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Abstract—This paper deals with the problem of object re-
construction for visual search by a humanoid robot. Three
problems necessary to achieve the behavior autonomously are
considered: full-body motion generation according to a camera
pose, general object representation for visual recognition and
pose estimation, and far-away visual detection of an object. Fits
we deal with the problem of generating full body motion for a
HRP-2 humanoid robot to achieve camera pose given by a Next
Best View algorithm. We use an optimization based approach
including self-collision avoidance. This is made possible by a
body to body distance function having a continuous gradient.
The second problem has received a lot of attention for several
decades, and we present a solution based on 3D vision together
with SIFTs descriptor, making use of the information available
from the robot. It is shown in this paper that one of the major
limitation of this model is the perception distance. Thus a new
approach based on a generative object model is presented topm
with more difficult situations. It relies on a local representation
which allows handling occlusion as well as large scale and pose
variations.

I. INTRODUCTION

This work is part of a project we called “Treasure Hunting”.
A typical scenario would be to exhibit an object to the _
robot in order for it to build an internal representation. Iff!9- 1. Parameters considered to generate a pose for roboiZigien
. . . .\Pomtx and a directionv to look at. The rotation angle aroundis free.
a second step the object is placed somewhere in a given

environment; the robot is then asked to seek for it and find it

In an autonomous way. images to build the internal representation of a given dbjec

We believe this behavior is fundamental for complex atrhe posture generation is optimized to take into accourttrob
tonomous robotic systems aiming at helping humans in workanstraints while guided by specific requirements in baidi
ing place such as factories or offices. Our research add;res&&ect representation.

this problem in an integrated manrier. considering the capa-

bilities and limitations of the robot and the interactioriiaeen A. Overview of related work

object representations and its evaluation while searctitag 1) Object learning and recognition on Humanoidsitz-

of the visual search behavior has been thoroughly descrifggicy et al. [2] proposed to use active perception to have a

in Saidi et al. [1]; it assumes a system with several levelg ,manoid robot learn a visual representation of the object.

to recognize an.d process a given object. We formulate tI@@ light tapping, the humanoid robot Cog segments the

assumption relying on two approaches: boundaries of the object, and builds an orientation based
« a 3-D SIFT-based representation of an object for copepresentation of the object. This representation is ianaby

struction and recognition: this is used for close distancescale and orientation; however it is not intended to hanille 3

and _ _ representation, and mostly targeted for closed-rangeaicite
- a generative model approach for far-away object detegon. Ude et al. [3] proposed to use a classification on a Gabor
tion. filter representation of objects. The classification isireal by

A posture generation devoted to this problem is proposeal.SVM classifier. It is also associated with detectors such as
Its role is to feed the recognition modules with necessacplors to elect candidates in the environment. Ude et ak use



the wide view cameras of the DB humanoid robot to elect I[l. FuLL BODY POSE GENERATION FOR A VIEWING
possible candidates, and brings them in the foveated images DIRECTION
Extending on this work, Welke et al. [4] uses a feed-forward \ye describe the algorithm which generates the pose ac-
neural network to learn the feature representations'of fg@tob cording to a viewpoint provided by a Next Best View (NBV).
model. There is however no autonomous mechanism {0 1egfg the time being we assume a simple NBV algorithm that
the visual features of an object as for Fitzpatrick. Of maifir  6yides directions around a sphere bounding the object-of i
interest is the work of Taylor and Kleeman [5], where visughrest. The problem is to find feasible poses considerihi
object models are build using a range laser stripe, and &t inonstraints due to object reconstruction such as the distan
geometric primitives; their robot was able to build a hightdl e opject, the viewing direction... and (i) constraintérent
representation of the scene through a graph, and then perfeg the robot such as stability, joints limits, collision avance,
grasping in a cluttered environment. etc. Our posture generation borrows from the one presented
2) Object detection:Object detection has receive a lot offor the purpose of humanoid contact-support planning [10].
attention during the last decades. Most of the methods useappears that this posture generator can also be used for
sliding windows techniques. A classifier is trained in ortier our vision reconstruction purposes, by reformulating paift
decide if a region contains an object or not and is appliedl at the optimization problem in a way it takes into account our
possible positions and scales. We can cite among others, #pplication requirements.
cascade of classifiers proposed by Viola and Jones [6]. These
methods are known to be efficient but need a huge numter
of training images (few thousands) and require a very longAs depicted in figure 1 the inputs of the problem are a
training stage. direction v, a pointx, an interval[dmin, dmax] and a4 x 4

