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Abstract— This work is concerned with a framework for visual
object recognition in real world tasks. Our approach is motivated
by biological findings of the representation of space around
the body, the so-called peripersonal space. We show that the
principles behind those findings can lead to a natural structuring
of object recognition tasks in artificial systems. We demonstrate
this by the supervised learning and recognition of 20 complex-
shaped objects from unsegmented visual input.
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I. INTRODUCTION

For many years the research concerning intelligent systems
was focused on isolated cognitive tasks. It was ignored that the
interplay between the parts of the system as well as interaction
with the environment can considerably ease the solution [1].
Nowadays it is widely accepted that scaling out (integrating
a task into a complete system) is as important as scaling
up [2]. In the spirit of this new philosophy several attempts
to facilitate the hard task of recognition via integration into
acting systems were done [3], [4], [5], [6]. One source of
facilitation is the ability of an acting system to change its
perceptions through its actions [7]. Another source of recog-
nition facilitation is interaction and communication between
humans and humanoids. The main concept put forward within
this framework is shared attention with the current imple-
mentations of pointing and gaze following. The core point
of shared attention is the cognitive concept of understanding
the intention or goal of the communicating partner [8]. The
realization of the full concept is far from being complete since
many necessary sub-concepts are far from being understood.
Shared attention is a psychological concept focusing on the
observable behavior of man and artifacts. We would like to
put forward a concept rooting in physiology, i.e. concerned
with the internal mechanisms and representations of biological
organisms and the caused effects.

Here we propose to use the peripersonal space for structur-
ing the human-robot interaction. We follow the definition of
peripersonal space given in [9]: Peripersonal space is defined
as the space wherein individuals manipulate objects, whereas
extrapersonal space, which extends beyond the peripersonal
space, is defined as the portion of space relevant for loco-
motion and orienting. The benefit of using this biologically

inspired concept is that it leads to robust interaction and
recognition and allows to build up the higher level abilities
on the base of a stable complete closed-loop system.

The full biological concept of peripersonal space includes
sensory perception as well as manipulation. We consider it
to be very valuable for humanoid robots like ASIMO [10]
because of the natural integration of perception and actions.
Here we focus on object recognition within the framework of
peripersonal space only: how the object recognition problem is
phrased within this framework and what the underlying object
hypotheses are. Next steps towards integrating actions with
object recognition would be using the affordances concept
[11]. An affordance is a property of an object, or a feature of
the immediate environment, that indicates how that object or
feature can be interfaced with. In our case affordances link the
visual appearance or shape of an object with the manipulative
capabilities of the robot.

This paper is structured as follows:
• section II focuses on the concept of peripersonal space

in biology,
• section III shows how this concept can be applied to a

technical system,
• section IV describes the details of the object recognition

model,
• section V reports on and discusses the performed exper-

iments,
• and finally section VI concludes how object recognition

can benefit from the usage of peripersonal space.

II. PERIPERSONAL SPACE: BIOLOGICAL FOUNDATIONS

The research in neurobiology provides large evidence that
the brain uses representations which are both perception and
action oriented. The most famous example are so-called “Mir-
ror Neurons”. These neurons fire in the case of e.g. a monkey
performing an action or watching somebody else performing
the same action (for review see [12]). Less known in the
robotics community are the neurons which change their visual
receptive fields according to the position of the limbs. For
example the bimodal neurons in the monkey premotor cortex
respond to the touch of the skin as well as to the visual input
in the proximity of the skin. The visual receptive fields of
these neurons are not in retinotopic coordinates and not in
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Fig. 1. Systems schematics. See section III for a description.

some “world” coordinates, but in body coordinates: they move
when the correspondent part of the body moves, and not when
the eyes move. The brain features a mechanism for the trans-
formation from one coordinate system to another depending
on the task to perform. Some of the space representations are
very flexible. For example during the tool usage the visual
receptive field previously dedicated to the space around the
hand can extend to the space occupied by the hand and the
tool [13]. The adaptation of the visual receptive field can only
be observed if the tool is actively used.

In the brain depth information is also organized in be-
haviorally relevant representations. Experiments show that
different functional loops are activated while executing the
same task in near and far space [14]. The near or peripersonal
space is defined as the space wherein individuals manipulate
objects, whereas far or extrapersonal space is defined as the
portion of space relevant for locomotion and orienting. Of
particular interest for us is the fact that attentional mechanisms
make use of these different spatial representations [9].

A further suggestion from the same literature on the possible
space representation can be made by the observation of
bimodal (triggered by both touch and visual stimuli) neurons’
firing. Some of these neurons are firing stronger the closer
visual stimuli come to the body. It shows again that in the brain
there exist other depth representations than a homogeneous
and full depth information which is standard in robotic appli-
cations. In the following section we propose how to integrate
depth into the attentional mechanism of a technical system by
using the concept of peripersonal space and with a body and
task-related representation.

