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Abstract— Being able to identify and localize objects is an
important requirement for various humanoid robot applications.
In this paper we present a method which uses PCA-SIFT in
combination with a clustered voting scheme to achieve detection
and localization of multiple objects in real-time video data. Our
approach provides robustness against constraints that are com-
mon for humanoid vision systems such as perspective changes,
partial occlusion, and motion blurring. We analyze and evaluate
the performance of our method in two concrete humanoid test-
scenarios.

I. INTRODUCTION

SIFT (Scale Invariant Feature Transform) has been shown
to be an effective descriptor for traditional object recognition
applications in static images. In this paper, we propose and
evaluate a method that uses PCA-SIFT [1] in combination with
a clustered voting scheme to achieve detection and localization
of multiple objects in video footage as it is typically collected
by a humanoid robot’s vision system. A common constraint
of humanoid vision is the occurrence of frequent perspective
changes and motion blurring which are often caused by the
robot’s walking motions. Our approach attempts to minimize
the effects of these problems while still being applicable as a
real-time algorithm.

A flowchart of our approach is depicted in figure 1(a). First,
a training video is recorded by observing the object from var-
ious perspectives. PCA-SIFT keypoints are then generated for
each video frame. It should be emphasized that by training on
an entire video sequence, we are able to capture impressions
of the object from a continuous spectrum of poses, and under
various configurations of lighting and video noise. This allows
us to gain a more complete representation of the object in
PCA-SIFT space compared to training from very few still
images. The keypoint generation stage is followed by a manual
annotation step which allows the user to approximate the
boundary and position of the relevant object in the video. All
keypoints that lie outside of the hand-annotated boundary are
rejected. The annotation step is furthermore used to determine
each keypoint’s relative location toward the annotated object’s
center. All retained features build the initial training dataset.
The dataset is then post-processed by a clustering algorithm
to compress its overall size.

During the recognition stage, we again generate PCA-SIFT
keypoints for each incoming video frame. A nearest neighbor
search is performed on the training dataset for each PCA-
SIFT keypoint while enforcing a maximum distance threshold.

Using the relative location obtained during hand-annotation,
each matching feature then votes for a 2D-coordinate pre-
dicting the center of the object. Clustering and filtering is
applied to the voting space and the centroids of each remaining
cluster are calculated. This becomes our final detection result.
Additionally, we demonstrate how this voting space can be
extended temporally to become a simple filter which is able
to reduce the rate of false positives.

This paper is organized as follows. Section II introduces
some of the related work in this area and provides a short
review of the SIFT feature descriptor. The body of this paper
is located in section III where we explain our algorithm in
detail. Results from our experimental domains are presented
and analyzed in section IV. Concluding remarks and ideas
about future work are presented in section V.

II. RELATED WORK

It has been shown that SIFT descriptors can be used to
achieve fairly robust object detection in still images [2]. SIFT
has furthermore been used in several other related applications
such as metric robot localization [3] and medical imaging [4];
and it was shown to be one of the best currently available
descriptors in a comparative study [5].

Various related approaches exist on Real-Time object recog-
nition for robotic applications. Very simplistic models, such as
color segmentation are fast, but normally require some type of
colored object marker. Oftentimes, these approaches are also
highly sensitive to lighting conditions [6].

Another common approach, which is used in pedestrian
detection, is contour matching using Distance Transforms
(e.g. Chamfer Distance) [7]. The inherent downside of this
methodology is the fact that it operates only on an object’s
contour, and does not take any of an object’s inner features
into account. While this may be suitable for uniquely shaped
objects with sparse textures, it tends to fail for objects with
simple, ambiguous shapes. Oriented Edges [8] can reduce this
ambiguity; however, they introduce the problem of relying on a
unique gradient between the object and its background, which
is very likely to change in real world scenes.

Parts-based object recognition is another successful recent
approach. However, most parts-based recognition algorithms
still suffer from very high computational costs, even when a
sparse object representation is used [9] [10].



(a) A simplified flowchart of the presented approach (b) QRIO, observing the desk domain

Fig. 1.