We decided to focus on a generative model based on lo83@trix f. The output is a posg, for which the robot has its
representation. Models considering images as collection \dsion system frame aligned with, looking throughx. The
small patches have been used first for image retrieval and m¥ision system along the line should be at a distance between
recently for object classification. A popular techniquedisise @min @Nddmax. Moreover the robot has to be statically stable,
a quantification of these local representations into scedalli-€- its COM is projected into the support polygon, withonya
visual words (first introduced by [7]). These techniques ca¢!f-collision or collision with the environment. The miatf
also be applied to the localization of objects in the imageeyr SPecifies the pose of the right foot in the left foot reference

are particularly adapted when dealing with strong variatio frame.q is the pose of the free floating body, and the angular
of object appearances and occlusions. values. In Escande et al. [10], the objective function isduse

to obtain a more natural-looking posture by minimizing the
distance between the joint angles and the middle of theitdim
B. HRP-2 vision system The stability is introduced as a set of inequalities comgute
from the convex hull of the foot. Depending on the starting
HRP-2 Number 10 has been modified to have three camefasint for difficult viewpoint, this might lead to solution wehe
with a narrow field-of-view (25 degrees), and a fourth camege CoM is on the limits of the polygon, cf figure 2. Therefore
with a large field-of-view (90 degrees). The large field-ofthe objective function was changed to be the distance of the
view camera has already been used for SLAM [8], wheregsM from the center of the feet polygon. In order to solve
the narrow field of view is used for 3D edge-based objegie optimization problem, we used CFSQP [11] which can

recognition [9]. Looking down to an object is quite challev@y cope with linear and non-linear equalities and inequalitie
for such kind of robot, mostly because there are not so magynstraints

features other than the object itself, even in the wide-lens )

camera. Secondly, the table we used has a round shape, wBict-onstraints

tends to foster bad localization of the corner features whic 1) Collisions and self-collisions avoidanc€ollisions are
slide along the border of the table. The information of thimtroduced through non-linear inequalities using proxymi
pattern generator is moreover not as good as in the usugl cagtances between selected pairs of body. In order to com-
because sideways motion causes much friction with the flopute a continuous gradient, Escande et al.[12] developed a
Therefore they create a large drift when turning 360 degreessrictly convex representation of the robot’s bodies. Ttiets

It is thus not possible to use directly the information fronconvexity ensures a continuity of the gradient for the diséa
our previously developed SLAM system to create an accurdietween two such bodies. The strict convexity is obtained by
model of an object, we rather used other information avhglabconstructing a boundary volume made of sphere and torus
to build the description of our object. In order to make thpatches. Such construction for the table considered in this
problem challenging compared to the previous well-knowepplication is depicted in figure 3.

methods we used a dinosaur as the object to reconstruct. I12) Feet positions:Instead of taking feet position as inputs
is well textured, but its complex geometry makes 3D-edg# the problem as in [12], the relationship between the fget i
based methods likely to fail, and manual modelling would b&onsidered instead through the matfixMoreover instead of
quite time-consuming. inserting the polytope related to the support polygon asta se

Optimization problem



[ vo(deg) | f(m,m,deg) | xa(m) [ [dmin,dmax] | Init. Pos. |

0 (0.0, 0.2,30.0)] 0.95 [0.5,2.0] Squat
10 (0.0, 0.2,30.0)] 0.95 [0.5,2.0] Squat
20 (0.0, 0.2, 0.0)| 095 [052.0] | Half-Sitting
30 (0.0,02,0.0)| 095 [052.0] | Half-Sitting
40 (0.0, 0.2, 0.0)| 0.85 [052.0] | Half-Sitting
50 (0.0, 0.2, 0.0)| 0.75 [0.2,2.0] | Half-Sitting
60 (0.0, 0.2, 00)| 0.75 [0.2,2.0] | Half-Sitting
70 (0.0, 0.2, 00)| 0.75 [0.2,2.0] | Half-Sitting
TABLE |