III. PERIPERSONAL SPACE: TECHNICAL INTERPRETATION

The technical system used for experiments is depicted in
Figure 1. It consists of image acquisition, visual saliency
computation, disparity saliency selection, motion saliency se-
lection, saliency weighting and summation, visuomotor map-
ping, gaze selection including memory, head control as well
as object recognition and speech output. As pointed out in the
previous section, we are especially interested in the relation
between peripersonal space and attention shifting and the
consequences for object recognition.

The functional elements of the system can be described as
follows: The visual saliency computation is implemented as
suggested in [15]. It produces a retinotopic map SV where
positions corresponding to visually interesting locations are
activated, i.e. have a value between zero and one according to
their degree of interestingness. The motion saliency selection
produces a map SM with an activation corresponding to the
largest connected area of motion within a defined time-span.

The disparity saliency selection performs a disparity com-
putation using SRI’s Small Vision System [16] and selection
of the closest connected region within a specific distance
range and angle of view. The position of this region in image
coordinates is represented as an activation blob within the map
SD. If there is no stimulus within the specified range and angle
of view, the activation of the map is all zero. This simple
mechanism represents a first approximation to the concept of
the peripersonal space put forward in the previous section.
It establishes a body-centered zone in front of the system
that directly influences the behavior of the overall system
as we will show at the end of this paragraph. The selection
and propagation of the closest region only corresponds to a
hard weighting of the presented stimuli with respect to the
“closeness” to the system

The maps of the visual saliency, the motion saliency selec-
tion and the disparity saliency selection are weighted, summed
up and transformed into motor space, yielding the integrated
saliency map

S = visuomotor(wV SV + wDSD + wMSM ) , (1)

where wV , wD and wM are the respective weight factors. The
motor space is spanned by the pan and tilt angles of the head.
The visuomotor mapping can be constructed analytically or
learned online [17]. The saliency map S is the first input to
the gaze selection. The gaze selection is a dynamic neural
field (DNF), an integro-differential equation modeling the
dynamics of activations on the cortex. The dynamics can
roughly be described as maximum selection with hysteresis
and local interaction. For the theoretic fundamentals of the
gaze selection see [18], for a comprehensive biomimetic head
control using DNF see [19]. The DNF is parameterized to



yield a unique activation, which is interpreted as the target
gaze direction qT . This target gaze direction is propagated to
the head control unit, which delivers the current gaze direction
qC , the second input to the gaze selection.

Fig. 2. Schematic visualization of the approximation of the peripersonal
space. The inner volume represents the peripersonal space, the outer volume
the complete field of view with the sensitivity to visual and motion stimuli.

For the work presented here we parameterize the system
with wV = 1.0, wM = 3.0 and wD = 4.0. This corresponds
to prioritizing the disparity information over the motion and
visual saliency and the motion information over the visual
saliency. With those weights the system shows the follow-
ing behavior. Without any interaction the gaze selection is
autonomously driven by the visual saliency and the memory
of the gaze selection. A natural way for humans is to raise
the attention by stepping into the field of view and waving at
the system. This kind of visual motion cue works in humans
from the earliest days of infancy [20]. Due to the chosen
weights the system will immediately gaze in the direction
of the detected motion. The motion cue can continuously
be used in order to keep the gaze direction of the system
oriented towards the waving hand. Continued waving while
reducing the distance to the system finally leads to a hand
position within the peripersonal space of the system defined
by the disparity saliency selection. Again, due to the chosen
weights the signal from the peripersonal space will dominate
the behavior of the system. Practically this means that the
system will continuously fixate the hand and what is in the
hand of the user. This kind of behavior can be used in order
to perform various tasks. For a schematic visualization of the
space in front of the system see Figure 2.

Defining the peripersonal space as a body centered volume
in the space in front of the system corresponds to the bio-
logical findings. Inducing attention shifts by objects within
the peripersonal space also corresponds to biological data. As
already discussed in section I, the full concept of peripersonal
space includes action centered parts of the representation, but
here we focus on the consequences for object recognition only.
We are convinced that concepts like the peripersonal space
ease the problem of object recognition or at least the learning
and bootstrapping thereof.

The main problems for the recognition of rigid objects
are translation, scale and 3D rotation invariance as well as
invariance with respect to illumination changes and occlusion.
If we perform the classification only within the peripersonal
space, those invariance requirements are reduced to a large
extent. Translation invariance is established by the gaze control
fixating the 3D blob in the peripersonal space, while the
depth information is used for improving scale invariance.
Since the depth region is limited to a specific range, the
occurring size variations are bound to a certain interval. The
main invariances that have to be established by the classifier
itself are 3D rotation, illumination changes, occlusion and
the remaining position and size fluctuations that occur due
to inherent fluctuations in the disparity signal.

