Imitation Learning for Locomotion and
Manipulation

Nathan Ratliff
Robotics Institute
Carnegie Mellon University
Pittsburgh, PA 15213
Email: ndr@ri.cmu.edu

Abstract— Decision making in robotics often involves comput-
ing an optimal action for a given state, where the space of
actions under consideration can potentially be large and state
dependent. Many of these decision making problems can be
naturally formalized in the multi-class classification framework,
where actions are regarded as labels for states. One powerful
approach to multi-class classification relies on learning a function
that scores each action; action selection is done by returning the
action with maximum score.

In this work, our interest is in applying recently developed
techniques for large non-linear multi-class learning to problems
of imitation learning in robotics. In particular, we apply recently
developed functional gradient methods for optimizing a struc-
tured margin loss function to problems in robot locomotion and
manipulation. In the first case, the problem is to predict next
footstep locations greedily given the four-foot configuration over
a terrain height map, and the second problem is to predict good
grasps of complex free-form objects given an approach direction
for a robotic hand.

I. INTRODUCTION

Robot manipulation tasks usually involve a large number of
actions possible at a given state. Importantly, skilled humans
operators are often quite adept at choosing effective actions
for a given state of the robot and can demonstrate this correct
behavior. It is usually quite difficult for such an expert to artic-
ulate their strategy however; the decision is often a nonlinear
combination of numerous desiderata such as stability, energy
minimization, actuator limits, and future intent. It is much eas-
ier for the operator to demonstrate optimal actions than it is to
carefully enumerate the complex function being optimized to
produce the action. In imitation learning, we study algorithms
that generalize from such operator demonstration to effectively
chose actions for new states. Many of these learning problems
can be naturally formalized in the multi-class classification
framework, where actions are regarded as labels for states. [1],
[2] This multi-class imitation learning approach is especially
suited to robot applications because demonstration provides a
natural method for an operator to specify optimality as well
as to specify actions that the operator considers as “close” or
equivalent (due to symmetries, for example).

The multi-class techniques we study in this paper learn a
function that scores each action and returns the maximum
scoring action as the optimal choice. The goal of the learning
procedure is to find a scoring function that well captures

J. Andrew Bagnell
Robotics Institute / MLD
Carnegie Mellon University

Pittsburgh, PA 15213
Email: dbagnell @ri.cmu.edu

Siddhartha S. Srinivasa
Intel Research Pittsburgh
Pittsburgh, PA 15213
Email: siddhartha.srinivasa@intel.com

the demonstrated behavior; in essence, the procedure searches
for a scoring function that makes the human choices appear
optimal. Recently, a framework for designing such large multi-
class predictors has been developed by using functional gra-
dient techniques to optimize simple structured-margin criteria.
Importantly, this approach allows us to adapt existing, “off-the-
shelf” simple regression (or binary classification) techniques
to learn the potentially complicated score function, making it
a modular and simple to implement technique.

Our interest in this work is the demonstration of the multi-
class learning technique to solving robotic grasping prob-
lems and a quadruped locomotion task. From the machine
learning viewpoint there is a surprising fundamental unity to
these tasks. Both problems involve difficult to compute score
functions, are relatively easy for expert operators to provide
demonstrations, have a large number of actions, and can be
straightforwardly optimized for the optimal action. We believe
that many related robotics tasks have similar properties and
may benefit from the approach taken here.

In the following, we first briefly introduce the learning
technique, and the proceed to describe the experiments in
detail.

II. STRUCTURED-MARGIN TECHNIQUES FOR MULTI-CLASS
CLASSIFICATION

Many problems in imitation learning can be naturally
posed as a multi-class classification problem. However, while
traditional multi-class classification problems often have a
relatively small number of possible class labels (typically
from 3-20), multi-class classification formulations of imitation
learning problems often have many class possibilities.

For instance, in our first set of experiments we take the set
of classes to be the set of possible next step locations for a
quadruped robot, and in the second set of experiments we take
that set to be the set of preshape configurations a robot hand
can take on given an approach direction. In these examples,
number of class labels are 961 and 2304, respectively. In these
settings, traditional margin-based classification models often
fail. We next define the multi-class classification setting we
use throughout this paper.

Let X the input domain (state space) and assume that the
set of labels (actions) can potentially be different for each

Fig. 1.
robot.