INPUT PARAMETERS FOR EACH OF THE EIGHT POSE GENERATED

Fig. 2. Pose obtain when the CoM is introduced as a lineartns and
reaches the limit of the support polygon, and by using a minitiwedunction
which favor angular position in the middle of their limits.

Fig. 4. The poses realized by HRP-2.

Fig. 3. The table around which the robot is turning, and itV

representation. angle of10 degrees. So when asking fod degrees, the robot

head’s has to perform00 degrees, while avoiding the table.

For this reason, the algorithm was not used to find solution
of linear inequalities, it is introduced inside the minimiipn Over 70 degrees. Betweed(0 and 70 degrees the robot is
function. In order to have horizontal feet, their roll andchi asked to look at a point lower than the surface of the table.
are constrained to be zero, through linear equalities.ititly) For 40 and 50 degrees the solution found where feasible
the support polygon can be freely translated and rotatasharo and sufficiently far away from the object to be interesting.
the yaw axis during the optimization process. This explait#owever consideringi0 and 70 degrees, the position were
why some of the final postures have the feet not orient&@ close to the object that it was practically useless. Itvsho
towards the object. nonetheless that for a different object, and a differenetahe

3) Gaze direction: The gaze direction is set by linearrobot can reach such postures. Finally, the posture geerat

equalities which force the vision system frame to be aligné 50 degrees makes the legs close to a singular position,
with the vectorv. This let the head to rotate around this axig@nd therefore is avoided practically. Most of those linnitas
as it can be seen in figure 2. Finally we introduced a non line@ie mainly due to the robot's kinematic limits and are quite
constraint which is the distance between the psintvhere natural. An extension of this work will use the information
the object is supposed to be centered, and the vision systei@vided by FSQP on such posture to generate a new Next

origin_ Best View.
] ) ] 2) Algorithmic limitations: The other demanding postures,
C. Experiments and discussion but still feasible, are the ones where the vision systemlghou

Using the posture generator presented above we generdta the object. The difficulty inherent to the optimization
8 postures with different elevation angles, assuming that tscheme to find a solution is the starting condition. In order
object would be on the red table, figure 3. to find a solution, we had to guide the optimization scheme

1) Kinematic limitations: The input parameters are de-by providing a squat position. Whereas for the other postures
picted in table I. The most demanding postures are the onves simply provided the neutral position of HRP-2’'s pattern
when v is at the vertical direction. Indeed the cameras agenerator. It might be possible to go undedegree if other
rigidly mounted to the robot’s head and look down with apart of the robot are in contact with the ground.



3) Experiments:The computed poses were tested on tH&. Filtering matches

humanoid HRP-2 and are depicted in figure 4. For the 8 o ]
positions of the robot provided by the posture generator,'”correCt matches inevitably occur. In order to discardhthe

the appropriate step sequences were computed manually. @ methods are used: the disparity map, and a RANSAC-like
robot did perform the transition from the last position, _promethod. The first method is quite natural as it consists it cas

vided by the pattern generator, to the pose by using invet8d aside points for which the 3D location is unknown. Depth
kinematics. There were no mechanism reinforcing the stpbilthrésholds are also set during the disparity map computatio

during this transition, but we plan to use the CoM’s JacobidiS avoids SIFTs from being detected in the background. The
to insure this part [13]. second method consists in checking the value of funcfion

after the minimization process (equation 1). If it exceeds a
I1l. SIFT-BASED OBJECT RECONSTRUCTION given threshold, it means at least one match is wrong. Since
A. Object representation correct matches all “agree” on the same rigid motion, the

) N w2
Assuming we have a collection of images taken by the robﬁstance” R(X1:) — X | is greater for the false ones.

this section focuses on the way the robot “learns” objects f
close recognition and pose estimation.

