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Abstract—This paper deals with the problem of object re-
construction for visual search by a humanoid robot. Three
problems necessary to achieve the behavior autonomously are
considered: full-body motion generation according to a camera
pose, general object representation for visual recognition and
pose estimation, and far-away visual detection of an object. First
we deal with the problem of generating full body motion for a
HRP-2 humanoid robot to achieve camera pose given by a Next
Best View algorithm. We use an optimization based approach
including self-collision avoidance. This is made possible by a
body to body distance function having a continuous gradient.
The second problem has received a lot of attention for several
decades, and we present a solution based on 3D vision together
with SIFTs descriptor, making use of the information available
from the robot. It is shown in this paper that one of the major
limitation of this model is the perception distance. Thus a new
approach based on a generative object model is presented to cope
with more difficult situations. It relies on a local representation
which allows handling occlusion as well as large scale and pose
variations.

I. I NTRODUCTION

This work is part of a project we called “Treasure Hunting”.
A typical scenario would be to exhibit an object to the

robot in order for it to build an internal representation. In
a second step the object is placed somewhere in a given
environment; the robot is then asked to seek for it and find it
in an autonomous way.

We believe this behavior is fundamental for complex au-
tonomous robotic systems aiming at helping humans in work-
ing place such as factories or offices. Our research addresses
this problem in an integrated manneri.e. considering the capa-
bilities and limitations of the robot and the interaction between
object representations and its evaluation while searching. Part
of the visual search behavior has been thoroughly described
in Saidi et al. [1]; it assumes a system with several levels
to recognize and process a given object. We formulate this
assumption relying on two approaches:

• a 3-D SIFT-based representation of an object for con-
struction and recognition: this is used for close distances,
and

• a generative model approach for far-away object detec-
tion.

A posture generation devoted to this problem is proposed.
Its role is to feed the recognition modules with necessary
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Fig. 1. Parameters considered to generate a pose for robot HRP-2, given
point x and a directionv to look at. The rotation angle aroundv is free.

images to build the internal representation of a given object.
The posture generation is optimized to take into account robot
constraints while guided by specific requirements in building
object representation.

A. Overview of related work

1) Object learning and recognition on Humanoids:Fitz-
patrick et al. [2] proposed to use active perception to have a
humanoid robot learn a visual representation of the object.
By light tapping, the humanoid robot Cog segments the
boundaries of the object, and builds an orientation based
representation of the object. This representation is invariant by
scale and orientation; however it is not intended to handle 3D
representation, and mostly targeted for closed-range interac-
tion. Ude et al. [3] proposed to use a classification on a Gabor
filter representation of objects. The classification is realized by
a SVM classifier. It is also associated with detectors such as
colors to elect candidates in the environment. Ude et al. uses



the wide view cameras of the DB humanoid robot to elect
possible candidates, and brings them in the foveated images.
Extending on this work, Welke et al. [4] uses a feed-forward
neural network to learn the feature representations of an object
model. There is however no autonomous mechanism to learn
the visual features of an object as for Fitzpatrick. Of particular
interest is the work of Taylor and Kleeman [5], where visual
object models are build using a range laser stripe, and fit into
geometric primitives; their robot was able to build a high-level
representation of the scene through a graph, and then perform
grasping in a cluttered environment.

2) Object detection:Object detection has receive a lot of
attention during the last decades. Most of the methods use
sliding windows techniques. A classifier is trained in orderto
decide if a region contains an object or not and is applied at all
possible positions and scales. We can cite among others, the
cascade of classifiers proposed by Viola and Jones [6]. These
methods are known to be efficient but need a huge number
of training images (few thousands) and require a very long
training stage.

We decided to focus on a generative model based on local
representation. Models considering images as collection of
small patches have been used first for image retrieval and more
recently for object classification. A popular technique is to use
a quantification of these local representations into so called
visual words (first introduced by [7]). These techniques can
also be applied to the localization of objects in the image. They
are particularly adapted when dealing with strong variations
of object appearances and occlusions.