IV. OBJECT RECOGNITION

We use a view-based approach to object recognition, where
we perform the classification only on objects that enter the
peripersonal space. The underlying object hypothesis is an
isolated 3D blob within the disparity map that is segmented
and used to compute a region of interest (ROI) centered around
the blob. The size of the ROI is dependent on the estimated
distance, computed from the average disparity of the blob
to obtain a coarse size normalization of objects. Using the
disparity blob simplifies the invariance requirements for the
recognition system as pointed out in the previous section. The
current output of the classifier is the identity of the recognized
object with a confidence level. The classification is entirely
learned by presenting the set of objects to be recognized. It
represents an example of tuning a general system to solving a
specific task by learning.

The object recognition module is based on the biologi-
cally motivated processing architecture proposed by Wersing
& Körner [21], using a strategy similar to the hierarchical
processing in the ventral pathway of the human visual system.
Within this model, unsupervised learning is used to determine
general hierarchical features that are suitable for representing
arbitrary objects robustly with regard to local invariance trans-
formations like local shift and small rotations. Object-specific
learning is only carried out at the highest level of the hierarchy.
This allows a strong speedup of learning, compared to other
general purpose statistical classifiers, that need large amounts
of training data for achieving robustness. As was shown in
[21] this architecture is highly competitive with other current
recognition methods, and can also be applied to the difficult
case of segmentation-free recognition.

The input of the hierarchy is the region of interest (ROI),
that is obtained from the left camera image using the disparity
blob within the peripersonal space. This ROI is scaled to a de-
fined size and provides the color input image for the following
computation stages. The processing hierarchy is implemented
as a feed-forward architecture with weight-sharing [22]. It is
composed of a succession of feature-sensitive stages, denoted
as S1 and S2 layer, and pooling stages, denoted as C1 and C2
layer (see Fig.3 and [21] for details). The output of the feature
maps of the complex feature layer (C2) provides a general
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Fig. 3. The object recognition model. Based on the disparity computation, a region of interest (ROI) is extracted around an object within the peripersonal
space and normalized in size to provide an input color image with size 144x144 pixels. Shape and color processing is first separated in the feature hierarchy
and then fused in the view-based object representation. In the color-insensitive shape pathway the first feature-matching stage S1 computes an initial linear
sign-insensitive Gabor-filter orientation estimation, a Winner-Take-Most mechanism between features at the same position and a final threshold function. The
connected frames between the processing layers visualize the receptive fields of the local feature detectors. The C1 layer subsamples the S1 features by pooling
down to a 36x36 resolution using a Gaussian receptive field and a sigmoidal nonlinearity. The 50 features in the intermediate layer S2 are trained by sparse
coding and are sensitive to local combinations of the features in the planes of the previous layer. A second pooling stage in the layer C2 again performs
spatial integration and reduces the resolution to 18x18. The color pathway consists of three downsampled 18x18 maps of the individual RGB channels that
are added to the C2 feature maps. Classification is based on view-tuned neurons in the S3 layer, sensitive to the high-dimensional C2 activation patterns of a
particular object and trained by supervised learning.

high-dimensional object representation that achieves a stronger
view-based abstraction with higher robustness than the original
pixel image [21]. Classification of an input image with a
resulting C2 output is done in the final S3 layer by so-called
view-tuned neurons that are obtained by supervised gradient-
based training of a linear discriminator for each object, based
on the C2 activation vectors of a training ensemble.

In the setting that we consider here, we perform no addi-
tional segmentation of the objects to be recognized. Figure 4
shows typical examples of the ROIs as they are being presented
to the classifier. Training is done by showing 20 different
objects with changing backgrounds and we expect the learning
algorithm to automatically extract the relevant object structure
and neglect the clutter in the surround. To demonstrate the
generality of the recognition approach we use different types
of visual object classes such as number cards, hand gestures,
toys, and household objects. The results and details of the
training are given in the experiments section.

V. EXPERIMENTS

For our experiments we use a stereo camera head with
anthropometric dimensions as shown in Figure 2. It is called
TUBBY. It has a pan and a tilt degree of freedom and
represents an eyes-on-shoulder construction. This platform is
sufficient for our current experiments. The work presented in
[23] provides a uniform interface for working with ASIMO
and transferring the results to the robot.

All experiments (training and evaluation) are done interac-
tively with TUBBY. The same system is used for both phases.
The internal labels of the objects are numbers that are specified
whenever a new object is being learned by the system.

