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Abstract— A large variety of doors and drawers can be found
within human environments. Humans regularly operate these
mechanisms without difficulty, even if they have not previously
interacted with a particular door or drawer. In this paper,
we empirically demonstrate that equilibrium point control can
enable a humanoid robot to pull open a variety of doors
and drawers without detailed prior models, and infer their
kinematics in the process.

Our implementation uses a 7 DoF anthropomorphic arm
with series elastic actuators (SEAs) at each joint, a hook as an
end effector, and low mechanical impedance. For our control
scheme, each SEA applies a gravity compensating torque plus
a torque from a simulated, torsional, viscoelastic spring. Each
virtual spring has constant stiffness and damping, and a
variable equilibrium angle. These equilibrium angles form a
joint space equilibrium point (JEP), which has a corresponding
Cartesian space equilibrium point (CEP) for the arm’s end
effector.

We present two controllers that generate a CEP at each time
step (ca. 100ms) and use inverse kinematics to command the
arm with the corresponding JEP. One controller produces a
linear CEP trajectory and the other alters its CEP trajectory
based on real-time estimates of the mechanism’s kinematics.
We also present results from empirical evaluations of their
performance (108 trials). In these trials, both controllers were
robust with respect to variations in the mechanism, the pose of
the base, the stiffness of the arm, and the way the handle was
hooked. We also tested the more successful controller with 12
distinct mechanisms. In these tests, it was able to open 11 of
the 12 mechanisms in a single trial, and successfully categorized
the 11 mechanisms as having a rotary or prismatic joint, and
opening to the right or left. Additionally, in the 7 out of 8 trials
with rotary joints, the robot accurately estimated the location
of the axis of rotation.

I. INTRODUCTION

A large variety of doors and drawers can be found within
human environments. Operating these mechanisms plays a
role in many daily activities, such as moving within an
environment or retrieving an object that has been stored.
Being able to operate these same mechanisms would help
service robots assist with similar activities.

Humans regularly operate these mechanisms without dif-
ficulty, even if they have not previously interacted with a
particular door or drawer. This would be an advantageous
capability for robots, and some progress has been made in
this direction [1], [2]. So far, however, researchers have either
employed relatively complex control schemes or used pre-
existing models of the specific door or drawer. Moreover,
researchers have yet to empirically demonstrate that their
methods can succeed given real-world variation. Within this

paper, we present a straightforward form of impedance
control, which we call equilibrium point control (EPC). We
demonstrate that EPC in conjunction with low mechanical
impedance can be used to pull open novel doors and drawers,
and that our implementation is robust to variations in the
mechanism, the pose of the base, the stiffness of the arm,
and the way the handle is hooked.

A. Low-Impedance Manipulation

Researchers have made compelling arguments for the
benefits of robots with low mechanical impedance [3], [4].
As has often been noted, these arguments are particularly
relevant for manipulation within human environments, since
robots are likely to be uncertain about the state of the world.
At minimum, low-impedance manipulation can reduce the
forces and moments resulting from contact, and thus reduce
the risk of damage to the robot, the environment, and nearby
people.

In addition, we believe that low-impedance manipulation
can improve the performance of robots with respect to
common tasks within human environments. Although low-
impedance manipulation often results in poorer performance
when moving the end effector through a pre-defined trajec-
tory [5], we believe this type of evaluation fails to capture
the challenges of manipulation in human environments.

The common task we address in this paper (opening novel
doors and drawers) illustrates forms of real-world task varia-
tion and uncertainty that a service robot is likely to encounter.
For example, our system requires that the robot be able
to haptically explore the environment and make unexpected
contact with rigid components of the environment (e.g., when
haptically finding and hooking onto the handle). Likewise,
our system requires that the robot accommodate unexpected
displacements (e.g., the constrained trajectory of the handle).
At their core, these examples require that the world be able
to move the robot’s arm, and do so without generating large
forces and torques. As such, we believe that low-impedance
manipulation is well-matched to the task.