Locomotion testbed: Boston Dynamics LittleDog quadruped

domain element x € X'. We denote the prediction range as a
set V,, and the combined range as) = cex Y.. A multi-
class classifier is defined by a score function s : X x V) — R
over these two sets. Given x € X, the classifier predicts the
optimal scoring label

* = arg max s(x,y) = arg max s 1
Yy g max (z,9) g max =(Y), ¢))

where we denote s, (y) = s(x,y) for notational convenience.

The algorithm [2] we describe here for solving large-
scale multi-class classification problems is very general. In
[1] we demonstrate the success of a similar technique on
problems for which the number of class labels is exponential
is some domain variable; in principle the set of labels can
be infinite. For our purposes, the only requirement is that the
optimization in Equation 1 required for making predictions
can be performed efficiently. In the experiments presented
in this paper, the number of labels is sufficiently small that
the optimization can be implemented by a simple brute-force
enumeration.

A. Structured-margin Loss function

Given a data set D = {(x;,;)},, our algorithm optimizes
a convex upper bound on a loss function £(x;,y;,y), which
specifies the basic notion of loss on choosing label y for ex-
ample z; when the true label is y;. For notational convenience,
we often denoted the loss function as £;(y) and V,, as V.
This upper bound is

1N
= 2 () - L0 —aw)). @

If the loss function is always zero £; = 0, this function
measures the sub-optimality of the example label. Minimizing
this objective, attempts to find a score function for which
the example labels are scored higher than all other labels.
Choosing nonzero loss improves generalization by introducing
a notion of structured-margin. Instead of requiring only that the
example label is scored higher than all other labels, we require

Fig. 2.
hand.

Manipulation testbed: Barrett Technologies three-fingered

it to be better than each label y by an amount proportional to
how bad we deem that label to be as measured by our loss
function £;(y).

When the number of classes is small a commonly used loss
function is the binary loss. In this case,

0 wheny=y;
1 otherwise.

it = { , @
and reduces the margin loss of Equation 2 to the well-known
SVM loss [3]. However, it is often the case in multi-class
classification problems that arise in imitation learning there
is a natural notion of loss, and the structured margin adapts
accordingly. When the label is almost correct, i.e. has low
loss, we require only to achieve a small margin over that
label. Alternatively, when the label has high loss, we require
a relatively large margin. See the experiments in Section ??
for examples of natural loss functions for the case when the
number of classes is large.

B. Functional gradient optimization

In [4], a simple but effective subgradient method is devel-
oped for optimizing the upper bound 2 assuming the score
function is linear in a set of features f;(y) extracted from
the combined example x; and hypothesized label y €).
The linearity requirement is removed in [1] by generalizing
the subgradient method to learning nonlinear score functions

Fig. 3. Results on a number of training examples of foot placement prediction demonstrating qualitative accuracy of predictions. The original
configuration is depicted as red lines connecting each of the four feet. The example step is shown in magenta, and the predicted footstep
(centered at the minimum of the rendered cost function), is given in green. In the rendered cost function, bluish shades are low cost while
reddish shades are high cost. In all cases, this is overlaid atop the terrain height map.

Fig. 4. Generalization of quadruped footstep placement. The four foot stance was initialized to a configuration off the left edge of the terrain
facing from left to right. The images shown demonstrate a sequence of footsteps predicted by the learned greedy planner using a fixed foot
ordering. Each prediction starts from result of the previous. The first row shows the footstep predictions alone; the second row overlays
the corresponding cost region (the prediction is the minimizer of this cost region). The final row shows footstep predictions made over flat
ground along with the corresponding cost region showing explicitly the kinematic feasibility costs that the robot has learned.

using functional gradient techniques like those first formulated margin loss(Eqn. 2) is given as

in [5] and [6]. LN
VRl = Vg S (max(s(i0) + €00~ (500)
Denoting the feature vector extracted for the pair x; € X =1 ' @
and y €); as f;(y), the functional gradient of the structured- v
1
= NZ(§JC1(ZJ*) _5f71(y71)) ’ &)

where we denote the loss-augmented prediction as y; =
arg maxyey, s(fi(y)) + Li(y). ' A full derivation of this
result, can be found in [4], however we provide here the
intuition. The functional gradient is the direction in the space
of score functions that would most improve performance
on the loss function r[s]. Intuitively, the functional gradient
assigns to misclassified examples an increase in score on
the demonstrated action (making the classifier more likely
to choose it), and a decrease in score to the action that the
classifier (at the current iteration of learning) currently chooses
incorrectly.