B. HRP-2 vision system

HRP-2 Number 10 has been modified to have three cameras
with a narrow field-of-view (25 degrees), and a fourth camera
with a large field-of-view (90 degrees). The large field-of-
view camera has already been used for SLAM [8], whereas
the narrow field of view is used for 3D edge-based object
recognition [9]. Looking down to an object is quite challenging
for such kind of robot, mostly because there are not so many
features other than the object itself, even in the wide-lens
camera. Secondly, the table we used has a round shape, which
tends to foster bad localization of the corner features which
slide along the border of the table. The information of the
pattern generator is moreover not as good as in the usual case,
because sideways motion causes much friction with the floor.
Therefore they create a large drift when turning 360 degrees.
It is thus not possible to use directly the information from
our previously developed SLAM system to create an accurate
model of an object, we rather used other information available
to build the description of our object. In order to make the
problem challenging compared to the previous well-known
methods we used a dinosaur as the object to reconstruct. It
is well textured, but its complex geometry makes 3D-edge
based methods likely to fail, and manual modelling would be
quite time-consuming.

II. FULL BODY POSE GENERATION FOR A VIEWING

DIRECTION

We describe the algorithm which generates the pose ac-
cording to a viewpoint provided by a Next Best View (NBV).
For the time being we assume a simple NBV algorithm that
provides directions around a sphere bounding the object of in-
terest. The problem is to find feasible poses considering: (i) the
constraints due to object reconstruction such as the distance to
the object, the viewing direction... and (ii) constraints inherent
to the robot such as stability, joints limits, collision avoidance,
etc. Our posture generation borrows from the one presented
for the purpose of humanoid contact-support planning [10].
It appears that this posture generator can also be used for
our vision reconstruction purposes, by reformulating parts of
the optimization problem in a way it takes into account our
application requirements.

A. Optimization problem

As depicted in figure 1 the inputs of the problem are a
direction v, a point x, an interval[dmin, dmax] and a4 × 4
matrix f . The output is a poseq, for which the robot has its
vision system frame aligned withv, looking throughx. The
vision system along the line should be at a distance between
dmin anddmax. Moreover the robot has to be statically stable,
i.e. its CoM is projected into the support polygon, without any
self-collision or collision with the environment. The matrix f

specifies the pose of the right foot in the left foot reference
frame.q is the pose of the free floating body, and the angular
values. In Escande et al. [10], the objective function is used
to obtain a more natural-looking posture by minimizing the
distance between the joint angles and the middle of their limits.
The stability is introduced as a set of inequalities computed
from the convex hull of the foot. Depending on the starting
point for difficult viewpoint, this might lead to solution where
the CoM is on the limits of the polygon, cf figure 2. Therefore
the objective function was changed to be the distance of the
CoM from the center of the feet polygon. In order to solve
the optimization problem, we used CFSQP [11] which can
cope with linear and non-linear equalities and inequalities
constraints

B. Constraints

1) Collisions and self-collisions avoidance:Collisions are
introduced through non-linear inequalities using proximity
distances between selected pairs of body. In order to com-
pute a continuous gradient, Escande et al.[12] developed a
strictly convex representation of the robot’s bodies. The strict
convexity ensures a continuity of the gradient for the distance
between two such bodies. The strict convexity is obtained by
constructing a boundary volume made of sphere and torus
patches. Such construction for the table considered in this
application is depicted in figure 3.

2) Feet positions:Instead of taking feet position as inputs
of the problem as in [12], the relationship between the feet is
considered instead through the matrixf . Moreover instead of
inserting the polytope related to the support polygon as a set



Fig. 2. Pose obtain when the CoM is introduced as a linear constraint and
reaches the limit of the support polygon, and by using a minimization function
which favor angular position in the middle of their limits.

