
Control of a Walking Biped Using a Combination of Simple Policies

Eric C. Whitman and Christopher G. Atkeson
Carnegie Mellon University
Pittsburgh, PA 15213, USA
email: ewhitman@cmu.edu

Abstract— We present a decoupled controller for a simulated
three-dimensional biped. To handle the high-dimensionality of
the system, we break the dynamics down into multiple sub-
systems, which we control separately. For both the sagittal
and coronal plane dynamics, we use dynamic programming
to simultaneously optimize body motion, foot placement, and
step timing for a two link inverted pendulum model. To use
these simplified policies we map the full state to a simplified
state, and then map the control action back onto the full system.
The swing leg is controlled via continuously updated desired
trajectories. These separate policies are then coordinated by
the estimated time until touchdown, which is provided by the
sagittal policy. By varying the lean angle or changing the sagittal
policy we are able to contol the walking speed. We also evaluate
the performance of our controller in terms of robustness to
perturbations.

I. INTRODUCTION
In this paper, we present a decoupled controller for a

simulated bipedal walking system. We extend dynamic pro-
gramming, a control technique that is typically limited to
very low-dimensional systems, into higher dimensions by
dividing the full system into multiple simpler systems, which
can then be individually controlled more easily along the
lines of [1]. Though the “separate” systems are, in reality,
coupled, the coupling can be viewed as modeling error for
the simple systems.

We coordinate the multiple policies through the estimated
time until touch down. The estimated time until touch down
behaves much like the phase in a central pattern generator [2]
during steady-state walking, but handles transients that affect
the step timing differently. Dynamic programming allows us
to simultaneously and globally optimize foot placement, step
timing, and body motion for a large volume of the state
space, enabling an effective response to large perturbations.

A. Related Work

A common control paradigm for high degree of freedom
(DoF) systems is to generate a nominal trajectory (possibly
with associated feed-forward commands) and then stabilize
the system around it with a feedback controller. Such trajec-
tories are often generated by trajectory optimization [3]. This
type of controller often only performs well in a narrow tube
of state space around the nominal trajectory. Unfortunately,
in an underactuated system, even high feedback gains typi-
cally cannot keep the system near the nominal trajectory in
the presence of perturbations. Even in the absence of external
perturbations, modeling error can push the system off of the
desired trajectory. In many cases, it is extremely difficult

to produce a sufficiently accurate model for the generation
of feasible trajectories. This problem is made worse when
feedback gains are reduced to make the system compliant.

One possible response to this problem is to produce
policies that are valid for a large region of the state space,
allowing them to handle large deviations form the nominal
trajectory. The viable region of a trajectory-based controller
can be increased by using a library of multiple trajectories,
producing a controller that performs well in the union of the
tubes around each trajectory in the library [4] [5]. Models
and prediction can be avoided entirely by doing direct policy
search [6] [7], typically with parametric policies. Intuition
about the task can be used to develop sets of parametric
policies that are particularly useful and easy to optimize [8].
Alternatively, some model-based control design strategies,
such as dynamic programming [9] [10], can generate policies
for aa large region of the state space.

Some researchers choose to base their controllers on
simplified systems that capture important aspects of the
full dynamics rather than attempting to accurately model
the full system [10]. It may then be possible to decouple
various aspects of control [11] [1]. The difference between
the simplified system and the full system can be partially
eliminated by learning the difference between the systems
[12]. Alternately, the system can be controlled so as to
behave like a simplified system [13] [14].

Many researchers design dynamically stable walking tra-
jectories based on the zero moment point (ZMP). Based on
the ZMP constraint, dynamically stable walking trajectories
have been generated both numerically [15] and analytically
[16]. Kajita et al. used Preview Control of the ZMP constraint
to generate center of mass (CoM) trajectories [17]. A desired
ZMP trajectory is chosen ahead of time based on specified
footstep locations and timing. Then the CoM trajectory is
calculated based on the desired ZMP trajectory. By randomly
sampling the configuration space and constructing a tree
of feasible paths, foot placement and whole-body motion
can be simultaneously planned [18]. By treating the footstep
location as an additional control in a linear model predictive
control scheme, footstep location (but not timing) has been
optimized along with the body motion [19].