Using its pattern generator, the humanoid can walk, squ%{
and bend over the object to sample many different views
of it. A key step in the learning process is therefore th
determination of the Rigid Motion between different views
(figure 5). This enables the robot to merge the information
gathers into a single spatially consistent representation

5ing this fact, the worst matching feature is discarded, an
minimization is performed once again. The process is repeat
Ptil f falls below the threshold.

Object seen from above

Left\ Pre .

" ¥ Right
Image.¢ 4 DAY image)
Righé\( " Left Fig. 6. Matches which are not consistent with the others easpotted and
Image /"> . fagg cast aside.
View 1 |Motion| View 2

Fig. 5. Left : The data collected is two series of picturesetalby the As shown in figure 6, this is an efficient way of discarding

robot's left and right video cameras from several differeswpoints. Right : jnaccyrate matches. Partial reconstruction results aengn
The object representation obtained through the learnirg@lusing 5 stereo

views. Spheres represent the 3D Features which had playge during rigid ~ figure 5.
motion evaluation between two views.

To build the representation, we combine dense disparfey Object recognition
maps [14] with UCLA's implementation [15] of Lowe’s SIFT

detector and descriptors [16]. The disparity maps (builhgis The object model used by the robot consists of all the

3D features that had been spotted during the learning phase,

the stereoscopic system) provide us with partial Surfaﬁn'in.rmoved to a unique frame of reference. What follows explains
mation of the object, and the 3D position of detected SIFTS. d L C oL exp
ow such a representation is used for object recognition.

The SIFT-descriptors are used to match points between the o )
left-images of two stereoscopic views. First, feature detection is run on the scenery. The resultin

The SLAM system detailed in [8] could provide us Withfeatures are then matched between the scene and the object,

an estimate of the rigid motion. We therefore solve an opftSing the same method than for pairs of views during the
mization problem between two views. Instead of working iHaar_nlng phase: Flgures 7and 8 |Ilustrat_e thos_e resulpdRi
the projective geometry space, we use the Euclidean Spg&(étlon _evaluatlon is then performed with unlikely matches
for minimization: SIFT descriptors and scale combined with@St aside.

depth information provide matches between pairs of 3D goint 1he results for close-up scenes (up to 1 meter) are excellent
spotted in two stereoscopic views. The rigid motion evatuat Put worsen when the distance increases. In order to measure
is even simplified by estimating the translation using bofiRe influence of distance on this algorithm, object detectio

clouds’ Centers of Gravity, leaving only a rotation quatenn Was run from many distances, in two different experiments:
to determine. Thus the final function to minimize is: with the object alone on a black background, and in a

N heavily cluttered environment. Figures 9 and 10 show the
2 R(X 1) — Xoi |2 . .
f= 2= |l L (1) last successful Object-Scene matches of both experinemds,
Nuatches tables in figure 11 show the associated results.
with R(X1;) = ¢X1,G, X1; being the point in viewl and X5, Beyond 2 meters, the object can still be located in the
its match in view2. Ny qienes 1S the number of pairs of points scene’s 3D map, but the pose estimation fails. This is due
we work on (typically 30). to the position error of the disparity map’s 3D points.




Fig. 9. Pose estimation on a uniform background is performedessfully
at 1,7m with no occlusion.

Fig. 7. A screenshot of the model successfully detected imehge map of
the scenery. It contains over 6000 3D SIFT features, but th@yest matches
are represented.