The functional gradient as defined above doesn’t generalize
to new states: it is tied to the particular training examples.
To provide generalization to new states we rely upon the
generalization ability of standard classification and regression
approaches. We “project” the functional gradient onto a sim-
pler functional form that generalizes. For instance, we will
may try to find a neural network in a hypothesis space H of
such functions that is both simple (low complexity, high prior
probability) and represents the functional gradient well. Such
a projection can be derived by maximizing the inner product
over the hypothesis space with the functional gradient. ([4]
provides a full derivation.)

h* = h - S
arg T€%< , — VsR]s]) (6)
LN
TAENEIN ;Vl Ofi(y") — Ofi(wi) ™

N
= argamax Do)) ®

This projection step can be implemented as a reduction to
binary classification or regression using a data set generated
by collecting two examples for each x;, one corresponding
to the correct label (f;(y;),1), and another corresponding to
the current loss-augmented prediction (f;(y*), —1). Training
a binary classifier using this data set returns h* thereby
implementing the projection. Intuitively, for each i, the first
example attempts to make h* have a positive value at f;(y;)
so that adding h* to the previous hypothesis will increase
the function at that point thereby increasing the value of the
correct label. Similarly, the second example attempts to make
h* negative at the current loss-augmented label, so as to reduce
the score function at that point.

The technique then generalizes gradient descent: we first
identify the functional gradient of the loss function, then
project it using our binary classifier, and take a step in the
space of score functions by adding together the resulting
predictions with the previously computed “gradients”.

This leads to a very simple algorithm. Given a step size
sequence {ay}72,, the algorithm proceeds as follows:

"Here we’ve used the property that the functional gradient of a function
evaluated at a point is the delta function centered at that point. In this case,

Vss(fi(y)) = 5f1,(y)'

1) initialize s =0
2) fort=1...T
a) initialize D = ()
b) foreachi=1...N
i) find y* = argmaxyey, s(fi(y)) + Li(y)
i) set D DU{(fi(y:),1)}
iii) set D — DU{(fi(y*),—1)}
¢) train binary classifier/regressor on D to produce h;
d) set s «— s+ azhy
3) return s = Zthl ahy.

In our experiments we take the stepsize sequence to be a; =
1

N
C. Exponentiated gradient variant

The algorithm above is a generalization of standard
gradient descent. In many cases, like for instance when
we wish the score function to be a positive number or
when we add together scores over multiple states (i.e.
when doing minimum cost planning instead of brute
force enumeration), we instead generalize a powerful related
method: exponentiated gradient descent [7], [2]. Implementing
the functional version of exponentiated gradient descent is a
simple modification of the algorithm above. We replace the
update of the score function as a exponentiated version:

s — exp(log(s) + arhy). ©))

Exponentiated gradient descent share similar convergence
guarantees ([8]), but implements a different prior over the
space of score functions. It places large prior weight on score
functions with a great deal of dynamic range. We note that
in this paper (unlike in [2]), exponentiating the scores doesn’t
change the argmax as we are not adding together scores over
multiple states. Note that is does change the effect of the
margin term.

III. APPLICATION

This section details experiments using the functional gra-
dient imitation learning techniques described above on two
problems: quadruped locomotion, and grasp planning, detailed
in Sections III-A and III-B, respectively.

A. Quadruped Locomotion

The quadruped (Boston Dynamics’ LittleDog) used for this
experiment is depicted in Figure 1. The input state-space X
consists of a four foot quadruped pose situated at a particular
location of a 2.5-dimensional height map (i.e. a height for
each x-y location), in conjunction with an “active” foot, i.e.
that which is to be moved next. For a given z, the prediction
range), is the set of all possible next step locations for the
action foot. In these experiments, we take this region to be a
square centered at a point computed from the current four foot
configuration. This region is discretized into 961 (= 31 x 31)
locations.

Training examples are extracted from the intermediate poses
and next step foot locations chosen by a human tele-operator

remote controlling the robot across the terrain. While we could
apply a full planning based solution to the imitation learning
problem as in [1], a one-step look-ahead, greedy approach
approach is sufficient for the terrains we considered.