B. Dynamic Programming

In the version of dynamic programming (DP) used in
this paper, we divide the state space into a grid. We then
iteratively solve for a steady state policy u(x) and value

function V (x) at each point in the grid according to

u(x) = arg min
u

(L(x, u) + cV (f(x, u))) (1)

V (x) = L(x, u) + cV (f(x, u)), (2)

where x is the state, c is the discount factor, L(x, u) is
the one step cost function, and xN+1 = f(xN , u) is the
dynamics. The discount factor is a constant slightly less
than 1.0 necessary to make the value function converge for
periodic systems that do not have a zero-cost limit cycle. In
each iteration, for each grid point, we use (1) to pick a new
action, u(x), from between only two choices: the current best
action and a random action [20]. We then use (2) to update
the value function accordingly. We iterate this procedure until
the value and policy converge to a global optimum.

DP produces a controller that is valid for the entire volume
considered. This makes it useful for optimizing transient
responses to perturbations as well as optimizing steady state
gait. It supports torque control approaches well, and produces
a controller that is valid even far from the optimal trajectory.
DP is also globally optimal (up to the grid resolution),
avoiding potential problems with local minima, and does
not require a terminal value function as is required by many
trajectory optimization algorithms. A major advantage of DP
is that it can easily handle discrete decisions such as whether
or not to touch down now, allowing simultaneous optimiza-
tion of trajectory, footstep timing, and footstep placement.
Visualization of the policies and value functions produced
by DP can increase physical intuition and lead to helpful
insights.

C. Compass Gait

One popular simplified model of walking systems is the
compass gait walker. It has a point mass body and two
rigid, massless legs. During walking, the body travels in a
series of arcs centered at the stance foot. Many researchers
have studied various aspects of this system including passive
stability [21], speed control [9], and rough terrain traversal
[22]. Hardware has even been built specifically to mimic the
dynamics of this simplified system as closely as possible
[22].

In section 2, we describe the simulated system, and in
section 3, we describe the controller. In sections 4 and 5, we
describe the system’s response to perturbations and control
of the walking speed. In section 6, we discuss our results
and future work, and we give a conclusion in section 7.

II. THE SYSTEM

The system we control (pictured in Fig. 1) is a simulated
three-dimensional biped comprised of five rigid links: a
torso, two thighs, and two calves. It is modeled on our
Sarcos Primus System hydraulic humanoid robot [23] [24] of
approximately human size and mass. It weighs 78 kg, with a
50 kg torso and 14 kg legs. The legs are 0.81 m long and the
CoM is 1.00 m above the ground when it is standing straight.
The joints can be controlled to have low impedance.

Fig. 1. The system walking.

Our simulation is a 12 DoF system: six to locate and orient
the torso, two for each hip and one for each knee. Since the
position and velocity of each of these degrees of freedom
are required to fully describe the state of the system, it has
a 24 dimensional state space. It is actuated by 12 torque-
controlled joints. There is a roll and a pitch joint at each
hip, a pitch joint at each knee, and three joints at each ankle.
Though a foot is not explicitly modeled, while on the ground,
the ankle may apply a torque between the calf and the ground
in the roll or pitch directions as well as twisting around the
axis of the calf. To keep the virtual foot flat on the ground,
the roll and pitch ankle torques, τr and τp, are constrained to
keep the center of pressure of the foot within the horizontal
convex hull of the foot:

|τr| ≤ wfFz

|τp| ≤ lfFz
(3)

where wf and lf are scaled to the width and length of a
human foot, and Fz is the vertical force on the foot.

Contact between the feet and the ground is modeled as a
spring and damper. The fricion cone constraint is given by√

F 2
x + F 2

y

Fz
< µ (4)

where Fx, Fy , and Fz are the components of the friction
force and µ = 1.0 is the coefficient of friction. If (4) is
broken, slipping is modeled as resetting the rest position of
the spring to the current location.

III. CONTROL ARCHITECTURE

The system has both a high-dimensional state space and
a high-dimensional action space. Since control in such high-
dimensional spaces is difficult, we divide the system into
multiple lower-dimensional systems, which can be separately
controlled much more easily [1]. With the exception of the
ankle twist joints, each joint acts purely in either the sagittal
or the coronal plane in the nominal standing pose. This
allows us to approximate the sagittal and coronal dynamics
as being decoupled and control them separately. The only
coupling between the two planes that is acknowledged by our
controller is that both sets of dynamics must switch between
left and right stance at the same time. Though the system
experiences brief periods of double support (approximately
1%-2% of the step), double support is ignored, and the

θ̈ =
M(L1yl sin(θ)θ̇2 + lg sin(θ)− L1xl cos(θ)θ̇2 + L1xg) +mL2g sin(θ) + τ

I2 +M(l2 + L1yl cos(θ) + L1xl sin(θ)
(5)

system is instead treated as being singly supported by the
lead leg. Double support periods are so short because our
gait is based on a compass gait, with relatively straight,
noncompliant legs.