Fig. 10. Pose estimation under severe clutter is performedesstully at
1,6m with no occlusion.

characteristic. We also produce visual words based on color
Fig. 8. Left : The left eye’s image of figure 7's scenery. Rigfithe pose Info_rmatlon by C|USt_er|ng CO!OI’ descriptors [18]. The patc

of the object is successfully determined using Rigid Motiomimization. ~ P; IS also characterized by its closest color codebook word
weer. A RGB value is computed by averaging over pixels
extracted in the center of the patch. This 3D-vector is dehot

IV. SEEING FAR AWAY: A GENERATIVE MODEL BASED rgb;. We also consider the coordinates of the patch center
APPROACH X; = (x;,y;) In the image. Finally, the dense disparity map

As shown in the last section, the sift-based reconstructigl[lovlde.S an estimation Of the depﬂa of the patch. .
Gradient Map. In addition to this patch based characteris-

method fails at detecting objects far away. The method pre-

sented in this section aims at providing coherent hyposl;heglCS computation, we also extract a gradient ngdp, y), that

of the object position and scale in the robot field of view. gonsists of the strength of the gradient at edehy) pixel

can detect object in challenging conditions, such as dlﬁicdocat'on' . o
viewpoints, small scale, extreme illumination conditicarsd !N the end, the gradient maﬁﬁ%g}ta”d the characteristics
occlusions. This hypothesis can be used as an input for €7 overlapping patche®;: {w;™"", wi”*", rgbi, Xi, di},
visual search when the 3D object reconstruction fails. It is€ {1---n} compose all the information we use to describe
an extension of the method of [17] and uses additional info#!! 'Mage.

mation coming from the robot to guide the model estimation o

process. In particular we will use both the left and rightges. B+ Model description

of the robot cameras to compute dense disparity maps and thefhe strength of our model lies in the combination of two

use the resulting depth information as an extra component(dffferent but) complementary components: (i) a blob based

the model. generative model using visual words for its good object lo-
calization properties, and (ii) a MRF (Markov Random Field)

A. Visual Features structure which provides a coherent field of labels follayin
Images are represented by a setnobverlapping patches object boundaries.

and a gradient map (see figure 12). 1) A blob-based generative modele consider that an
Overlapping visual patches. Patches, denote®;,i € image is made of “blobs”, and that each blob generates some

{1,...,n}, are sets of pixels belonging to square imageatches with its own model. Intuitively, if an image contain

regions. Five different characteristics are computed femoh three objects, we may have three blobs, one over each object

patch. region. Each blob is thus responsible for generating a set of

First of all, a visual codebook is obtained Wymeans patches the appearance of which corresponds to the object
clustering SIFT [16] based representations of the patchestegory.
Then, each patclP; is associated to the closest codeword. The generation of a patch requires to a) select a blob, and
The assigned codeword is denota(j’ft; this is the first b) generate a patch with the patch mospécificto that blob.



Distance | Min Score | Nt | Nrm | Nf |Outcome
0.50m | 1.369E-003 | 30| 20 | 651 oK i Min Score | Nt [Nrm [ Nf |Outcome
0.60m | 1.772E-003 [30| 17 | 654 oK Tom | 95886004 |30 30 | 663 | OK
0.70 m | 1.992E-003 |30 | 19 | 705 OK 12m | 2.721E-003 |26 | 14 | 629 OK
0.80 m | 1.470E-003 {30 | 19 | 618 oK 14m | 22256002 |16] 10 | 621 | TRANS
0.90m | 1.583E.003 | 30| 21 | 571 OK 1.6m | 2669E-002 [15] 8 | 992 | TRANS XX Y
10m | 1.479E-002 |30 | 18 | 470 oK 18m - 301 0 12057 NOK
2.0m [3.250E-002 | 9 | 5 [1118| TRANS

12m [3.300E-:003 [30] 19 [ 377 oK o m n 3 Toss | TRANS V4
1.4m | 5.268E-003 | 23| 14 | 273 oK >5m . 5T~ 1995 | moK X
15m 5.794E-003 | 29 | 20 246 OK 27m - 3 - |1013 NOK
17m 1.972E-002 | 13 5 203 OK 30m 4 1215 NOK X
19m 3.953E-002 | 10 9 175 TRANS £ b ¢ inth H
21m | 47906002 | 5 | 4 | 145 | TRANs | Nf:Number of 3D Features in the scene wi

Nt : Initial number of matches .
;; m - g - ﬁg $§2“§ Nrm : Number of matches used to find the RM V|Sua| vocCa bUIary

o m - Min Score : Final minimization score Patch description

2.8m | 1.266E-001 | 4 4 103 | TRANS OK : Pose successfully computed D 'SII-PI' . color i 5 s
3.0m - 2 84 | TRANS | TRANS : Only the translation was correct wi , WI , rgbl, Xi, di
35m 2 65 TRANS NOK : Neither pose nor location was found