Fig. 3. The table around which the robot is turning, and its STP-BV
representation.

of linear inequalities, it is introduced inside the minimization
function. In order to have horizontal feet, their roll and pitch
are constrained to be zero, through linear equalities. Implicitly,
the support polygon can be freely translated and rotated around
the yaw axis during the optimization process. This explains
why some of the final postures have the feet not oriented
towards the object.

3) Gaze direction: The gaze direction is set by linear
equalities which force the vision system frame to be aligned
with the vectorv. This let the head to rotate around this axis
as it can be seen in figure 2. Finally we introduced a non linear
constraint which is the distance between the pointx, where
the object is supposed to be centered, and the vision system
origin.

C. Experiments and discussion

Using the posture generator presented above we generated
8 postures with different elevation angles, assuming that the
object would be on the red table, figure 3.

1) Kinematic limitations: The input parameters are de-
picted in table I. The most demanding postures are the ones
when v is at the vertical direction. Indeed the cameras are
rigidly mounted to the robot’s head and look down with an

vθ(deg) f(m, m, deg) xz(m) [dmin, dmax] Init. Pos.

0 (0.0, 0.2,30.0) 0.95 [0.5,2.0] Squat
10 (0.0, 0.2,30.0) 0.95 [0.5,2.0] Squat
20 (0.0, 0.2, 0.0) 0.95 [0.5,2.0] Half-Sitting
30 (0.0, 0.2, 0.0) 0.95 [0.5,2.0] Half-Sitting
40 (0.0, 0.2, 0.0) 0.85 [0.5,2.0] Half-Sitting
50 (0.0, 0.2, 0.0) 0.75 [0.2,2.0] Half-Sitting
60 (0.0, 0.2, 0.0) 0.75 [0.2,2.0] Half-Sitting
70 (0.0, 0.2, 0.0) 0.75 [0.2,2.0] Half-Sitting

TABLE I
INPUT PARAMETERS FOR EACH OF THE EIGHT POSE GENERATED.

Fig. 4. The poses realized by HRP-2.

angle of10 degrees. So when asking for90 degrees, the robot
head’s has to perform100 degrees, while avoiding the table.
For this reason, the algorithm was not used to find solution
over 70 degrees. Between40 and 70 degrees the robot is
asked to look at a point lower than the surface of the table.
For 40 and 50 degrees the solution found where feasible
and sufficiently far away from the object to be interesting.
However considering60 and 70 degrees, the position were
so close to the object that it was practically useless. It shows
nonetheless that for a different object, and a different table, the
robot can reach such postures. Finally, the posture generated
at 50 degrees makes the legs close to a singular position,
and therefore is avoided practically. Most of those limitations
are mainly due to the robot’s kinematic limits and are quite
natural. An extension of this work will use the information
provided by FSQP on such posture to generate a new Next
Best View.

2) Algorithmic limitations: The other demanding postures,
but still feasible, are the ones where the vision system should
face the object. The difficulty inherent to the optimization
scheme to find a solution is the starting condition. In order
to find a solution, we had to guide the optimization scheme
by providing a squat position. Whereas for the other postures,
we simply provided the neutral position of HRP-2’s pattern
generator. It might be possible to go under0 degree if other
part of the robot are in contact with the ground.



3) Experiments:The computed poses were tested on the
humanoid HRP-2 and are depicted in figure 4. For the 8
positions of the robot provided by the posture generator,
the appropriate step sequences were computed manually. The
robot did perform the transition from the last position, pro-
vided by the pattern generator, to the pose by using inverse
kinematics. There were no mechanism reinforcing the stability
during this transition, but we plan to use the CoM’s Jacobian
to insure this part [13].

III. SIFT-BASED OBJECT RECONSTRUCTION

A. Object representation

Assuming we have a collection of images taken by the robot,
this section focuses on the way the robot “learns” objects for
close recognition and pose estimation.