A. Sagittal Stance Leg Policy

The sagittal plane dynamics are seven DoF: three to locate
and orient the torso and four more for the hips and knees. Its
action space is five-dimensional and includes the torque at
the pitch joints at both hips, both knees, and the stance ankle.
The swing leg ankle torque is zero when not in contact with
the ground. Rather than attempting to control this system
directly, we simplify things further by developing a policy
for a simplified system and then mapping this policy onto
the full system. In addition to a policy for the simplified
system, this approach requires mappings from full states to
simplified states and from simplified actions to full actions.
A schematic of the state simplification, policy, and action
expansion process is shown in Fig. 2.

Fig. 2. A schematic of the process necessary to use a policy designed for
a simplified system on a more complex system.

To simplify the system, we make several assumptions. We
remove two DoF by assuming the stance foot is located
at the origin. Another two DoF are avoided by ignoring
the swing leg, which will be controlled separately, and is
assumed to have low enough mass to have negligable effect
on the dynamics of the torso and stance leg. This assumption
is validated later when we show that this simplified system
behaves similarly to the full system. We further assume that
the stance knee be kept straight at all times and that the
torso is locked at a constant angle with respect to vertical.
This leaves us with a one DoF system: a two-link inverted
pendulum with the upper link at a fixed angle as shown in
Fig. 3.

The dynamics for this sytem are given by (5), where
l=0.81 m, L2=0.4 m, L1x = 0.4 sin(φ), and L1y =
0.4 cos(φ) are lengths as defined in Fig. 3 and φ is the torso
lean angle (nominally 0.1 rad). The masses of the body and
leg are given by M = 50kg and m = 14kg respectively,
I = ml2/3 is the moment of inertia of the leg measured
around the foot, and τ is the ankle torque. The one degree
of freedom, the angle between the leg and vertical is given
by θ.

This system has a two-dimensional action space. In ad-
dition to the ankle torque, τ1, the touchdown time is also

Fig. 3. Schematic of the simplified sagittal system.

controlled. Since the swing leg is neglected in this system,
the control policy has a Boolean decision of whether or not
to touch down at any time. At touchdown, both legs have
the same length (straight knees), so they form an isosceles
triangle with the ground. At touchdown, therefore, the leg
angle flips signs (θ = −θ0). Some energy is lost during
impact with the ground, which we model as θ̇ = 0.65θ̇0.

We use dynamic programming to generate a policy for the
simplified model. Our one step cost function is

L(x, u) = 6000(v − vdes)2 + τ2
1 + 0.02F 2

x,grf , (6)

where v and vdes are the actual and desired (1.0 m/s) forward
velocity of the hip, and Fx,grf is the ground reaction force
in the forward direction. The velocity and torque terms
constitute the classic tradeoff between error (deviation from
constant forward motion) and effort. The Fx,grf term is
included to help prevent large horizontal forces, which could
result in slipping in the full system. A cost is used rather
than a constraint because the full system GRF does not
exactly match the simplified GRF, so any constraint on the
simplified GRF would be insufficient. The ZMP constraint is
enforced by limiting the ankle torque. The numeric constants
are chosen empirically.

To map the full state to the simplified state, we take the
three-dimensional vector from the stance foot to the stance
hip and project it onto the sagittal plane. The leg angle,
θ, is then the angle between the projected vector and the
vertical. The leg angular velocity, θ̇, is obtained by taking
the numerical derivative of θ.

To map the simplified action to the full system, which has
more degrees of freedom, we must enforce the assumptions
of the simplified model. To enforce the assumption of a
constant length leg, we use a proportional-derivative (PD)
servo to keep the stance leg knee straight (Kp = 1500 Nm;
Kd = 150 Nm-s). We also use a PD servo (Kp = 1000 Nm;

Kd = 150 Nm-s) at the stance leg hip to keep the torso at a
constant angle with respect to vertical. The stance leg ankle
torque is controlled directly by the ankle policy computed
by dynamic programming.

Fig 4 shows the trajectory that results from this controller
in both the simplified and the full models. The resulting
behavior is also compared visually in the attached video.
Though the full model moves at a somewhat higher fre-
quency (and higher speed), the shape of the plots are similar.
Much of the difference in speed and shape comes from
the approximation of the touch down model. The simplified
system simply loses a fraction of its speed at touch down.
In the full system, however, the torso also bobs forward at
impact. The torque applied at the hip over the first portion
of the step to return it to its nominal lean angle also propels
the system forward, returning some of the lost speed to the
system. You can also see that the first step of the full model
starts out with a negative acceleration as a reaction to leaning
the torso forward.