Our robot’s arm has low mechanical impedance at all
links. The robot arm achieves this through both passive and
active means [6]. A service robot in daily operation may
not be able to restrict its contact with the world to its end
effector, and may intentionally make contact with proximal
links in order to perform tasks. As such, we believe there
is value in using robots and control schemes that provide



low mechanical impedance for contact at any point along
the arm.

Within our research, the end effector stiffness of the
manipulator of our robot is relatively low when compared
to other impedance controlled arms. For example, it is lower
by around a factor of five compared to work on door opening
with Cartesian space impedance control using the DLR-
Lightweight-Robot-II [7]. It also uses joint stiffnesses that
are comparable to stiffness estimates for joints in the human
arm during planar manipulation [8], [9].

B. The Equilibrium Point Hypothesis

The equilibrium point hypothesis (EPH) inspired our con-
trol method. The EPH originates in biomechanical mod-
els of the spring-like properties of neuro-muscular systems
[10]. It is a well-known hypothesis about biological motor
control, which posits that motion is controlled by adjusting
the equilibrium point of a biomechanical system over time
[10]. These sequences of equilibrium points are sometimes
referred to as virtual trajectories [11]. In this context, the
equilibrium point refers to the configuration to which the
mechanical system would settle in the absence of externally
applied forces other than gravity. The EPH has often been
presented as a model of biological control that does not
require explicit compensation for dynamics.

Long-standing debates continue about whether or not the
EPH is true for human motor control [12], [13]. For this
work, however, we only use it as inspiration for controlling
humanoid robots with equilibrium point control (EPC).

C. Equilibrium Point Control

For EPC, motion of the robot’s arm is commanded by
adjusting the position of a Cartesian-space equilibrium point
(CEP) that denotes where the robot’s end effector would
settle in the absence of externally applied forces other than
gravity. For our implementation, this is achieved through the
use of virtual visco-elastic springs at the robot’s joints along
with gravity compensation. For any commanded CEP, we
find an associated joint space equilibrium point (JEP) that
defines the equilibrium settings for the virtual springs that
would result in the robot’s end effector settling at the CEP.
The robot could also adjust the stiffnesses of these virtual
springs, but we keep them constant in this work.

In previous work, we have shown that behaviors that use
linear trajectories for the CEP can operate a door handle and
push open a door, and are robust to variations in the control
parameters and the environment [14]. We hypothesized that
simple CEP trajectories might be sufficient to perform a
wide variety of tasks. In this paper, we build on that work
by showing that a humanoid robot can use similar CEP
trajectories to pull open a variety of mechanisms without
detailed prior models.

Equilibrium point control offers a promising alternative
to other forms of control. As we demonstrate, it can be
effectively used for both freespace reaching trajectories and
mechanically constrained manipulation tasks. In contrast
to position control methods, our implementation does not

Fig. 1. The mobile manipulator used in this paper, the coordinate frame
attached to the torso, and the orientation of joint axes for the 7 joints of
each arm (taken from MEKA Robotics datasheets).

require high-fidelity estimates of the kinematics of the handle
and door [15]. Unlike some approaches to force control and
impedance control, we do not explicitly model the dynamics
of the arm nor the impedance at the end effector [7]. We
also do not use inverse dynamics [16]. As such, equilibrium
point control is relatively simple to use.

Previous robotics research has looked at similar robotic
control strategies in simulation [17], in freespace motions
[18], in legged locomotion [19], in rhythmic manipulation
from a fixed based [20], and in the design and control of
compliant actuators [21], [22]. However, few researchers
have looked at this form of control in the context of task-
oriented mobile manipulation. Coupled with our robot’s low
mechanical impedance, we have found EPC to be easy to
work with, easy to implement, and surprisingly robust.

II. THE ROBOT

The robot is a new, as yet unnamed, statically stable
mobile manipulator that our lab, the Healthcare Robotics
Lab, assembled in early 2009 (see Figure 1). It consists
of arms from MEKA Robotics (MEKA A1), an omni-
directional mobile base from Segway (RMP 50 Omni), and a
1-DoF linear actuator from Festo that can lift the manipulator
and sensors from ground level to 1.2m above the ground.
Distinctive features of this robot include the use of series
elastic actuators [6] in all 14 DoF of the two arms (7 DoF
each) and four Mecanum wheels for the base.