A. Review of the SIFT feature descriptor

While it is beyond the scope of this paper to describe the
SIFT algorithm in its entirety, we will quickly review its most
significant properties and describe why it is suitable for our
purpose. SIFT features are generated by finding interesting
local keypoints in an image. A very common and efficient
way of generating these keypoints is by locating the maxima
and minima of Difference-of-Gaussians (DoG) in the image’s
scale-space pyramid. This is done by calculating different
levels (octaves) of Gaussian blur on the input image and then
computing the difference of neighboring octaves. A canonical
orientation vector can then be computed for each keypoint,
thus giving a complete keypoint coordinate of X, Y, scale,
and orientation. A SIFT feature is a 128-dimensional vector,
which is calculated by combining the orientation histograms
of locations closely surrounding the keypoint in scale-space.
The advantage of SIFT keypoints is that they are invariant to
scale and rotation, and relatively robust to perspective changes
(experiments have shown that SIFT is typically stable up to
a perspective change of approximately 10-20 degrees). This
makes it an ideal descriptor for object recognition tasks.

One common problem of SIFT is its relatively high dimen-
sionality, which makes it less suitable for nearest neighbor
lookups against a training dataset. PCA-SIFT [1] is an ex-
tension to SIFT which aims to reduce SIFT’s high dimen-
sionality by applying principal component analysis (PCA). 20-
dimensional PCA-SIFT was used as the feature descriptor in
this paper.

III. DESCRIPTION OF THE APPROACH

In this section we will first give a concise algorithmic
summary of our approach, and then follow up with a detailed
description and discussion of each significant step. Our algo-
rithm consists of two major components: the training stage in
which we “learn” the representation of an object by collecting
its PCA-SIFT features, and the recognition stage in which we
attempt to detect and localize the object in real-time video
footage. The training stage of our algorithm is as follows:

1) We record a continuous training video V of the object.
2) For each frame vi of our training video V :

a) We generate the set of all PCA-SIFT keypoints Ki

containing keypoints kij ∈ Ki.
b) We manually create an annotation mask mi ap-

proximating the boundary and center ci of the
training object.

c) We reject any keypoints from Ki which are lying
outside of the annotation mask mi.

d) We store the relative location locrelij of each
keypoint towards the annotated object’s center ci

such that locrelij = ci − loc(kij).
3) We combine all retained keypoints kij into a single set

T .
4) We further reduce the size of T using agglomerative

clustering. This yields our final training dataset.
The detection and localization stage of our algorithm is as
follows:
For each frame vi of our incoming continuous video V :

1) We generate the set of all PCA-SIFT keypoints Ki

containing keypoints kij ∈ Ki.
2) For each keypoint kij of Ki:

a) We perform a nearest neighbor lookup with all
the elements tl of the training set T . The main
detection threshold θ is defined as the Euclidean
distance in PCA-SIFT space between a keypoint
kij and its nearest neighbor tl from the training
dataset. An observed PCA-SIFT feature kij is
considered a match if

min
tl∈T

D(kij , tl) ≤ θ

where D is the Euclidean distance function.
b) For any matching kij we calculate the hypothe-

sized position of the object’s center. We do so
by scaling and rotating the previously recorded
relative position locrell of tl to match the scale and
orientation of kij . More specifically we calculate



the hypothesized position pl using the following
equation:

pl = pos(tl)+

„
scale(kij)

scale(tl)
×

h
cos β − sin β
sin β cos β

i
× locrell

«

where β = orientation(kij) − orientation(tl).

3) We run a clustering algorithm on the voting space using
a clustering threshold δ and enforcing a minimum cluster
size of s votes. We then calculate the center of mass for
each cluster. This is our final localization result.

A. Training

We start by recording a training video of the object, span-
ning a continuous spectrum of perspectives. Each incoming
video frame vi is treated as an independent observation of
which we obtain a set of feature descriptors Ki. PCA-SIFT
was chosen as the descriptor of choice, because it has a sig-
nificantly reduced dimensionality compared to standard SIFT
while keeping a similar level of overall robustness. We adapted
the PCA-SIFT implementation used by [1]. Difference-of-
Gaussians (DoG) is used as the basic interest point detector
which is invariant to scale and rotation changes. The PCA-
SIFT descriptors used in this paper are 20-dimensional. A
typical frame in our testing environment generated somewhere
between 50 and 300 keypoints.

B. Annotation

In order to build a training subset out of all the generated
PCA-SIFT features, we first need to determine which ones
belong to the training object and which ones do not. For
this purpose, a graphical annotation tool was developed which
allows the user to approximate each object’s shape by drawing
one or more geometric primitives (such as circles). This
approach greatly simplifies the annotation task as it is possible
to only annotate certain keyframes and then interpolate the
movement and size of these geometric primitives for all frames
in between two keys. The center ci of each object is inherently
annotated by calculating the center of mass of the geometric
primitives used to approximate the object’s shape. The relative
location locrelij of each PCA-SIFT feature toward the center
of the object ci is furthermore computed as described in III.
All PCA-SIFT features lying outside of any annotated region
are rejected from the training set.