Fig. 4. Comparison of walking in the sagittal plane for the simplified
and full models starting from rest. We plot only the stance leg angle,
which switches between the left and right physical legs at the vertical
discontinuities.

B. Sagittal Swing Leg Policy

The swing leg must be controlled to touch down at the
appropriate angle and angular velocity when the stance leg
policy commands it to. The knee must also be straight at
touchdown, but bent enough to not contact the ground during
swing.

Fortunately, both the dynamics and the controller are
predictable, so we can know ahead of time at what time
and angle touchdown will be commanded. This is done by
simulating forward on the simplified sagittal model until
touchdown and recording the duration of the swing as
well as the final state. The touchdown time and state can
be pre-computed starting from each point on the dynamic
programming grid. This takes only as long as a few dy-
namic programming iterations, so adds little to the total
pre-processing time. These are only estimates because the
full system dynamics differ from the simplified dynamics
on which they are calculated. This inaccuracy is partially
mitigated by continuously recalculating the estimate for the
majority of the step. For the final 0.1 seconds of each
step, however, the estimated touch down angle and angular
velocity are fixed because the cost of continued adjustment

(smooth motion is essential to touching down without slip-
ping) outweighs the increased accuracy. From this point, the
commanded time until touchdown, ttd, counts down in real
time, as shown in Fig. 5. For a typical step, the estimates
of touchdown angle, touchdown angular velocity, and step
duration at the beginning of the step are off by about 30%,
45%, and 15% respectively. This error is due entirely to
the difference between the full and simplified dynamics. At
touchdown, the estimation error for ttd is typically less than
a few milliseconds.

Fig. 5. Commanded time until touchdown, ttd. It is usually allowed to
vary with the updating estimate of when the simplified policy will command
touchdown. At the end of the step, it is forced to count down in real time.

To simplify control of the leg, we treat it as if it were
telescoping, using the knee to control the length, l, and the
hip to control the orientation. As with the stance leg, the
swing leg angle is measured by projecting the vector between
the foot and hip into the sagittal plane and measuring the
angle between the projected vector and vertical. While the
hip must sweep the leg from its liftoff to its touchdown angle
over the course of a step, the knee must bend to lift the
foot above the ground while swinging forward. We therefore
command a foot height, d, of 5 cm for the majority of the
step.

We use inverse kinematics to compute the knee angle, θk,
and angular velocity, θ̇k, necessary to maintain the foot at the
desired hight given the current hip height and leg orientation.
Once the desired θk and θ̇k are calculated, we can use a PD
servo (Kp = 1500 Nm; Kd = 150 Nm-s) to control the knee
in order to obtain the desired foot height.

To ensure touch down with a straight knee at desired
time, we override the foot height controller with direct knee
commands in order to meet the constraint

θk ≤ 2ttd (7)

at the end of a step. Commanded and actual knee angles as
well as the resulting foot height are shown in Fig. 6.

The swing leg hip torque is controlled by a PD (Kp =
1000 Nm; Kd = 150 Nm-s) servo on the swing leg angle (an-
gle between vertical and the hip-ankle vector). When stance
changes at touch down, a desired trajectory represented as a
cubic spline is generated starting at the current angle and
angular velocity of the leg and ending at the anticipated
touchdown angle and angular velocity at the commanded
touchdown time. This trajectory is constantly updated as the

Fig. 6. Knee angles and foot height for the swing leg.

target changes with a new spline generated from the current
angle and angular velocity of the hold trajectory to the new
target. Once the target is fixed towards the end of the step,
the trajectory is also fixed and no longer regenerated. When
the trajectory ends (ttd < 0) or when the foot is very near
the ground (d < 0.005), the swing leg angle is velocity
controlled to match the angular velocity of the stance leg.
This is done to prevent both the foot contacting the ground
at a high velocity and large internal forces during the brief
periods of double support, either of which could result in a
slip. The swing leg trajectory is shown in Fig. 7.

Fig. 7. Swing leg angle and angular velocity. The commanded leg angle is
plotted as 0 when the leg angle is under velocity control. The small wiggle
in angular velocity that occurs in the middle of each step is a result of the
knee switching from height to angular control.

C. Coronal Policy

The full coronal plane dynamics have five DoF and a four
dimensional action space consisting of the roll joints in both
hips and ankles. The stance leg is controlled in a similar
manner to how it is controlled in the sagittal plane; the full
state is again mapped onto a simpler set of dynamics for
which a policy can be easily developed as in Fig. 2.