For this work, a hook serves as the end effector (Figure
2). We designed the hook, printed it with a 3D printer, and
then applied rubber to its surfaces to increase friction. One
can think of this as a model of the human hand when a
person uses a finger or fingers to hook around a handle and
pull something open (Figure 2). We also took inspiration



Fig. 2. Left: Examples of a human using his hand as a hook. Right: The
two orientations for the robot’s hook, Left and Up.

from prosthetic hooks, which have been successfully used
with remarkable versatility and effectiveness. A hook has
the advantage of being effective for a variety of handles,
including recessed handles that would be difficult to grasp.

A. The Software and the Sensors

A Mac Mini running Ubuntu GNU/Linux performs all of
the computation for sensing and high-level control. There
is also a Dell Studio Hybrid that runs Ubuntu GNU/Linux
with a kernel patched with RTAI for real-time operation. It
performs computations for the MEKA arms. We have written
all our software in Python and make use of a variety of open
source packages including SciPy [23], KDL, ROBOOP, and
ROS [24].

For this work, the robot only uses haptic and proprio-
ceptive feedback. The robot senses forces and torques using
a wrist-mounted 6-axis force/torque sensor (ATI Mini40
from ATI Industrial Automation). The arm’s joints also
sense torque, but the current behaviors only use this sensing
implicitly in the context of virtual spring control.

III. EQUILIBRIUM POINT CONTROL

Figure 3 shows the control structure of the system pre-
sented in this paper. All the manipulation behaviors in this
work move the Cartesian equilibrium point (CEP) in a
coordinate frame attached to the torso of the robot with the
X axis pointing out the front of the robot, the Y axis pointing
to the robot’s left, and the Z axis pointing up towards the
ceiling, as shown in Figure 1.

We have written the behaviors in Python and they run on
a Mac Mini running Ubuntu GNU/Linux. At approximately
10Hz, these behaviors compute a new CEP (xeq) using 6-axis
force feedback from the wrist-mounted force/torque sensor
(F ), and estimates of the mechanism kinematics using the
history of end effector positions (xee).

The behaviors then use the inverse kinematics (IK) solver
from KDL1 to compute a joint-space equilibrium point (JEP,
qeq) corresponding to the CEP. When computing qeq , the IK
solver is seeded with the previous JEP in the trajectory. If no
previous JEP exists, the robot uses a look-up-table to find a
configuration of the arm with which to seed the IK solver.

On the Dell Studio Hybrid, a control loop simulates virtual
viscoelastic springs for all joints of the manipulator except
two wrist joints (J5 and J6 in Figure 1). At 1kHz, this control
loop computes a torque vector τ = [τ0...τ4], which are the
torques applied to the three joints in the shoulder (J0, J1,

1Kinematics and Dynamics Library (http://www.orocos.org/kdl)

Fig. 3. Block diagram showing the overall control structure.

J2), one joint in the elbow (J3), and the wrist roll joint (J4).
τ is computed as the sum of two torque vectors:

τ = −g(q) + α(−Kp(q − qeq)−Kdq̇) (1)

The first torque vector, g(q), is the torque due to gravity
as a function of the current joint angles q. Subtracting it
provides gravity compensation. The second torque vector,
−Kpq̃−Kdq̇, simulates a torsional, viscoelastic spring with
constant stiffness and damping at each joint. Kp and Kd

are diagonal stiffness and damping matrices. qeq is the joint
space equilibrium point (JEP), and α is a scalar that we use
to increase and decrease the overall stiffness and damping in
some of the experiments. Changing α is equivalent to scaling
Kp and Kd. As α increases, the arm gets stiffer and behaves
more like a position-controlled arm. In practice α can only be
scaled within a limited range, such that even with the highest
values of α the arm has considerable compliance relative to
a traditional industrial arm.