Features for each possible next location fall into two cat-
egories: action features and terrain features. Action features
account for the kinematic constraints of the robot as they
manifest themselves in the four-foot configuration. They in-
clude the distance from the hypothesized next-step location
v and each of the original foot locations as well as the
radius of the inscribed circle of the support triangle resulting
from that action. Terrain features, on the other hand, contain
information describing local variation in the terrain. For these
experiments a very simple set of terrain features was used.
Seven smoothings of the height map were generated by
performing Gaussian convolutions, and the feature vector was
extracted as the vector 8 responses (including the raw height)
at the pixel corresponding to the desired foot location.

We apply the the above gradient boosting algorithm to this
data using the following loss function

(10)

where v and v; are the hypothesis next foot location and the
example next foot location, respectively. This loss function
increases rapidly from 0 at v; and saturates to 1 at a distance
regulated by the hyperparameter o. The space of regression
algorithms we chose (H) was small, two hidden-layer neural
networks using back-propagation for training.

Figure 3 depicts a few of the training examples and the
resulting predicted next step for each. Each image shows
the original four-foot pose with red lines connecting each
foot to emphasize the relative orientation of the original
foot locations. The example and predicted next steps are
depicted in magenta and green, respectively, and the learned
cost map over the local search region is colored with blue
shades corresponding to low cost graduating to red shades
corresponding to high cost. All of this is superimposed over
the terrain height map where the example resides.

The cost function learned combines the kinematic con-
straints of the robot with local terrain variation as can be
seen in the images. Without terrain input, the cost function
represents the forward stepping bias seen throughout the exam-
ples. The variation seen in the cost functions learned for each
example comes from terrain components. The system learns to
trade off reachability, a forward stepping bias, and local terrain
considerations in a way that mimics the behavior exemplified
in the data. In particular, the human had a tendency to step in
local convexities (i.e. cracks) to improve walking stability and
robustness. In a number of these examples, the system tends
to place lower cost to such regions.

B. Grasp planning

Grasp planning is often framed as an optimization over a
grasp metric evaluating the quality of a grasp configuration
relative to the object being grasped. Variation in planners

can be categorized into: the method used to discretize the
continuous space of grasp configurations, and the grasp metric
used. The discretization of the grasp space can be further
segmented into a general approach direction for the hand and
the configuration of the hand given the approach direction.
In this work we chose to assume the approach direction has
been given to us by external means for two reasons. First,
[9] demonstrated that a good approach direction/point can be
predicted from binocular imagery, and generalization of pinch
grasping using a simple parallel jaw gripper was demonstrated
for a number of previously unseen objects. Second, the true
approach direction chosen for a given object is very strongly
influenced by task parameters as well as environmental con-
siderations, like workspace obstacles and the capabilities of
the arm that the hand is attached to.

For this problem, a number of the features described in
section III-B.2 are positively correlated with the quality of the
grasp. For that reason, we chose to learn a score function
rather than a cost function. Let s be the log grasp metric
function in question. Then the grasp chosen for a given
space of grasps), for grasping object x is given by y* =
arg maxycy, exp{s(z,y)}.

The hand used for this experiment (Barrett technology’s
Barrett Hand) is depicted in 2. This hand has three fingers,
each of which has two joints driven by a single actuator.
When moving freely, the distal joint moves at a fixed rate
with respect to the proximal joint, much like the motion of a
human finger. One of the fingers is stationary relative to the
palm, while the other two can move radially around the palm in
unison, a degree of freedom which we term fingerspread. The
three finger degrees of freedom and the fingerspread combined
with the six global translation and rotation degrees of freedom
gives this hand ten degrees of freedom, in total. While the two
joints of the fingers are constrained, each finger has a torque
redirection mechanism to transfer all force to the distal joint
once the proximal link has made contact. This mechanism,
called breakaway allows the finger to continue curling around
an object even after the proximal link has made contact leading
to stronger grasps.

1) Grasp demonstration: We discretize the space of grasp
candidates in a way similar to that described in [10]. We define
a preshape to be a configuration of the hand at a distance from
the surface of the object. Given a preshape we run a simple
grasp controller which moves the hand toward the object along
an approach direction until it is a particular standoff distance
away from the first collision with the object. At that point
we close each of the fingers around the object implementing
breakaway as described above.?

We are given an approach direction and orient the palm nor-
mal to the approach direction. This leaves us with a standoff

2There is an additional implementational detail which makes this controller
work a little better. Since there may be occlusions (e.g. appendages in our
case) that we want to avoid during the approach, we actually curl in the fingers
as to their stopping point, move the hand forward until it is inside the object,
open the fingers entirely, and then back the hand out of the object until it is
at a particular standoff distance from the last collision point before closing
the fingers around the object.