The simplified dynamics used are nearly identical to those
used for the sagittal case, except that a third state is added,
estimated time until touchdown, ttd. The dynamics of this
state are modeled as counting down in real time until it
reaches zero, at which point touch down occurs and ttd is
reset to the average step duration. Unlike the sagittal plane
controller, the coronal plane controller does not decide when
to touch down; instead, it can select at what angle to touch
down. Its action space is therefore one-dimensional for the
majority of the state space. However, when ttd ≤ 0, it can

select at what angle to touch down. Following touchdown,
the new leg angle, θ, will be the selected angle and θ̇ will
be a constant fraction of the angular velocity before touch
down (θ̇ = 0.65θ̇0 as in the simple sagittal system). Whereas
the torso always leans forwards in the sagittal plane, in the
coronal plane, the torso mass is to the left of the right hip
and to the right of the left hip. Accordingly L1x must change
signs at touchdown (magnitude of 0.09 m).

Again, we construct a policy for the system using dynamic
programming, this time using a cost function of

L = 100000y2 + 10ẏ2 + τ2
1 + 0.1F 2

y,grf (8)

where y is the horizontal location in the coronal plane of the
hip This is equivalent to (6), but with a desired velocity of
zero and the addition of the y2 term, which tends to keep
the legs close to vertical. The leg angle and its derivative
are extracted from the full state by projecting the leg vector
into the coronal plane, and ttd is obtained from the sagittal
controller. The stance ankle is controlled directly by the
dynamic programming policy, and the stance hip is used to
servo the torso to vertical. A similar look-ahead technique
to that used to calculate the time and angle of touchdown
in the sagittal controller is used to pre-compute what the
commanded angle of touch down will be in the coronal
controller. The swing hip is then servoed (Kp = 4000 Nm;
Kd = 250 Nm-s) in the coronal plane to the appropriate
angle.

Fig. 8 shows the trajectory for the simplified and full
models following this policy. The behavior of the two
systems is also compared visually in the attached video. It is
unremarkable that the periods match relatively well because
in this case the period is specified as a design parameter.
The impact of touchdown causes the torso to roll slightly
away from the new stance leg. The torque necessary to
return the torso to vertical is responsible for the large angular
acceleration of the coronal leg angle seen at the beginning
of each step.

Fig. 8. Comparison of walking in the coronal plane for the simplified and
full models. We plot only the stance leg angle, which switches between the
left and right physical legs.

D. Yaw Control

The simplest way to control yaw is to use the ankle twist
joints. They are aligned along the axis of the calf, which is
on average aligned with the yaw axis. Servoing (Kp = 500

Nm; Kd = 30 Nm-s) the joints to zero is enough to produce
walking that is neutrally stable in yaw. Adding a controlling
term that is proportional to the difference between the actual
and desired yaw angle stabilizes the system about the desired
yaw angle. Unfortunately, only very slight yaw stability can
be obtained in this manner because large gains make the
system fail due to significant coupling with the coronal plane
dynamics. The coupling is large because the normal motion
of the leg brings the shin axis partially in line with coronal
plane torques.

IV. ROBUSTNESS TO PERTURBATIONS

An important characteristic of any controller is its ability
to reject perturbations. In particular, the size of the largest
perturbation that does not cause the system to fail is a
useful metric for systems where failure is well defined. One
practical difficulty with using this as a metric of performance
for walking is that the result of a perturbation depends on
the timing, location, and direction of the perturbation.

Fig. 9 shows the effect of push angle and timing on the
maximum survivable perturbation. Impulsive force perturba-
tions are administered to the torso CoM at various angles.
Data is shown for perturbations at increments of 0.1 seconds
after the left foot touches down. An unperturbed step takes
about 0.58 seconds. For perturbations to the front or right
(upper-right quadrant of Fig. 9), the timing does not matter
very much; the maximum survivable perturbation is roughly
constant regardless of when the perturbation occurs. For
perturbations to the left or rear (lower-left quadrant of Fig. 9),
however, the system is significantly more stable mid step than
at the beginning or end of the step.

Fig. 9. Polar plot of the maximum survivable perturbation as a function of
angle and time. Data is shown for perturbations occuring at various times
after left foot touch down. A point represents the maximum survivable
perturbation in a given direction.