It should be noted that this manual annotation step is
not necessarily required. One possible way to automate the
annotation process could be to place the object in front
of a bluescreen-like surface and then perform an automatic
color-segmentation. While this would simplify the annotation
process, it would also introduce new constraints on the training
stage (such as the requirement of a monochromatic back-
ground) which is the main reason why we did not pursue this
approach.

C. Post-Processing

Even after annotation-based filtering we still have a very
large dataset of relevant SIFT features. Considering that this
data come from a continuous video sequence, it can be

assumed that many of the collected features are highly similar
or even identical. This is partly the case because a particular
feature might only change slightly (or not even at all) between
two video frames. Another reason for redundancy in the
dataset is that a single object might contain several similar
local features at different locations.

Since we are expecting to perform lookup on this dataset
during recognition, it is desirable to reduce its size as much
as possible without throwing away too much information. For
this purpose, we run an agglomerative clustering algorithm
[11] which merges similar features in the dataset. Unlike k-
Means, agglomerative clustering allows us to directly define
a distance threshold in 20-dimensional PCA-SIFT space to
determine whether two features should be merged. Euclidean
distance is used as the distance metric.

D. Recognition

The goal of the recognition stage is to detect and to localize
all instances of the trained object in an incoming video stream.
We again start out by generating all PCA-SIFT keypoints
for each observation received from the video stream. We
then perform a nearest neighbor lookup for each of these
features against every feature from the reduced training set
T . In the current implementation, this is done by a simple
linear nearest-neighbor search, mainly for simplicity reasons.
Any other more sophisticated data-structure suited for higher
dimensional data (such as KD-trees) could be used equally
well if additional performance is required. The main detection
threshold θ is defined as the Euclidean distance in PCA-SIFT
space between a feature and its nearest neighbor from the
training dataset as described in III . Choosing a good value of
θ is critical. A smaller value of θ will deliver fewer, but more
precise matches while a larger value of θ will deliver more
matches while increasing the likelihood of false positives.

E. Centroid Voting Space

A voting scheme is used to determine the location of each
object in the image. Any matched feature kij votes for where it
predicts the center of its parental object to be. This is achieved
by retrieving the nearest neighbor tl and its relative location
towards the annotated object’s center from the training set T .
We then rotate and scale tl’s relative location vector to match
the scale and orientation of the newly detected keypoint kij

as described in III . When adding this vector to the absolute
location of kij , we get a hypothesis of the object’s center. This
point is counted as a vote for the object’s center in the two
dimensional voting space.

It should be noted that this is a heuristic approximation.
There is no clear guarantee that the same feature cannot occur
at a different relative location towards the object’s center than
in the training data. However, we can optimistically assume
that most of the votes do in fact approximately match the
object’s center and that our voting scheme should take care of
potential outliers.

An interesting side-effect of this kind of voting space ap-
proach is that it automatically solves the problem of occlusion.



Even when an object is half occluded or moving off the visible
screen, we are still able to correctly hypothesize its center. This
would not be the case if we were to use a simple center of mass
calculation over all matching features’ absolute locations.

F. Clustering on the Voting Space

After populating the voting space, we attempt to localize its
peaks by using a clustering algorithm. In our implementation
we have experimented with both Mean-Shift [12] and agglom-
erative clustering. Both of them performed virtually identical
in terms of quality. While Mean-Shift should be considered
a slightly less predictable due to its random initialization, the
two algorithms did not produce any noticeable difference in
detection results (less than 1% difference in the recognition
rate). One significant difference however is speed: Mean-Shift
does run significantly faster than agglomerative clustering
when there is a large count of votes.

Both Mean-Shift and agglomerative clustering require the
definition of a distance-threshold δ (this is known as the ‘band-
width’ in Mean-Shift). The meaning of δ becomes clear when
we take a simplified look at how agglomerative clustering
works. Each point starts out as its own cluster. If the Euclidean
distance between two clusters is smaller than δ then the two
clusters are merged into one. This process is repeated until
no more merges are possible. As our experiments will show
further below, the clustering threshold δ is a crucial variable
to gain decent detection results. Choosing a smaller value of
δ makes the clustering of votes less likely, and can lead to
unnecessary multiple detections of the same object. Choosing
a larger value of δ increases the likelihood of clustering votes
and increases the risk of wrongly grouping multiple object
instances into a single detection point.

