with different
SVO values from 0° to 80°. For each SVO value, an agent
is trained for 20,000 steps, at each a tuple consisting of the
current observed state, action taken, reward received, and the
subsequent next state is stored in a replay buffer. A normally
distributed action noise is also added to the actions taken by
the agent at training time to favour exploration. The replay
buffer size is equal to the number of steps of the entire
simulation so that the entire experience gathered by the agent
is used during training. The learning rate is initially set to
0.001, then it decreases linearly to 10% of the initial value.
The batch size, τ and γ parameters are set to 256, 0.005, and
0.99 respectively.

The neural network architecture consists of two fully con-
nected layers with 256 hidden neurons each, shared by both the
actor and critic networks. A simple fully-connected multilayer
perceptron network was used, as the input consists of features
of the ego-vehicle and the pedestrian rather than raw images.

V. SIMULATIONS

A simulator was developed using the Python programming
language to validate the proposed method. The overall system
architecture is represented in Figure 6. The simulator models
the physics of the problem, i.e. it performs time integration
and simulates the interaction between the ego-vehicle and
the pedestrian. The simulator is wrapped in an OpenAI Gym
[21] environment, which communicates with a SAC agent
of the Stable-Baselines3 package [22]. The OpenAI Gym
package is an open-source package for developing reinforce-
ment learning environments, whereas Stable Baselines3 [23]



Fig. 5: (a) Average time to complete the task if the pedestrian is crossing (blue) or if the pedestrian is not crossing (orange). (b) Average
minimum distance between the pedestrian and the vehicle. (c) Vehicle acceleration profile with the same episode initial conditions for three
SVO values.

is an open-source python package that implements state-of-
the-art Reinforcement Learning algorithms. The SAC agent
performs an action based on the observations provided by
the environment and improves the policy. After executing an
action, the environment state is updated and a new set of
observations is given to the agent. This cycle repeats until
the policy converges.

A. Scenario

The road scenario is represented in Figure 1. It consists of
a single vehicle and a single pedestrian on a straight road. At
the start of each episode, the pedestrian randomly spawns on
either the bottom or the top pavement with equal probability
and also has a fixed probability of crossing the road. The
pedestrian spawn position on the pavement is chosen according
to a normal distribution. If the pedestrian crosses, a random
goal position on the opposite side of the road is generated
according to a normal distribution, otherwise the pedestrian
simply walks along the pavement. This way we are able to
generate episodes with both crossing behaviours and the RL
agent learns to distinguish between them and exploit that to
its advantage. We chose a value of 0.9 for the pedestrian
crossing probability in order to generate more episodes with
actual car-pedestrian interactions, as this kind of interactions
are more complex and the RL agent needs more episodes to
learn the correct policy in these situations. The car spawn
position and velocity are also chosen randomly according to a
normal distribution. The ego vehicle goal position is located
along the centre of the lane, 30 m away in front of the ego-
vehicle starting point. An episode terminates if the car reaches
its goal or if a collision occurs.

Fig. 6: System architecture.

B. Results

We carried out computer simulation experiments to evaluate
the trained agents. Each agent is tested with 100 training
episodes. In order to have comparable results for each agent,
the testing episodes share the same initial conditions. Across
all the episodes, no collisions with the pedestrians were
detected. We compare the trained agents in terms of pedestrian
safety and time efficiency in achieving the goal.

1) Quantitative results: Simply by considering the pedes-
trian crossing’s velocity into the pedestrian reward term, we
can see that the car automatically learns a more pro-social
behaviour. This more pro-social behaviour corresponds to both
increased safety for the pedestrian and an increased time to
complete the task, indicating that the car is more likely to
slow down and yield to the pedestrian. Figure 5a shows the
average time taken by the autonomous vehicle to reach their
goal. As the SVO increases, the car is more likely to yield to
the pedestrian, therefore the average time to reach the goal has
an increasing trend. We also computed the minimum distance
across all testing episodes for each agent and plotted it in
Figure 5b. As expected, this parameter also has an increasing
trend.

We plot two curves depending on whether the pedestrian
is crossing or not in the episodes. For low SVO values, the
time to reach the goal is similar for the two curves, because
the car arrogantly occupies the lane before the pedestrian is
allowed to start crossing. From our simulations, we have seen
that an SVO of at least 30° is required to see a significant
change in the AV social behaviour, which explains why the
two curves are quite similar at the beginning. For higher SVO
values, the time to reach the goal when the pedestrian is not
crossing also increases. This is due to the fact that the car
exhibits a more cautious behaviour and it slows down when
close to the pedestrian, even if the pedestrian is not crossing.

Figure 5c shows the acceleration profile for an episode with
crossing pedestrian and three different SVO values. We can see
that overall the acceleration value is lower for the SVO of 80°
compared to the one at 0°, indicating that the car moves at a
slower speed. Also, for an SVO of 0°, the car actually starts
to slow down much later than the SVO of 0°. The acceleration
profile for an SVO of 50° oscillates more than the other two.
Indeed, the trajectories generated from that agent exhibit a
much more hesitant behaviour compared to those at 0° and



80°. In such episodes, the pedestrian also starts hesitating and
doesn’t commit to any behaviour, which is why the average
time to reach goal also decreases for higher SVO values. This
reflects a typical scenario in which pedestrian and driver don’t
come to an agreement and reach an impasse, as they both try
to claim the right of passing. This explains why the average
time to reach goal decreases again after an SVO value of 60°.

2) Qualitative results: In Figure 4 we visualize the trajec-
tories generated by our simulator in two episodes for three
different SVO values. In the first episode the pedestrian is
standing on the bottom pavement and is trying to cross the
road, whereas in the second episode the situation is reversed.
The reader can find a video demo of the trajectories in the
supplementary material. We can see that in Figure 4a the
pedestrian hasn’t even started to cross the road when the
episode is over. This is due to the fact that the low SVO value
makes the car behave very aggressively. We can see that in
the same Episode but for higher SVO values the pedestrian
manages to reach the goal before the end of the episode,
meaning that the car yields. The difference between SVO
values 40° and 80° is where the car stops yielding to the
pedestrian: the car stops almost immediately for an SVO value
of 80°, but for an SVO value of 40° the car stops closer to
the pedestrian. Similar behaviours can be found in the second
episode. We can see that the distance covered by the pedestrian
within the end of the episode increases as the SVO value
increases and that the pedestrian manages to reach their goal
completely in the third figure.

VI. CONCLUSION AND FUTURE WORK

We presented an approach to solving the pedestrian collision
avoidance problem in a scenario consisting of a vehicle and
a single pedestrian using a state-of-the-art Reinforcement
Learning algorithm called Soft-Actor Critic. We demonstrated
that by including Social Value Orientation in the RL reward
function design, the trained vehicle agent behaves in a human-
like fashion. The SVO value affects how much the trained
agent is likely to yield to the pedestrian. To the knowledge
of the authors, the Soft Actor-Critic algorithm has never been
used before in the pedestrian collision avoidance problem in
structured scenarios. The main assumption in this work is the
presence of a single pedestrian. An immediate extension of this
work will be to tackle the presence of multiple pedestrians and
vehicles. We would also analyse the addition of the vehicle
steering angle to the control action space. In the future, we
would also like to compare the controller with more traditional
ones, such as an MPC controller, for both validation and
verification.
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