There are two distinct failure modes: tipping and slipping.
Slipping is very sensitive to the coefficient of friction, but
tipping is not. Fig. 10 shows that increasing the coefficient
of friction has a large effect on how large a perturbation
is required to induce failure in some directions (forward),
but almost no effect in other directions. In fact, doubling
the coefficient of friction very nearly doubles the resistance

to perturbations in some directions. Changing the height
of the perturbation has little effect on the lateral ground
reaction force; however, it does have a significant effect on
the perturbing torque around the stance foot, which is what
causes tipping. Fig. 10 also shows the effect of locating
perturbations at the torso CoM versus 20 cm higher. This has
a noticeable effect in some directions (right) and a smaller
effect in other directions. It has a particularly small effect
in the direction where increasing the coefficient of friction
has a large effect. For a given direction, the relative effect
of changing the friction and perturbation height helps to
distinguish between tipping and slipping failures.

Fig. 10. Effect of changing the coefficient of friction, µ, and height, h, of
the perturbation. Perturbations occur 0.3 seconds after left foot touch down.
Perturbations are administered either at the torso CoM or 20 cm above the
torso CoM.

V. SPEED CONTROL
There are two readily available methods for controlling

speed within this framework. Either the torso lean angle or
the desired velocity of the sagittal policy can be adjusted.

Increasing the torso lean angle pushes the mass of the
torso farther forward relative to the footstep location. This
causes an increased torque around the stance foot, which
propells the system forward. Policies are computed assuming
a constant lean angle, and deviations from this angle function
as continuous perturbations, speeding or slowing the system.

Fig. 11 shows the effect of lean angle on speed for
a sagittal policy computed with a desired velocity of 1.0
m/s and lean angle of 0.10 radians. The system exhibits
stable walking with actual lean angles between -0.02 (slightly
backwards) and 0.11 radians. Even at the nominal lean angle,
the system walks slower than the desired velocity of 1.0 m/s
because given the cost function, (6), the policy must tradeoff
the cost of deviation from the desired velocity and the cost of
the additional torque necessary to go faster. The full systems
travels faster than the simplified system because it loses less
energy at touchdown.

For a greater change in speed, it is necessary to change
the sagittal policy. The speed can be varied continuously
by interpolating between a few policies, each computed
for a different speed. This method has the advantage that
the system will still do what the policy expects, so the

Fig. 11. Effect of changing the lean angle on walking speed. The vertical
black lines represents the nominal lean angle for which the sagittal policy
was designed.

estimates of touchdown angle and time will be more accurate.
Additionally, the step lengths and torques used will be closer
to optimal. Performance is best when changing policies and
lean angles in tandem.

Fig. 12 shows the effect of changing policies on the
forward speed. It walks for eight steps with one policy, then
switches to a second sagittal policy while holding everything
else constant. The first policy has a desired velocity of 1.0
m/s; the second policy has a desired velocity of 0.25 m/s,
but ends up walking significantly faster because little energy
is lost in the full system at touchdown while taking such
short steps at low speeds. It takes about two steps to get to
approximately the steady state speed, but several more steps
for the speed to completely level off.

Fig. 12. Effect of changing the policy on walking speed. Steady state
reffers to the steady state velocity achieved using the current policy.

VI. DISCUSSION AND FUTURE WORK

In this paper, we presented a controller for a walking biped
based on decoupling it into multiple separate systems. These
subsystems were each simple enough that robust controllers
for them could be designed. Though the couplings between
the subsystems were ignored in the controller design, the
individual controllers were sufficiently robust to function
within the simulated full system.

Though this study was done entirely in simulation, we
believe that this control scheme is well-suited to use on real
hardware. Since we use only simplified models of portions of
the dynamics, it may reduce the need to construct a detailed

model of the system, one of the more difficult problems in
standard control schemes. One advantage of this control
architecture is that it is modular. By this, we mean that
any one of the sub-controllers can be modified or replaced
without requiring any changes to the other controllers. This
is helpful from a control design standpoint because it allows
specific problems to be addressed directly. This modularity
also means that the same general framework can be used to
produce other types of walking. For example, instead of bas-
ing the sagittal controller on the compass gait, we could have
based it on the Linear Inverted Pendulum Model (LIPM)
[25], which keeps the hips and CoM at a constant height.
Both the compass gait and the LIPM model can be viewed
as constraints in leg angle - hip height space, and any such
constraint could have been used [14]. The modular structure
also leaves room for several improvements to the current
controller. The policies in this controller are developed on
simplified systems, and are therefore only optimal for the
simplified systems. The closer the full dynamics are to the
simplified dynamics, the more likely the policies are to be
reasonable. One way to match the full dynamics more closely
is to relax the constraint of a fixed lean angle for the torso in
the sagittal plane by adding the angle and angular velocity
of the torso as additional states and the torque at the hip
as an additional action. This would allow torso dynamics to
be taken into account when formulating the sagittal policy.
It would also allow for a more accurate touch down model.
Additionally, it would allow the controller to take advantage
of torso dynamics, which would be particularly helpful when
changing speed. We leave this refinement for future work.