ﬁ'," N |
i l.
mm il gl
The blob generation is assumed to follow a Dirichlet prc Ew
cess. The Dirichlet process exhibits a self-reinforcingperty: =
the more often a given value has been sampled in the past, T
more likely it is to be sampled again. This means that ea
newly generated patch can either belong to an existing ima DPatches affected to object blobs Resulting detection
blob By, or start a new region.
We characterize each blabB,,1 < k < K, with a set of gig 12, First row: patches are extracted in a very dense maBaeh patch
random variables®; = {u, X, Ck, lg, N, Sk }. px, X @re is associated to the closest visual word for sift and colscdptors, and then

; ; ; inifegresented by the words indexesy(( F'7, w¢elor), a RGB value £gb;), a
respectively the mean and the covariance matrix descnblﬁ%ﬁon () and a depthd,) given by the disparity map. Second row: the

the geometric' shape of t.he bl(_)‘% is the blob label (OpjeCt model computes the best assignment of patches to object bldfaskground
category),C}, is a Gaussian mixture model representing thend estimates to blobs positions.

colors of the blob Ny is the number of patches generated by
the blob, S, is the scale of the blob which is closely related

Fig. 11. Left: Recognition results on black background.HRigesults in
cluttered environment.

13
ull

to the distance between the object and the camera. This component basically defines a Gibbs energy that is
We characterize each patchP; by its features used to compute conditional probability of patch assigrimen
(w?ifﬂwgolo7‘77~gbi’xi7di)_ This energy has a model fitting term based on the blob repre-

'Zl'he probability of generating a patch, given that it i§entation previously defined as well as neighboring coimstra
generated by the bloBy, of parameter®,,: p(P|0;,) is made terms for spatial regularization.
of 5 distinct parts, as the model assumes that patch position'he total energyz of the field is the sum of local energies
and scale, color and appearance are independent for a giterdefined for each patc®;
blob. The probability for a blokB;, to have generated patch
P thus consists of five terms: Ei = Ui+vXjena Vii 3

p(PlOk) = P(wéf’;?wwlo'vml@ X, d[O) where N/ (i) represents the 8 neighbors Bf, v balances the
= p(w™|Ok)p(w™|Or) (2)  proportion of the two terms. Lek; be the blob assignement
p(rgb|Or)p(X|O1)p(d|Or) index of patchPi. Ui = —logp(bi|Pi, Ni.ik,Os.) is a
The positionX of a patch is chosen according to a normgiotential that measures the coherence between the patch and
distribution of parameterg, and X, for object blobs. It is the blob model, ang(b;|P;, N1.x, ©,) is the probability of
uniform for background blobs. the blob assignment knowing the patch and the parameters of
We assume that background and object blobs have a Gaalsthe blobs. It stems from the model presented in the last
sian Mixture color model. The patch depth is closely relategection and makes the link between the two components of
to the blob size. Finally, the probability of the SIFT andarol the model.V; ; is a potential that measures similarity between
codewords only depend on the class label. These distritaitidwo patchesP; and P;. It enforces local coherence of the
encode object appearance information and are responsibledbject/background labels, via constraints on the sintylaof
the recognition ability of our model. They are learned usingeighboring patch labels. These contraints are compuied us
training images in a way described later on (section I1V-D). the gradient magi and the distance between depth values
2) A MRF structured field of blob assignmen& MRF of neighboring patches. It encourages cuts along high image
of blob assignment regularizes the assignment of neighgorigradients and depth discontinuity.
patches and also aligns borders between the object and the .
background with natural image contrast and with strongfdegt- Model Estimation
changes. This field is defined over a grid (8-connectivity), Now that the model has been defined, its parameters have
nodes correspond to patch centers. to be estimated for each image to produce object/background