Using its pattern generator, the humanoid can walk, squat,
and bend over the object to sample many different views
of it. A key step in the learning process is therefore the
determination of the Rigid Motion between different views
(figure 5). This enables the robot to merge the information it
gathers into a single spatially consistent representation.

Fig. 5. Left : The data collected is two series of pictures taken by the
robot’s left and right video cameras from several different viewpoints. Right :
The object representation obtained through the learning phase using 5 stereo
views. Spheres represent the 3D Features which had played a role during rigid
motion evaluation between two views.

To build the representation, we combine dense disparity
maps [14] with UCLA’s implementation [15] of Lowe’s SIFT
detector and descriptors [16]. The disparity maps (built using
the stereoscopic system) provide us with partial surface infor-
mation of the object, and the 3D position of detected SIFTs.
The SIFT-descriptors are used to match points between the
left-images of two stereoscopic views.

The SLAM system detailed in [8] could provide us with
an estimate of the rigid motion. We therefore solve an opti-
mization problem between two views. Instead of working in
the projective geometry space, we use the Euclidean space
for minimization: SIFT descriptors and scale combined with
depth information provide matches between pairs of 3D points
spotted in two stereoscopic views. The rigid motion evaluation
is even simplified by estimating the translation using both
clouds’ Centers of Gravity, leaving only a rotation quaternion
to determine. Thus the final function to minimize is:

f =

∑N

i=1 ‖ R(X1i) − X2i ‖
2

NMatches

(1)

with R(X1i) = qX1iq̄, X1i being the point in view1 andX2i

its match in view2. NMatches is the number of pairs of points
we work on (typically 30).

B. Filtering matches

Incorrect matches inevitably occur. In order to discard them,
two methods are used: the disparity map, and a RANSAC-like
method. The first method is quite natural as it consists in cast-
ing aside points for which the 3D location is unknown. Depth
thresholds are also set during the disparity map computation:
this avoids SIFTs from being detected in the background. The
second method consists in checking the value of functionf

after the minimization process (equation 1). If it exceeds a
given threshold, it means at least one match is wrong. Since
correct matches all “agree” on the same rigid motion, the
distance‖ R(X1i) − X2i ‖2 is greater for the false ones.
Using this fact, the worst matching feature is discarded, and
minimization is performed once again. The process is repeated
until f falls below the threshold.

Fig. 6. Matches which are not consistent with the others can be spotted and
cast aside.

As shown in figure 6, this is an efficient way of discarding
inaccurate matches. Partial reconstruction results are given in
figure 5.

C. Object recognition

The object model used by the robot consists of all the
3D features that had been spotted during the learning phase,
moved to a unique frame of reference. What follows explains
how such a representation is used for object recognition.

First, feature detection is run on the scenery. The resulting
features are then matched between the scene and the object,
using the same method than for pairs of views during the
learning phase. Figures 7 and 8 illustrate those results. Rigid
motion evaluation is then performed with unlikely matches
cast aside.

The results for close-up scenes (up to 1 meter) are excellent,
but worsen when the distance increases. In order to measure
the influence of distance on this algorithm, object detection
was run from many distances, in two different experiments:
with the object alone on a black background, and in a
heavily cluttered environment. Figures 9 and 10 show the
last successful Object-Scene matches of both experiments,and
tables in figure 11 show the associated results.

Beyond 2 meters, the object can still be located in the
scene’s 3D map, but the pose estimation fails. This is due
to the position error of the disparity map’s 3D points.



Fig. 7. A screenshot of the model successfully detected in therange map of
the scenery. It contains over 6000 3D SIFT features, but onlythe best matches
are represented.

Fig. 8. Left : The left eye’s image of figure 7’s scenery. Right :The pose
of the object is successfully determined using Rigid Motion minimization.