After completion of the clustering process we reject any
clusters that contain less votes than a certain minimum cluster
size threshold s. The center of mass is computed for each
remaining cluster which becomes our final detection result.

G. Temporal Voting Space

So far we have only looked at single, independent video
frames. One way to make use of the fact that the testing
data are a continuous video-stream is to extend the previously
described voting space into three dimensions, namely X, Y,
and time. This can be achieved by combining the voting spaces
of the last N frames with the third dimension representing the
age of each frame multiplied by a scalar constant λ. We can
then run the standard clustering mechanisms discussed in the
previous paragraph in this three-dimensional space.

The reason why one would consider this kind of temporal
extension is to filter out noise in the video. Choosing a large
N results in a stronger temporal filtering effect, which may
reduce the rate of false positives, but may also decrease the
object detection rate. Choosing a small N may increase the
detection rate, but might concurrently increase the amount of
false positives due to noise. Another problem of choosing a
large value of N is that we create an effect of temporal lag.

Especially when an object moves quickly along the image-
plane, the centroid calculation will determine an average which
will cover the past N frames, therefore misrepresenting the
real current location of the object in the latest video frame.

This temporal voting scheme is one of many possible ways
to exploit the fact that the data are a continuous video-stream.
Other possibilities not discussed in this paper could be Kalman
or Particle Filters which would rather be layered on top of the
native voting space.

IV. EXPERIMENTAL RESULTS

We test our approach in two different domains. The first
domain is a cluttered kitchen scene. The objective is to detect
and locate all instances of a certain food product on a kitchen
counter. The data of this domain originate from unedited
grayscale video footage taken at 320x240 pixel resolution
with a handheld camera. The second domain has the goal
of detecting telephones in a highly cluttered desk scene. The
data of this domain was gathered using the internal camera of
a moving SONY QRIO humanoid robot as it is depicted in
figure 1(b). The videos retrieved from the QRIO robot were
at a 176x144 pixel resolution and contained clearly visible
artifacts from a high JPEG compression factor which made
this a very challenging domain.

A. Training Data

Continuous video footage is used in order to train for a new
object. Since PCA-SIFT is robust against perspective changes
up to approximately 10-20 degrees, it is recommendable
that the training video contains views from various angles,
preferably the ones which we might expect to encounter during
testing. In our particular experiments we chose to place the
object in an independent, uncluttered environment during the
training stage. This was mainly done to ensure contextual
independence between the training and the testing stage and
is not a general requirement of our algorithm.

B. Testing Data

For testing, multiple instances of the object were placed
in an extremely cluttered scene. The objects were placed in
various positions and orientations, and some of them were
partially occluded to increase the demand of robustness from
our approach. Although the two scenes were recorded using
different sources, both of them feature a similar “walk-by”
with continuously changing perspectives parallel to the walk-
ing plane, containing additional vertical variations due to the
walking motion of the observer. The desk domain contains
slightly greater amounts of motion blurring due to the rather
rapid and uncompensated walking motions of the QRIO robot.

C. Evaluation Criteria

We count a match if we correctly detect and localize the
object’s center in the image. The requirement is that the
detected center lies close enough to the object’s annotated
center. We chose this threshold to be 50% of the object’s
annotated bounding box radius. Anything located outside of
the circle with this radius will be counted as a false positive.



Fig. 2. A selection of interesting frames from the testing video of both the kitchen domain (a to d) and the desk domain (e to g). The top row shows the
input frames. The bottom row shows the centroid voting space after running PCA-SIFT on the input frames. Each vote is annotated by a small black dot.
The result of clustering and centroid-finding on this voting space is marked by larger black circles. These results were generated using a temporal filtering
size of 4, a clustering threshold of 10, and a minimum cluster size of 4 (1 per temporal frame).

Fig. 3. A snapshot from the training sequence of the kitchen domain (left)
and the locations of its annotation-filtered PCA-SIFT keypoints (right).

ROC Curves (receiver operating characteristic) are used as
the main performance evaluator. Each curve shows a plot of
the detection rate vs. the rate of false positives. A curve is
generated by iterating through different detection thresholds
θ. We compare the influences of different variables to our
approach by comparing their ROC curves respectively.

The detection rate is defined as

Pdetection =
# of correct detections
# of annotated objects

.

It is 1.0 if no objects are annotated in the image.
The false positive rate is defined as

Pfalse positives =
# of incorrect detections

# of detections (both correct and incorrect)
.

It is 0.0 if no objects have been detected.