For the wrist joints J5 and J6, the robot uses position
control that relates the motor output to joint encoder readings
and ignores torque estimates from the deflection of the
springs. Consequently the wrist is held stiff, except for the
passive compliance of the SEA springs and cables connecting
the SEA to the joints. Throughout the experiments, the robot
kept its wrist pointed away from the torso and normal to the
torso’s front surface.

IV. TWO EQUILIBRIUM POINT CONTROLLERS FOR
PULLING OPEN DOORS AND DRAWERS

In this section, we describe two controllers that generate
Cartesian equilibrium point (CEP) trajectories that enable the
robot to pull open novel doors and drawers. Both controllers



share a similar structure:

xeq[t] = xeq[t− 1] +m[t] + h[t] (2)
qeq[t] = Inverse Kinematics(xeq[t]) (3)

At each time step, t, they compute the CEP, xeq[t], by adding
a vector intended to operate the mechanism, m[t], and a
vector intended to keep the hook from slipping off of the
handle, h[t], to the previous CEP, xeq[t − 1]. xeq[t] is then
used to find qeq[t], the joint space equilibrium point (JEP).
xeq[−1] is the CEP once the robot has a firm hook on the
handle, by executing the behavior described in Section VI-
A. We have written these two controllers in Python and they
run at approximately 10Hz.

While updating qeq , the robot looks for three types of
stop conditions. If the magnitude of the force measured
by the wrist force-torque sensor exceeds a maximum force
threshold Fth[t], the robot stops. Likewise, if the magnitude
of the force drops below 1N, the robot assumes that its hook
end effector has slipped off the handle and stops. Finally,
if the end effector’s trajectory or the CEP trajectory leaves
the workspace of the arm, the robot stops. Under some
circumstances, the CEP trajectory should be allowed to leave
the workspace, but we do not address these situations in this
work.

Equations 4 and 5 show how the robot computes the
maximum force threshold, Fth[t].

tmv = min{t s.t. ‖xee[t]− xee[0]‖ ≥ 0.1m} (4)

Fth[t] =

{
80N t ≤ tmv

min(‖F [tmv]‖+ 30N, 80N) otherwise
(5)

It is initialized to 80N. The robot first detects motion of the
mechanism at time tmv , when the end effector has moved by
a distance greater than the length of the hook. After this, it
adapts the maximum force threshold for stopping to be 30N
greater than the magnitude of the force measured using the
wrist force torque sensor at time step tmv .

A. Controller 1: Pull-Linear

Equations 6 and 7 show the two vectors m[t] and h[t]
for this controller. m[t] is a constant vector which results
in a linear CEP trajectory and moves the CEP towards the
robot’s torso by 1cm at each time step. An example of the
resulting linear CEP trajectory is shown in Figure 4. xeq[−1]
is determined by the behavior that attempts to get a firm hook
on the handle (Section VI-A). This is the reason why there
is an initial offset between the CEP and the actual position
of the end effector in Figure 4. The controller is:

m[t] = (−1cm, 0, 0) (6)
h[t] = (0, 0, 0) (7)

B. Controller 2: Pull-Radial-Force

This controller assumes that the mechanism will either be
a prismatic joint or a rotary joint with the axis of rotation
parallel to gravity. It uses an estimate of the location of the

Fig. 4. Figure showing the CEP trajectory in green and the actual motion
of the end effector in blue for the Pull-Linear (left) and Pull-Radial-Force
(right) controllers. The red circles denote the CEP and the end effector
position at t = 0.

axis of rotation and the radius of the mechanism using the
algorithm detailed in Section V.

Based on this estimate, the controller defines tangential
and radial unit vectors for the estimated rotary motion,
(v̂tan[t], v̂rad[t]). This is comparable to estimating a task
frame [1], [25], [26]. Starting at t = 0, and until the
mechanism kinematics estimation algorithm of Section V
does not have enough points to estimate the kinemat-
ics, the Pull-Radial-Force controller sets these vectors to
((−1, 0, 0), (0, 1, 0)).