IV. SEEING FAR AWAY: A GENERATIVE MODEL BASED

APPROACH

As shown in the last section, the sift-based reconstruction
method fails at detecting objects far away. The method pre-
sented in this section aims at providing coherent hypothesis
of the object position and scale in the robot field of view. It
can detect object in challenging conditions, such as difficult
viewpoints, small scale, extreme illumination conditionsand
occlusions. This hypothesis can be used as an input for the
visual search when the 3D object reconstruction fails. It is
an extension of the method of [17] and uses additional infor-
mation coming from the robot to guide the model estimation
process. In particular we will use both the left and right images
of the robot cameras to compute dense disparity maps and then
use the resulting depth information as an extra component of
the model.

A. Visual Features

Images are represented by a set ofn overlapping patches
and a gradient map (see figure 12).

Overlapping visual patches. Patches, denotedPi, i ∈
{1, . . . , n}, are sets of pixels belonging to square image
regions. Five different characteristics are computed fromeach
patch.

First of all, a visual codebook is obtained byk-means
clustering SIFT [16] based representations of the patches.
Then, each patchPi is associated to the closest codeword.
The assigned codeword is denotedw

sift
i ; this is the first

Fig. 9. Pose estimation on a uniform background is performed successfully
at 1,7m with no occlusion.

Fig. 10. Pose estimation under severe clutter is performed successfully at
1,6m with no occlusion.

characteristic. We also produce visual words based on color
information by clustering color descriptors [18]. The patch
Pi is also characterized by its closest color codebook word
wcolor

i . A RGB value is computed by averaging over pixels
extracted in the center of the patch. This 3D-vector is denoted
rgbi. We also consider the coordinates of the patch center
Xi = (xi, yi) in the image. Finally, the dense disparity map
provides an estimation of the depthdi of the patch.

Gradient Map. In addition to this patch based characteris-
tics computation, we also extract a gradient mapG(x, y), that
consists of the strength of the gradient at each(x, y) pixel
location.

In the end, the gradient mapG(x, y) and the characteristics
of then overlapping patchesPi: {w

sift
i , wcolor

i , rgbi,Xi, di},
i ∈ {1 · · ·n} compose all the information we use to describe
an image.

B. Model description

The strength of our model lies in the combination of two
(different but) complementary components: (i) a blob based
generative model using visual words for its good object lo-
calization properties, and (ii) a MRF (Markov Random Field)
structure which provides a coherent field of labels following
object boundaries.

1) A blob-based generative model:We consider that an
image is made of “blobs”, and that each blob generates some
patches with its own model. Intuitively, if an image contains
three objects, we may have three blobs, one over each object
region. Each blob is thus responsible for generating a set of
patches the appearance of which corresponds to the object
category.

The generation of a patch requires to a) select a blob, and
b) generate a patch with the patch modelspecificto that blob.
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Fig. 11. Left: Recognition results on black background. Right: results in
cluttered environment.

The blob generation is assumed to follow a Dirichlet pro-
cess. The Dirichlet process exhibits a self-reinforcing property:
the more often a given value has been sampled in the past, the
more likely it is to be sampled again. This means that each
newly generated patch can either belong to an existing image
blob Bk or start a new region.

We characterize each blobBk, 1 ≤ k ≤ K, with a set of
random variables:Θk = {µk,Σk, Ck, lk, Nk, Sk}. µk,Σk are
respectively the mean and the covariance matrix describing
the geometric shape of the blob,lk is the blob label (object
category),Ck is a Gaussian mixture model representing the
colors of the blob,Nk is the number of patches generated by
the blob,Sk is the scale of the blob which is closely related
to the distance between the object and the camera.

We characterize each patchPi by its features
(wsift

i , wcolor
i , rgbi,Xi, di).