D. Performance

In our kitchen domain, the object that was trained for was
a package of “Jello” as it can be seen in figure 3. After
annotation filtering, the training dataset contained a total of
approximately 124,000 features. This dataset was reduced us-
ing agglomerative clustering to have a total 4,372 features. The
testing video which was used for the following performance
analysis had a total of 539 frames and contained six instances
of the ‘Jello’ object spread throughout the scene in various
positions and under partial occlusion. Some interesting frames
of the testing video can be seen in frames (a) to (d) of the top
row of figure 2.
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Fig. 4. ROC Curves analyzing the effects of various parameters. Each Curve
was generated by modifying the nearest neighbor threshold. Each datapoint
represents the average over an entire testing video sequence.

In the desk domain, the object that was trained for was a
telephone as it can be seen in the top row of figure 2(e) to (g).
The original training dataset of 50,000 features was reduced
to a size of 6053 features. The testing video had 503 frames
with two instances of the phone object, again under partial
occlusion and in two different poses.

Figure 4(a) analyzes the performance of our approach in
the kitchen domain under different voting space clustering
thresholds δ (abbreviated CT in the figure). As predicted,
choosing a threshold too small (such as one or two) as well
as choosing a threshold too large (such as 40) will deliver
slightly unoptimal results. A threshold in the range from five
to 20 turned out to deliver the best results.
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Fig. 5. Effects of the training dataset size on runtime and precision.

Figure 4(b) evaluates the impact of the proposed temporal
clustering mechanism in the kitchen domain. We compare a
temporal size of one frame (meaning no temporal clustering)
with a temporal size of four frames. We can see that temporal
filtering does in fact visibly reduce the rate of false positives.

In figure 4(c) we can see the impact of different mini-
mum cluster size thresholds in the kitchen domain. While
a minimum cluster size of one tends to be too optimistic, a
minimum size of two seems to significantly reduce the rate of
false positives while only slightly decreasing in the maximum
recognition rate. A minimum size of anything greater than two
starts to significantly hurt the recognition rate.

Figure 4(d) shows a short performance evaluation of our
approach in the desk domain. Here, our effective recognition
rate lies in the range from 60% to 70% which is significantly
less than the rates in the 90% to 95% range of the kitchen
domain. One major difference between the two domains that
could have caused this decrease, is the fact that the data of
the desk domain had an extremely low resolution with a high
JPEG compression factor which added additional noise to it.

All of the above experiments in the kitchen domain were
performed with the same training dataset of size 4,372. How-
ever, a comparison of various different training set sizes was
performed to determine the effects on precision and runtime.
In figure 5(a) we can see that the nearest neighbor lookup time
scales linearly with the size of the training set. Figure 5(b),
however gives us an indication of the training set size’s effect
on the recognition rate. A training set size of approximately
10,000 (about 1/10 of the original dataset set) leaves us with
a recognition rate of 95%. When reducing the training set to
4,372 features (the size used in the above experiments) we still
retain slightly more than 92% recognition rate while splitting
the runtime approximately in half (from 0.7 to 0.3 seconds).

E. Speed

Real-time performance was a significant goal of this ap-
proach as it is intended to be used in a real robotic setting.
On an Intel Core 1.8GHz processor at a 320x240 resolution,
the algorithm performs typically at 1 to 10 frames per second
(using a training dataset with approximately 2000 features).
At a resolution of 176x144, the algorithm performs at approx-
imately 5 to 15 frames per second on the same machine. For
the above mentioned training data, about 50% of processing
time was spent on building the PCA-SIFT vectors. Another
40% was spent on the nearest neighbor search through the

compressed training dataset. Only 10% or less were spent on
the actual clustering of the voting space when using Mean-
Shift clustering.

V. CONCLUSION AND FUTURE WORK

We have presented a simple approach to use PCA-SIFT for
detecting and localizing multiple objects in video footage that
is typical of humanoid vision systems. We have furthermore
analyzed its performance using ROC statistics on real-world
experiments.

A general limitation of our approach is that it requires
feature-rich objects to perform well. There certainly exist
geometrically and texturally simple object classes which will
not generate many features. For these sparse kind of object
classes, other methods such as contour matching might turn
out more effectively than our approach.

Furthermore, the current approach presented in this paper
does not make any use of color. For future work, it would
be interesting to see how to best integrate color-information
into the presented voting scheme and to analyze what impact
it will have on performance.
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