Using the tangential and radial unit vectors, the con-
troller factors the force measured by the wrist force torque
sensor into estimated tangential and radial components,
(F̂tan[t], F̂rad[t]).
m[t] is a vector of constant magnitude oriented in the

direction of the estimated motion tangent (see Equation 8).
By itself, m[t] would tend to create an CEP trajectory that
looks similar to the trajectory traced out by the handle of
the mechanism. h[t] is a vector of constant magnitude that
is parallel to the radial unit vector, v̂rad[t]. The sign of the
vector is determined by a bang-bang controller that attempts
to keep the radial force applied to the handle by the hook at
5N, as shown in Equation 9. The controller is:

m[t] = 1cm · v̂tan[t] (8)

h[t] =


−0.25cm · v̂rad[t] if F̂rad[t] < 5N
+0.25cm · v̂rad[t] if F̂rad[t] > 5N
(0, 0, 0) otherwise

(9)

An example of the resulting CEP trajectory is shown in
Figure 4.

V. MECHANISM KINEMATICS ESTIMATION

The mechanism kinematics estimation algorithm returns
an estimate of the location of the axis of rotation of the
mechanism that the robot is operating and its radius. It ini-
tially computes two models using the end effector trajectory
in the XY plane (via forward kinematics). One model is for
rotary mechanisms that open to the right and the second for
rotary mechanisms that open to the left. The algorithm does
not have a separate model for prismatic joints and we assume
that a prismatic joint will be estimated as a rotary joint with
a very large radius. The algorithm runs an optimization for
each model to compute:

(c, r)∗ = argmin(
∑

t

(‖xee[t]− c‖ − r)2) (10)



Fig. 5. Figure illustrating the two compliant motions that the robot executes
to try to get a firm hooking grasp: 1) motion towards the mechanism. 2)
lateral motion towards the handle.

where r is the radius of the mechanism, c is the location of its
axis in the XY plane, and xee[t] is the end effector trajectory.
The initial guess for r is set to 1.0m and the initial guess for
c is (xee[0]x,−r) and (xee[0]x,r) for optimizations for door
models that open to the right and left respectively. xee[0]x
is the x coordinate of the end effector at t = 0.

We use an implementation of the BFGS optimization
algorithm from SciPy [23]. Out of the two circle models,
the kinematics estimation algorithm selects the model with
the lower residual error as the current estimate of the mecha-
nism’s kinematics. This gives new estimates at approximately
5Hz.

VI. SOURCES OF VARIATION

The two pulling controllers depend on several factors:
the way in which the handle has been hooked, the stiffness
settings of the joints, the initial posture of the arm, and the
pose of the body relative to the handle. Within this section,
we describe how we set these parameters for the experiments.

A. A Behavior for Hooking the Handle

First, performance depends on the way in which the robot
has hooked the handle. For example, if the end effector
slips off the handle, or along the handle, the performance
of the system will degrade. In order to represent the natural
variations that might occur when autonomously hooking a
handle, we created a hooking behavior.

Since we only use haptic sensing in this work, we do
not address the problem of finding a good place to hook
onto a door or drawer. Instead, we provide the robot with
a 3D location to which the hook should be moved and the
orientation for the hook (see Figure 2). For the experiments,
we achieved this by fixing the arm posture, orienting the
hook, and then driving the base and elevating the torso with
a gamepad such that the hook was poised to haptically reach
forward and hook the handle.

Once the robot is in position, it attempts to firmly hook the
handle before executing a pull behavior. It does this through
two compliant motions. First, it moves the arm with a linear
CEP trajectory along the positive X axis until it detects
contact with the mechanism using the wrist force torque
sensor. The robot then moves the end effector laterally toward
the handle with a linear CEP trajectory until either a force
threshold is achieved, indicating contact, or the hook has
moved a distance of 5cm. These two motions are illustrated
in Figure 5.