The probability of generating a patch, given that it is
generated by the blobBk of parametersΘk: p(P|Θk) is made
of 5 distinct parts, as the model assumes that patch position
and scale, color and appearance are independent for a given
blob. The probability for a blobBk to have generated patch
P thus consists of five terms:

p(P|Θk) = p(wsift, wcolor, rgb,X, d|Θk)
= p(wsift|Θk)p(wcolor|Θk)

p(rgb|Θk)p(X|Θk)p(d|Θk)
(2)

The positionX of a patch is chosen according to a normal
distribution of parametersµk and Σk for object blobs. It is
uniform for background blobs.

We assume that background and object blobs have a Gaus-
sian Mixture color model. The patch depth is closely related
to the blob size. Finally, the probability of the SIFT and color
codewords only depend on the class label. These distributions
encode object appearance information and are responsible for
the recognition ability of our model. They are learned using
training images in a way described later on (section IV-D).

2) A MRF structured field of blob assignment:A MRF
of blob assignment regularizes the assignment of neighboring
patches and also aligns borders between the object and the
background with natural image contrast and with strong depth
changes. This field is defined over a grid (8-connectivity),
nodes correspond to patch centers.

Fig. 12. First row: patches are extracted in a very dense manner. Each patch
is associated to the closest visual word for sift and color descriptors, and then
represented by the words indexes (wSIFT

i
, wcolor

i
), a RGB value (rgbi), a

position (xi) and a depth (di) given by the disparity map. Second row: the
model computes the best assignment of patches to object blobs orbackground
and estimates to blobs positions.

This component basically defines a Gibbs energy that is
used to compute conditional probability of patch assignment.
This energy has a model fitting term based on the blob repre-
sentation previously defined as well as neighboring constraint
terms for spatial regularization.

The total energyE of the field is the sum of local energies
Ei defined for each patchPi

Ei = Ui + γ
∑

j∈N (i) Vi,j (3)

whereN (i) represents the 8 neighbors ofPi, γ balances the
proportion of the two terms. Letbi be the blob assignement
index of patchPi. Ui = − log p(bi|Pi, N1:K ,Θbi

) is a
potential that measures the coherence between the patch and
the blob model, andp(bi|Pi, N1:K ,Θbi

) is the probability of
the blob assignment knowing the patch and the parameters of
all the blobs. It stems from the model presented in the last
section and makes the link between the two components of
the model.Vi,j is a potential that measures similarity between
two patchesPi and Pj . It enforces local coherence of the
object/background labels, via constraints on the similarity of
neighboring patch labels. These contraints are computed using
the gradient mapG and the distance between depth values
of neighboring patches. It encourages cuts along high image
gradients and depth discontinuity.

C. Model Estimation

Now that the model has been defined, its parameters have
to be estimated for each image to produce object/background



blobs labels (li) and patch assignments to blobs (bi). The
model is estimated by a Gibbs sampling algorithm [19] (spe-
cific case of Markov Chain Monte Carlo (MCMC) method).
A Gibbs sampler generates an instance of parameter values
from the distribution of each variable in turn, conditionalon
the current values of the other variables. More details on the
model estimation could be found in [17].

D. Learning an object appearance

In order to learn the object appearance information, exam-
ples of images containing the object are fed to the robot.
Once again, these learning images are stereoscopic views,
taken from several viewpoints (figure 5). The resulting dense
disparity map provides local information that we use to
create segmentation masks on positive images. This makes the
estimation of object model more accurate by knowing exactly
which part of the image belongs to the object and which does
not.

We also use a set of negative images (ie not containing
the object) provided by the robot camera while moving in its
environment.

Descriptors (SIFT + color) are extracted on local regions
exactly as described for the test images. These descriptorsare
used first to create visual words by a quantification process,
and then to compute the probability for each visual word to
be observed as a component of an object blob or not. These
probability distributions (p(wsift|Θk) and p(wcolor|Θk)) are
stemed from an occurrence histogram obtained by a counting
process.