Dynamid Programming requires very little run-time com-
putation, merely a constant time table lookup (and inter-
polation). On the other hand, it requires extensive offline
computation. The offline computation is exponential in the
number of state dimensions, which is a major reason why
coordinating multiple simpler policies is worthwhile. Opera-
tion under other conditions such as varied walking speed or
sloped terrain can be handled by computation of additional
policies suitable to those conditions as in [1] [9] [22].

In this paper, we used a master-slave architecture of
policy coordination where the sagittal policy determined
when touch down would occur and the coronal policy
accepted this value. One can easily imagine the reverse
scenario, where the coronal policy determined the timing
and the sagittal policy accepted it. Future work will develop
a collaborative approach to policy coordination. Dynamic
programming (used to develop the policies) produces a value
function, V , in addition to the policy. We can assume that
the value function for the combined policy is equal to the
sum of the value of the individual policies as in [26]:

V = Vs + Vc (9)

If both the sagittal and coronal policies were developed with
time until touch down as a state, and we then split that state
into the physical state, x, and ttd (the same for both policies),

we can rewrite (9) as

V (xs,xc, ttd) = Vs(xs, ttd) + Vc(xc, ttd). (10)

Written in this way, selecting ttd is a matter of minimizing
value:

t∗td = arg min
ttd

Vs(xs, ttd) + Vc(xc, ttd), (11)

which is a simple lookup operation on the value function
from dynamic programming. Such a system would provide
a good mechanism for timing to be dictated by whichever
policy it was most important to. This can be generalized
by including the swing leg or any number of additional
controllers in the selection of ttd so long as V (x, ttd) can
be calculated for those controllers.

VII. CONCLUSION

We have produced a controller for a walking biped based
on decoupling the system into multiple simpler systems, and
coordinating the simpler controllers designed using Dynamic
Programming. We are able to generate policies that are valid
for a large region of the high-dimensional state of the full
system. This allows the system to react to large perturbations.
Unlike ZMP preview control, we simultaneously globally
optimize body motion, step location, and step timing. This
allows for an optimized adjustment of footstep timing and
location in response to unexpected perturbations.

VIII. ACKNOWLEDGMENTS

This material is based upon work supported in part by
the National Science Foundation under grants DGE-0333420,
ECCS-0325383, EEC-0540865, and ECCS-0824077.

REFERENCES

[1] Michiel van de Panne, Eugene Fiume, and Zvonko G. Vranesic, “A
controller for the dynamic walk of a biped over variable terrain”, in
Proceedings of the 31st Conference on Decision and Control.

[2] Jun Morimoto, Gen Endo, Jun Nakanishi, Sang-Ho Hyon, Gordon
Cheng, Darrin Bentivegna, and Christopher G. Atkeson, “Modulation
of simple sinusoidal patterns by a coupled oscillator model for biped
walking”, Proceedings of the 2006 IEEE International Conference on
Robotics and Automation, pp. 1579–1584, May 2006.

[3] M.W. Hardt, Multibody dynamical Algorithms, Numerical Optimal
Control, with Detailed Studies in the Control of Jet Engine Compres-
sors and Biped Walking, PhD thesis, University of California, San
Diego, 1999.

[4] Pierre-Brice Wieber and Christine Chevallereau, “Online adaptation
of reference trajectories for the control of walking systems”, Robotics
and Autonomous Systems, vol. 54, pp. 559–566, July 2006.

[5] Chenggang Liu and Christopher G. Atkeson, “Standing balance control
using a trajectory library”, in Proc. of the IEEE/RSJ IROS, 2009.

[6] M. van de Panne and E. Fiume, “Sensor-actuator networks”, in
Proceedings of ACM SIGGRAPH, 1993, pp. 335–342.

[7] J. Andrew (Drew) Bagnell, Sham Kakade, Andrew Ng, and Jeff
Schneider, “Policy search by dynamic programming”, in Neural
Information Processing Systems. December 2003, vol. 16, MIT Press.

[8] Chee-Meng Chew and Gill A. Pratt, “A general control architecture for
dynamic bipedal walking”, in Proceedings of the IEEE International
Conference on Robotics & Automation, 2000, pp. 3989–3995.

[9] Thijs Mandersloot, Martijn Wisse, and Christopher G. Atkeson,
“Controlling velocity in bipedal walking: A dynamic programming
approach”, in Proceedings of the IEEE-RAS International Conference
on Humanoid Robots, 2006, pp. 124–130.