Fig. 6. Left: The area of the workspace in a plane parallel to the ground,
estimated as the number of points in a grid of 2cm resolution that have an
inverse kinematics solution, is reasonably constant when the Z-coordinate
is between -0.18m and -0.27m. Right: The workspace of the manipulator
when the Z-coordinate in -0.21m

B. Selecting the Stiffness Values

For all of the experiments, we used the same relative
stiffnesses of the five joints, and only altered the scaling
factor α. With α set to 1.0 and the robot’s right arm held
to its side, the stiffness gains for the virtual viscoelastic
springs for J0, J1, and J2 at the shoulder were 20, 50, and
15Nm/rad, respectively. For J3 at the elbow the stiffness gain
was 25Nm/rad, and for J4 at the wrist it was 2.5Nm/rad (see
Figure 1). Qualitatively, we found that the robot’s perfor-
mance was insensitive to changes in the relative stiffness, as
was the computationally estimated stiffness ellipse at the end
effector over the end effector’s workspace. These stiffness
settings are similar to what we used in our previous work
on unlatching and pushing doors open [14]. They are also
comparable to estimates of human joint stiffness [8], [9].

C. The Pose of the Body Relative to the Handle

During autonomous activities, the position of the base
and torso relative to the handle will be likely to vary due
to uncertainties (e.g., perception), limited precision (e.g.,
motion of the base), task constraints (e.g., obstacles), and
other challenges that accompany real-world operation. We
wish to verify empirically that our proposed controllers are
robust to these forms of variation.

1) Height of the Torso: Qualitatively, we found that
system performance was not sensitive to the height of the
torso relative to the handle. Consequently, we chose to fix
the height of the torso relative to the handle. We chose this
height by searching for a value that would maximize the area
of the planar Cartesian workspace of the end effector. We
estimated the size of the workspace by using the IK solver
to sample over achievable end effector positions. A graph
of the results of this optimization, Figure 6, confirms that
the area of the workspace does not vary significantly with
height.

2) Planar Location and Orientation: To test the perfor-
mance of the controllers with variation in the position and
orientation of the base relative to the handle of the mecha-
nism we carried out multiple trials on the three mechanisms.
We varied the angle over 30◦ (±15◦ of error) and the distance
by 10cm, as shown in Figure 8. The results of these trials
are detailed in Section VII.

In a second set of trials, we selected the position and
orientation of the robot from the first set of trials that resulted



Fig. 7. The three mechanisms used for the experiments of Section VII-
A. Left:Two cabinet doors with recessed handles. Right: Drawer with a
recessed handle.

in the maximum opening angle and carried out one trial
each on 12 different mechanisms. Section VIII presents the
performance of the robot in these trials.

For all the trials, the robot initially pulled towards its torso,
as though it believed the initial motion should be normal to
its torso.

D. The Initial Posture of the Arm

Given the fixed pose of the wrist, the height of the torso,
and the planar position and orientation of the base, the arm
must reach the handle such that it is hooking it. For our
tests, this leaves one DoF remaining in the 7DoF arm. We
initialize the posture of the arm such that the plane formed
by the shoulder, elbow and wrist is close to vertical with the
elbow tilting away from the torso.

VII. TESTING THE TWO CONTROLLERS ON THREE
MECHANISMS

To test the performance of the controllers with variation
in the position and orientation of the base relative to the
handle of the mechanism and with variation in the stiffness
of the manipulator, we evaluated the two controllers when
operating the left and right doors of a cabinet with rotary
joints, and a drawer with a prismatic joint, shown in Figure
7. During these tests, we varied the pose of the robot’s base
relative to the handle and the overall stiffness of the arm.

A. Comparison of Pulling Controllers

In this section, we report on 108 trials that we conducted to
empirically compare the performance of the Pull-Linear and
Pull-Radial-Force equilibrium point controllers. For these tri-
als, we systematically varied the mechanism being operated,
the pose of the base, and the overall stiffness of the arm. For
each of the three mechanisms, we tested both controllers with
the base in six different poses and the arm’s stiffness scaled
by three different values of α (i.e., 3×2×6×3 = 108 trials).
Figure 7 shows the three mechanisms. Figure 8 shows the
six poses of the base. We set α to 0.8, 1.0, and 1.2.