blobs |.abe|5. () and patCh_ aSSignme_ntS to bl.OUS)( The tolerance ared p\rlélz:ri]sidoenpthrggll \[IJVrlter::(i)sui:)r?eptrr;cl:gfllo
model is estimated by a Gibbs sampling algorithm [19] (spe- 02 0.81 0.64 0.65 0.61
cific case of Markov Chain Monte Carlo (MCMC) method). 0.3 0.73 0.57 0.50 0.48
A Gibbs sampler generates an instance of parameter values 8:; 8:22 8:‘3‘2 8:22 821
from the distribution of each variable in turn, conditioread 0.6 0.15 0.12 0.17 0.16
the current values of the other variables. More details @n th TABLE Il

model estimation could be found in [17]. PRECISION AND RECALL VALUES

D. Learning an object appearance

In order to learn the object appearance information, exam-
ples of images containing the object are fed to the robc
Once again, these learning images are stereoscopic vie
taken from several viewpoints (figure 5). The resulting @en:
disparity map provides local information that we use t
create segmentation masks on positive images. This makes
estimation of object model more accurate by knowing exact
which part of the image belongs to the object and which do
not.

We also use a set of negative imagés rfot containing
the object) provided by the robot camera while moving in it
environment.

Descriptors (SIFT + color) are extracted on local regiorf8g. 14. The model gives a list of patches actually being coraptmof the
exactly as described for the test images. These descripters™odel- This produces segmentation masks.
used first to create visual words by a quantification process,

and then to compute the probability for each visual word to In this part we would like to evaluate both the gain of

be observed as a component of an object blob or not. These . .
probability distributions #(w**|©,) and p(wor|©,)) are using the depth information, and the overlap between dedect

. . bounding boxes and ground truth. Table Il shows the preatisio
stemed from an occurrence histogram obtained by a countmﬁ) .
process and recall values for different thresholds. The two columns

present precision and recall values for our method (lefty] a
E. Experiments for the original one (right) which is not using any depth

To evaluate our detection method, we created a test set. Itormation.

composed of 118 images taken with the robot cameras. MosfFirst, we can clearly see the improvement obtained using the

of them contains the object in very different conditions. Wiformation given by the disparity map. The depth introdlice

varied the distance to the object, the view point, the illi@i Within the model helps to estimate accurate boundarieseof th

tion, tried different backgrounds and realized occlusidfiee Object, and give good clues on the object expected size.

remaining images do not contain the object. Looking at the precision values, we can see that on most

1) Detection evaluation:Our model provides blob shapeof the cases (81%) the detected objects have at least a part in

regions of the image which give approximate position dfommon with the original object.

the object. In order to evaluate the detection performancesFinally, the recall values indicate that 64% of the object

these blobs were transformed into bounding boxes desgribiiere partially detected.

a rectangular region of the image containing the objects&he Figure 13 shows examples of correct detections (overlap

images were also hand annotated in order to produce a grogfigater than 50%) and false detections (overlap lower than

truth. A detection is considered as correct if the area oflape 50%).

between the predicted bounding b8 and the ground truth  2) Qualitative segmentation evaluationthe model also

bounding boxB,; exceed by a given threshold. We will useprovides the list of patches belonging to a particular dbjec

50% by default. This is given by the formula instance. The patches correspond to sets of pixels belgrngin
their support. Using the information on all patches coritan

area(B, N By) . . - .

—_— (4) a given pixel, we can create a segmentation of the object.

area(By U Bgy) Figure 14 provides segmentation masks in terms of profyabili

The detection performance is evaluated using precisigfaps of the object location on images where the detection
recall values. If we defind/,; the number of detection obtainedsycceeded.

by our method N, the number of objects really present on the

set of test images any,. the number of correct detection, we V. CONCLUSION

can define the precisioR and the recallr with the following As a conclusion, this work presents a step towards solving
formulas: P = J]:,’; and R = % Multiple detections of the autonomously the object reconstruction for visual seaftte
same object are considered as false detection. 3 components we have described, once fully integrated, will

overlap =




Fig. 13. Two first columns, examples of correct detectionst takimn, examples of false detections.
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