[10] M. Stilman, CG Atkeson, JJ Kuffner, and G. Zeglin, “Dynamic
programming in reduced dimensional spaces: Dynamic planning for
robust biped locomotion”, Robotics and Automation, 2005. Proceed-
ings of the 2005 IEEE International Conference on, pp. 2399–2404,
2005.

[11] Marc H. Raibert, Legged robots that balance, Massachusetts Institute
of Technology, Cambridge, MA, USA, 1986.

[12] John R. Rebula, Fabian Canas, Jerry E Pratt, and Ambarish Goswami,
“Learning capture points for bipedal push recovery”, in Proceedings of
the IEEE International Conference on Robotics & Automation, 2008.

[13] Jerry Pratt, Peter Dilworth, and Gill Pratt, “Virtual model control
of a bipedal walking robot”, in IEEE Conference on Robotics and
Automation, 1997, pp. 193–198.

[14] Eric R. Westervelt, Jessy W. Grizzle, Christine Chevallereau, Jun Ho
Choi, and Benjamin Morris, Feedback Control of Dynamic Bipedal
Robot Locomotion, CRC Press, 2007.

[15] Satoshi Kagami, Koichi Nishiwaki, Tomonobu Kitagawa, Tomomichi
Sugihara, Masayuki Inaba, and Hirochika Inoue, “A fast generation
method of a dynamically stable humanoid robot trajectory with en-
hanced zmp constraint”, in In Proceedings of the IEEE International
Conference on Humanoid Robotics, 2000.

[16] Kensuke Harada, Shuuji Kajita, Kenji Kaneko, and Hirohisa Hirukawa,
“An analytical method on real-time gait planning for a humanoid
robot”, International Journal of Humanoid Robotics, 2004.

[17] Shuuji Kajita, Fumio Kanehiro, Kenji Kaneko, Kiyoshi Fujiwara,
Kensuke Harada, Kazuhito Yokoi, and Hirohisa Hirukawa, “Biped
walking pattern generation by using preview control of zero-moment
point”, in In Proceedings of the 2003 IEEE International Conference
on Robotics and Automation (ICRA), Taipei, Taiwan, September 2003,
pp. 1620–1626.

[18] Kensuke Harada, Mitsuharu Morisawa, Shin-Ichiro Nakaoka, Kenji
Kaneko, and Shuuji Kajita, “Kinodynamic planning for humanoid
robots walking on uneven terrain”, Journal of Robotics and Mecha-
tronics, vol. 21, no. 3, pp. 311–316, 2009.

[19] H. Diedam, D. Dimitrov, P.B. Wieber, K. Mombaur, and M. Diehl,
“Online walking gait generation with adaptive foot positioning through
linear model predictive control”, in Proc. of the IEEE/RSJ IROS, 2008,
pp. 1121–1126.

[20] Christopher G. Atkeson, “Randomly sampling actions in dynamic
programming”, in Proceedings of the 2007 IEEE Symposium on
Approximate Dynamic Programming and Reinforcement Learning,
2007.

[21] Ambarish Goswami, Bernard Espiau, and Ahmed Keramane, “Limit
cycles in a passive compass gait biped and passivity mimicking control
laws”, Journal of Autonomous Robots, vol. 4, no. 3, pp. 273–286,
1997.

[22] Katie Byl and Russ Tedrake, “Approximate optimal control of
the compass gait on rough terrain”, in Proceedings of the IEEE
International Conference on Robotics & Automation, 2008, pp. 1258–
1263.

[23] Darrin C. Bentivegna, Christopher G. Atkeson, and Jung-Yup Kim,
“Compliant control of a compliant humanoid joint”, in Proceedings of
the IEEE-RAS International Conference on Humanoid Robots, 2007,
pp. 211–218.

[24] Jung-Yup Kim, Christopher Atkeson, Jessica Hodgins, Darrin Ben-
tivegna, and Sung Ju Cho, “Online gain switching algorithm for joint
position control of a hydraulic humanoid robot”, in Proceedings of
the IEEE-RAS International Conference on Humanoid Robots, 2007.

[25] S. Kajita and K. Tani, “Study of dynamic biped locomotion on rugged
terrain-derivation and application of the linear inverted pendulum
mode”, in Proceedings of the IEEE International Conference on
Robotics & Automation, April 1991, vol. 2, pp. 1405–1511.

[26] Daphne Koller and Ronald Parr, “Computing factored value functions
for policies in structured mdps”, in In Proceedings of the Sixteenth
International Joint Conference on Artificial Intelligence. 1999, pp.
1332–1339, Morgan Kaufmann.