Table I summarizes the performance of the two pulling
controllers subject to these variations. Both Pull-Linear and
Pull-Radial-Force opened all three mechanisms through an
average angle greater than 30◦ for the rotary joints and an
average distance greater than 20cm for the prismatic joint.
Also, the robot correctly distinguished between rotary and
prismatic joints and estimated the correct direction of rotation
with both of the controllers. For this work, we interpret a
radius greater than 2m to be a prismatic joint.

Fig. 8. Layout of the experiments of Section VII-A. We placed the robot
in approximately the 6 different positions shown in the figure with an angle
between -15◦ and +15◦ with the surface of the mechanism and the X-
coordinate of the end effector being either 0.45m or 0.55m.

Fig. 9. Figure showing the variation of the opening angle for a rotary
joint with the position of the robot. The larger the size of the light blue
rectangle, the greater the angle through which the robot opened the door
for the experiments of Section VII-A.

For the door that opens to the right, both of the control
methods obtained a good estimate of the radius of the joint
with the average estimated radius being 0.33m for Pull-
Linear (13.2% relative error) and 0.357m for Pull-Radial-
Force (6% relative error). The radius of the cabinet door,
measured by hand, is 0.38m. The error and the standard
deviation of the estimated radius for Door 2 (which opens
to the left) are quite high. This is because the end effector
tended to slip off the handle, resulting in the termination
of the CEP trajectory. As a result, the trajectory from
forward kinematics was not indicative of the kinematics of
the mechanism.

The average of the maximum interaction force is higher
for Pull-Linear as compared to Pull-Radial-Force. This is
expected since Pull-Radial-Force actively adjusts the CEP
via a bang-bang controller to keep F̂rad, the component of
the force along the radial direction, at 5N. In this work, the
mobile base is stationary while the robot manipulates the
mechanism. Due to this, and the workspace limits of the
robot arm, the position of the robot relative to the mechanism
had a significant impact on the angle through which the robot
opened a door, and the distance through which it pulled a
drawer. The effect of base position on the extent to which
the robot opened a mechanism is shown in Figure 9.

The performance of the two controllers was similar for
the prismatic joint. Scaling the stiffness and damping to 0.8,
1.0, and 1.2 did not result in a significant change in the task
performance.

VIII. TESTING ONE CONTROLLER ON 12 MECHANISMS

For this experiment, we used the Pull-Radial-Force con-
troller on 12 different mechanisms: four drawers, five doors
that open to the right, and three doors that open to the
left. We selected the position of the robot relative to the
mechanism that resulted in the maximum opening angle for



TABLE I
COMPARISON OF THE TWO PULLING CONTROLLERS.

Mechanism Pull-Linear Pull-Radial-Force
Avg max force 20.5N 9.0N
Std max force 4.9N 1.8N

Door 1 Max angle opened 41.6◦ 79.0◦
(Opens right) Avg angle opened 32.8◦ 47.2◦

Std angle opened 4.8◦ 16.4◦
Avg estimated radius 0.331m 0.357m
Std estimate radius 0.028m 0.018m
Avg max force 9.5N 7.6N
Std max force 4.0N 3.0N

Door 2 Max angle opened 43.4◦ 42.0◦
(Opens left) Avg angle opened 31.2◦ 30.6◦

Std angle opened 7.4◦ 4.2◦
Avg estimated radius 0.680m 0.600m
Std estimate radius 0.397m 0.322m

Drawer

Avg max force 15.8N 14.1N
Std max force 2.3N 1.4N
Max distance opened 0.290m 0.340m
Avg distance opened 0.223m 0.243m
Std distance opened 0.051m 0.056m

the rotary joints in the experiments of Section VII-A (see
Figure 9), and we set α = 1.0.

Table II presents the performance of the robot on each
mechanism and Figure 10 shows the robot after it has
operated each of the 12 mechanisms. The order of the
mechanisms in Table II and Figure 10 is consistent. The
image of the drawer without the robot is the only mechanism
that the robot failed to open. While attempting to pull
open this drawer, the hook slipped off before the drawer
opened. This drawer initially requires a very large force to
open (> 50N ), which implies that h[t] should apply higher
forces to keep the hook on the handle. The robot correctly
distinguished between prismatic and rotary joints and the
direction of rotation in the remaining 11 trials.