Prediction

Example

Prediction

Example

Fig. 5.

Grasp prediction results on ten hold-out examples. The training set consists of 23 training examples; each test result was generated

by holding the example in question out and training on the rest.

Fig. 6. Three grasps of the same object from varying approach direction.

Fig. 7. A unique grasp that arises because the current feature set does not include information about fragility or flexibility of various parts of
the object. Were this object perfectly rigid, this would be a reasonable grasp. The framework allows for easy addition of such extra features.

parameter as well as preshape parameters, namely the roll of
the hand around the axis of approach, and the fingerspread.
This gives us a three-dimensional space of grasp parameters
(roll, fingerspread, standoff) which we discretize. We chose
steps of size /24 to discretize the roll and fingerspread in the
ranges (—m, 7] and [—m/24,7/2], respectively, giving 48 roll
points and 13 fingerspread points. That combined with four
standoff values in increments of 0.01 in the range [0,0.04]
gives a total of 48 x 13 x4 = 2,496 distinct grasp parameters.

Grasps are demonstrated by a trainer by manually moving
through the space of grasp parameters and selecting a good
grasp. Force closure was explicitly not evaluated for these
demonstrated grasps since a number of the grasps chosen by
the trainer are form closure grasps that cage the object. A
total of 27 training examples were generated in this way from
a set of animal-like object models from the Princeton Shape
Database® by varying approach direction and object scale. The
various protrusions of the models (legs, antennae, fins, beaks)
make them particularly challenging for grasping.

2) Features and loss function: To demonstrate the versa-
tility of the learning algorithm we chose a relatively simple
set of features that describe locally the shape of the object
beneath each of the three fingertips and the palm, as well as
the distribution of object normals in that area.

Let p and v be the point and direction of interest. We shoot
a set of n rays R = {r;}?_, from the point p in a distribution
around v and extract from the collision points {c;}? ; and
normals at those points {u;}? ; a set of features.

The first elements of the feature vector are inversely cor-
related to the distance to collision: exp{—Al/¢; — p||}. In this
way the feature elements are bounded between O and 1, and
rays that do not collide receive a value of 0.

The second set of feature elements are computed as a pro-
jection of the distribution of the vectors formed by combining
the contact point with the contact normal w; = [¢;;u;] onto
the space of isotropic (diagonal covariance) Gaussians. This
is simply computed by finding the vectors of means m and
standard deviations s of the set {w;}? ;. These are then
appended to the feature vector.

These ray features are computed for each finger and the
palm and are then combined into a single vector representing
the local relation between the hand and the object. A prepro-

3http://shape.cs.princeton.edu/benchmark/

cessing step standardizes the features and then whitens them.
The later is implemented by performing PCA, keeping top
10 components, and normalizing their values by the standard
deviation (latent value) along the component.

These features were used primarily to show that the al-
gorithm produces reasonable results even when using a very
simple set of features. There is a large amount of information
that these features do not account for which may be important
in grasp prediction. Two of the most obvious of these are
torque produced by the object at the grasp point (dependent
on both the mass of the object and the center of mass relative
to the grasp point), as well as local properties of the object
such as structural integrity and surface friction. An example
of where the lack of the latter piece of information comes
into play is shown in figure 7. Humans have an bias toward
avoiding the fins of a shark or fish when grasping because
of their flexibility. However, without representing this bit of
information in the feature set, the learned system utilizes the
flat surfaces of the fins as though the shark were a rigid statue.
Additionally, we note that a better candidate for representing
the distribution of normals described above is to use wrench
coordinates, which are used is computations of force volumes
and force closure measures.

The loss function we used for this experiment measured
the physical discrepancy between the final configurations
produced by the simple controller. This is implemented as the
minimum distance matching between points in the fingertips
of the example configuration and corresponding points in the
predicted configuration. Specifically, Set p;, p2, and p3 be
points in the three fingertips of the example configuration y
and p}, ph, and p§ be corresponding points in the fingertips
of the predicted configuration g’. Let II be the set of all
permutations of 1,...,3, and denote a particular permutation
as m € II with values 7 (7) for i € {1,...,3}. We define the
loss function as

3

/ e 1 Jp— .
E(yvy)—gggzlpz Pr(i) - (11

This gives low loss to configurations that are similar despite
having vastly differing grasp parameters due to symmetries in
the hand, while still giving high loss to configurations that are
physically different.