We perform the training of the recognition system by
showing 20 different objects within the peripersonal space and
collect 600 training views for each object. The object ensemble
consists of 11 sign cards, (only slight rotation deviation – max.
20 degrees around all axes), 2 hand gestures, and 7 freely
rotated objects (see Fig.4). To obtain more variations, training
is done by two people. Due to inherent fluctuations of the
disparity signal, the objects are only coarsely centered within
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Fig. 4. Training and test data for the recognition model. The images are the
full region of interest that is passed to the recognition model, centered around
the disparity blob in peripersonal space. a) Training images for rejection. b)
Rotation variation for gestures and objects. c) All 20 different objects. The
sign cards were only rotated about 20 degrees around all axes. d) Examples
from the test ensemble.

the input image, and size varies about ±20%. Note that the
objects occupy only about 5−15% of the ROI area, and there is
no segmentation information available. The recognition system
has to learn to separate objects from background entirely based
on the training views. Additionally we collect 1000 views
of other objects for the rejection training. For this training
ensemble of 13000 views, the corresponding C2 activations
are computed (with a dimensionality of 53x18x18=17172), and
the S3 view-tuned neurons are trained as linear discriminators
for each object within this C2 feature space (see Figure
3). This training takes about 30 minutes. After the training
the combined system of attention, disparity computation, and
recognition runs at a frame rate of 2 Hz on a 3 GHz Dual
Xeon computer. The recognition, based on the ROI input takes
approximately 80ms.

To investigate the generalization performance of the recog-
nition model, we recorded an independent set of test views
with a third person, that did not participate in the training.
For testing we collected 100 images for each object plus
additional 1000 clutter images for rejection. The results of
the trained recognition system on the test ensemble are shown
in the form of an ROC plot that shows the trade-off between
false positives (clutter classified as object) and false negatives
(objects erroneously rejected as clutter). The plot is obtained
for each object by tuning the recognition threshold from low
to high values. We achieve less than 5% detection error at
the point of equal false-positive and false-negative rate for
almost all objects. The only exceptions are the can (20%),
toy asimo (8%) and the metallic coffee can (7%). The overall
classification error is 7.2 %, when we assign the class of the
maximally activated view-tuned neuron as the classifier output.

Ude & Cheng [6] proposed a related approach to foveated
object recognition, which is based on a color blob detection
with affine warping and a final object detection step using
support vector machines (SVM). They use an ellipsoidal
region of interest around the object center to ensure that the
amount of clutter in the image is small. Using 5 objects with
200 training images each, they report an average false negative
rate of 4.5% at a false positive rate of 0.2%. If we compare
these numbers to our results we note that we achieve a slightly
worse detection rate, however, we use a larger number of
20 objects. We do not perform rotational normalization and
no special segmentation during learning or recognition apart
from a centering of the object. Note also that we included
rather similar objects also in the rejection set, to increase the
difficulty of the detection task.

We performed a baseline comparison, using the original
RGB images with dimensionality 144x144x3 and utilize a
nearest-neighbour classifier for classifying the test images
with all labeled 12000 object training images. This can be
considered as a control experiment to assess the base similarity
in the used image ensemble. Using the plain original image
data, the overall nearest-neighbour classification error is very
large at 77.5%. This again underlines the advantages of the
hierarchical C2 feature representation for representing object
appearance in a general and robust way.
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Fig. 5. Object detection performance on the test data. With the exception of
three objects, all objects can be recognized with less than 5% error at the point
of equal false positive rate (clutter classified as object) and false negative rate
(object classified as clutter). The system has also learned to robustly ignore
the background around the trained objects.

VI. CONCLUSION

In this paper we have presented a way to facilitate visual
object recognition in real world tasks. Those tasks include
among others object recognition on humanoid robots. The
facilitation is achieved by structuring the active vision process
including attention and recognition as well as the included
representations according to the biological concept of the
peripersonal space. We have implemented and presented a
technical system built according to the presented concepts. Our
experiments have shown, that an initial object hypothesis based
on a disparity blob within peripersonal space is sufficient for a
supervised learning of object appearance. Using stereo-based
disparities has the advantage of constructing a spatial object-
hypothesis, which is more stable than simple appearance based
approaches for segmentation. As a consequence of this we can
train such different objects like hands, cups, and metal cans
at the same time. This is an important step towards general
object learning methodologies for teaching arbitrary objects to
a humanoid robot. We compared our results to the state of the
art, keeping in mind that the comparison of active autonomous
systems is difficult per se. Future work will focus on utilizing
the full concept of peripersonal space comprising perception
and dexterous manipulation.
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