Figure 11 shows the relative error for each of the eight
rotary mechanisms. There were larger errors in the mech-
anism kinematics estimation when the robot operated the
mechanisms through smaller angles (such as Right Door 4),
or if the hook slid along the handle (such as Right Door 5
and Left Door 1). In our experiments, small opening angles
occurred either on doors that opened to the left or on doors
with large radii. Currently, the robot only uses its right arm
and keeps its mobile base stationary. As a result, it can open
doors that open to the left and doors with large radii through
a smaller angle as compared to doors that open to the right.

The robot estimated the radius of the rotary joints with an
average relative error of 16.3%. This average error ignores a
misestimation of the radius for the cabinet shown in Figure
11. This unusual cabinet has its handle horizontally oriented
on top, which gives a lot of room for the hook to slide
along the handle in the XY plane. When opening the cabinet,
the hook slid along the handle, which our current methods
for kinematic estimation do not accommodate. Consequently,
although the robot correctly categorized the door as being a
rotary joint that opens to the right, the robot misestimated
the radius as being 89cm, while hand measurement reported

TABLE II
PERFORMANCE OF PULL-RADIAL-FORCE ON 12 MECHANISMS.

Mechanism Angle/Distance Estimated Measured
pulled Radius Radius

Right Door 1 39.0◦ 0.51m 0.57m
Right Door 2 84.6◦ 0.30m 0.34m
Right Door 3 84.4◦ 0.37m 0.40m
Right Door 4 20.0◦ 0.67m 0.80m
Right Door 5 50.0◦ 0.89m 0.17m-0.44m
Left Door 1 54.1◦ 0.42m 0.17m-0.44m
Left Door 2 30.0◦ 0.60m 0.57m
Left Door 3 38.1◦ 0.54m 0.41m
Drawer 1 0.3m 45.63m N/A
Drawer 2 Failed Failed N/A
Drawer 3 0.3m 9.69m N/A
Drawer 4 0.3m 7.34m N/A

Fig. 11. Left: Relative error in the radius estimation for the eight rotary
mechanisms. Right: A wide horizontal handle, coupled with rotary motion
in the XY plane resulted in the hook slipping along the handle as the robot
opened this cabinet. As a result, the trajectory from forward kinematics was
not informative about the radius of the joint and the location of its axes.

it to be between 17cm and 44cm.

IX. DISCUSSION AND CONCLUSION

Our results indicate that manipulation with low mechanical
impedance and equilibrium point control can enable a robot
to open a number of different novel doors and drawers. Even
with a simple linear trajectory, the robot was able to operate
the mechanisms and make inferences about them, so we
would expect for a variety of equilibrium point controllers
to succeed. Furthermore, we believe that this work provides
additional support for our conjecture that manipulation with
low mechanical impedance and equilibrium point control is
sufficient for a broad set of real-world tasks.

At the same time, the Pull-Radial-Force controller pro-
vides an example of how a more sophisticated equilibrium
point controller can improve performance. In our tests, it was
superior to Pull-Linear, both in terms of the greater extent to
which the mechanisms were opened and the lower resultant
forces measured at the end effector. Further exploration of
the space of possible controllers seems warranted. More
generally, efforts to compare the performance of equilib-
rium point control with more common forms of force and
impedance control could help elucidate the advantages and
disadvantages of these related approaches.

The success of our methods and the accompanying kine-
matic inference also suggests that the use of simple compliant
trajectories could be valuable for haptically exploring and
learning about the world. We would expect this type of
approach to be complementary to recent work on kinematic
inference using other sensory modalities [27], [28].



Fig. 10. Images showing the robot after it has operated 11 mechanisms with the Pull-Radial-Force controller. The image of the drawer without the robot
is the mechanism for which the hook slipped off before the drawer opened. The order of the mechanisms matches the results presented in Table II

X. SUPPLEMENTARY MATERIAL

Supplementary material including the Python code, video
and a CAD model of the hook is available at:
www.hsi.gatech.edu/hrl/epc-humanoids09.shtml
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