E. Experiments

To evaluate our detection method, we created a test set. It is
composed of 118 images taken with the robot cameras. Most
of them contains the object in very different conditions. We
varied the distance to the object, the view point, the illumina-
tion, tried different backgrounds and realized occlusions. The
remaining images do not contain the object.

1) Detection evaluation:Our model provides blob shape
regions of the image which give approximate position of
the object. In order to evaluate the detection performances,
these blobs were transformed into bounding boxes describing
a rectangular region of the image containing the object. These
images were also hand annotated in order to produce a ground
truth. A detection is considered as correct if the area of overlap
between the predicted bounding boxBp and the ground truth
bounding boxBgt exceed by a given threshold. We will use
50% by default. This is given by the formula

overlap =
area(Bp ∩ Bgt)

area(Bp ∪ Bgt)
(4)

The detection performance is evaluated using precision
recall values. If we defineNd the number of detection obtained
by our method,No the number of objects really present on the
set of test images andNc the number of correct detection, we
can define the precisionP and the recallR with the following
formulas:P = Nc

Nd

and R = Nc

No

. Multiple detections of the
same object are considered as false detection.

with depth info without depth info
tolerance area precision recall precision recall

0.2 0.81 0.64 0.65 0.61
0.3 0.73 0.57 0.50 0.48
0.4 0.60 0.48 0.39 0.37
0.5 0.41 0.32 0.26 0.24
0.6 0.15 0.12 0.17 0.16

TABLE II
PRECISION AND RECALL VALUES

Fig. 14. The model gives a list of patches actually being components of the
model. This produces segmentation masks.

In this part we would like to evaluate both the gain of
using the depth information, and the overlap between detected
bounding boxes and ground truth. Table II shows the precision
and recall values for different thresholds. The two columns
present precision and recall values for our method (left), and
for the original one (right) which is not using any depth
information.

First, we can clearly see the improvement obtained using the
information given by the disparity map. The depth introduced
within the model helps to estimate accurate boundaries of the
object, and give good clues on the object expected size.

Looking at the precision values, we can see that on most
of the cases (81%) the detected objects have at least a part in
common with the original object.

Finally, the recall values indicate that 64% of the object
were partially detected.

Figure 13 shows examples of correct detections (overlap
greater than 50%) and false detections (overlap lower than
50%).

2) Qualitative segmentation evaluation:The model also
provides the list of patches belonging to a particular object
instance. The patches correspond to sets of pixels belonging to
their support. Using the information on all patches containing
a given pixel, we can create a segmentation of the object.
Figure 14 provides segmentation masks in terms of probability
maps of the object location on images where the detection
succeeded.

V. CONCLUSION

As a conclusion, this work presents a step towards solving
autonomously the object reconstruction for visual search.The
3 components we have described, once fully integrated, will



Fig. 13. Two first columns, examples of correct detections. Last column, examples of false detections.

allow a robotic behavior where the robot decides which
information to learn and how to acquire it in order to recognize
later the object even in challenging conditions.

We presented two different methods of object recognition.
The first one relies on a 3D SIFT based representation, and is
able to recognize and estimate the pose of a particular object.
The second one is a detection method which is designed
to provide hypothesis on the object position and scale in
challenging conditions for the visual search system in order
to reach conditions where the pose can be estimated.

We also presented a method for full body pose generation
which is able to acquire some of the challenging images
needed to build a robust representation of the object. Due to
drift introduced by the rotation of the robot, at the time of
this experiment the vision system was not properly centered
to take correctly the picture. A correction of the head direction
by detecting the location of the table should fixed this problem.
Thus in this paper, the pictures used were taken from the
robot by setting it manually in the appropriate situations.As
we made no assumption on the object itself, the approach is
generic and can be applied to any object.

The far away detection model is designed in a way that it
can also be used for a multi-object framework, so our method
can be easily extended to the recognition of several objects.

The authors would like the JSPS summer school program
for partial funding of this work, and the European commission
in the context of the ROBOT@CWE project.
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