3) Generalization: For each training example, we trained
on the other 26 examples and used the final grasp metric to
predict a grasp for the held out example. A single hidden layer
neural network with 3 sigmoidal hidden units and a linear out-
put is used as the weak learner (). Because of the variability
in neural network training with random initialization, for each
boosting iteration, we trained an ensemble of 10 of these base
learners by simply averaging the functions resulting from 10
separate trainings of the neural network on the same data set.
We ran 10 iterations of scaled conjugate gradient to train each
neural network.

Figure 5 displays renderings of the resulting grasp pre-
diction (top row) along side the example grasp the trainer
would have chosen for the corresponding approach direction
(bottom row). We emphasize that these are generalization
results and that the system was trained without knowledge
of the grasp chosen by the trainer. In particular, some of the
grasp predictions are effectively the same but rotated when
object symmetries make the grasps non-unique.

Occasionally, the system predicts a grasp that is not stable.
This is because of the limited number of examples and a
lack of task-oriented reward function. The primary goal of
imitation learning in this setting, however, is to produce a
grasp prediction policy that is in the neighborhood of a
good policy so that a reinforcement learning algorithm can
be applied effectively to directly optimize this task-oriented
reward function.

Figure 6 demonstrates predicted grasps for the same object
generalized to various approach directions. The prediction is
fast and can be easily used bootstrap a high level planner
that chooses an approach direction based on obstacles in the
workspace and the kinematics of the arm.

IV. CONCLUSIONS AND FUTURE WORK

Imitation learning in many robotic applications can be natu-
rally posed as a large-scale multi-class classification problem.
In this paper, we applied functional gradient techniques for op-
timizing structured-margin multi-class classification machines
to two complex imitation learning problems, demonstrating
their effectiveness. We are working on is making the currently
brute-force search over possible actions more efficient: as the
dimensionality of action spaces rises, we expect it will be
necessary to consider more refined optimization procedures.

V. ACKNOWLEDGEMENTS

We would like to thank Rosen Diankov, Dmitry Berenson,
Dave Ferguson, Matt Mason, and Mike Vande Weghe for their
assistance and for many fruitful discussions. Nathan Ratliff
was partially supported as an Intel Summer Fellow.

REFERENCES

[1] N. Ratliff, D. Bradley, J. A. Bagnell, and J. Chestnutt, “Boosting
structured prediction for imitation learning,” in NIPS, Vancouver, B.C.,
December 2006.

[2] J. A. Bagnell, J. Langford, N. Ratliff, and D. Silver, “The exponentiated
functional gradient algorithm for structured prediction problems,” in
The Learning Workshop, San Juan, PR, 2007. [Online]. Available:
http://snowbird.djvuzone.org/abstracts/153.pdf

[3]
[4]

[5]

[6]
[7]
[8]

[9]
[10]

V. Vapnik, The Nature of Statistical Learning Theory. Springer-Verlag,
NY, USA, 1995.

N. Ratliff, J. A. Bagnell, and M. Zinkevich, “(approximate) subgradient
methods for structured prediction,” Carnegie Mellon University, Tech.
Rep., 2006. [Online]. Available: http://www.cs.cmu.edu/~ndr/mmsr

L. Mason, J.Baxter, P. Bartlett, and M. Frean, “Functional gradient
techniques for combining hypotheses,” in Advances in Large Margin
Classifiers. MIT Press, 1999.

J. H. Friedman, “Greedy function approximation: A gradient boosting
machine,” in Annals of Statistics, vol. 29(5), 1999a.

N. Cesa-Bianchi and G. Lugosi, Prediction, Learning, and Games. New
York, NY, USA: Cambridge University Press, 2006.

S. I. Hill and R. C. Williamson, “Convergence of exponentiated gradient
algorithms,” IEEE Trans. on Signal Processing, vol. 49, no. 6, pp. 1208—
1215, 2001.

A. Saxena, J. Driemeyer, J. Kearns, and A. Y. Ng, “Robotic grasping of
novel objects,” in NIPS, 2007.

A. T. Miller, S. Knoop, P. K. Allen, and H. I. Christensen, “Automatic
grasp planning using shape primitives,” in Proceedings of the IEEE
International Conference on Robotics and Automation, 2003.

