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Abstract— We present a novel method for designing con-
trollers for robots with variable impedance actuators. We take
an imitation learning approach, whereby we learn impedance
modulation strategies from observations of behaviour (for
example, that of humans) and transfer these to a robotic
plant with very different actuators and dynamics. In contrast
to previous approaches where impedance characteristics are
directly imitated, our method uses task performance as the
metric of imitation, ensuring that the learnt controllers are
directly optimised for the hardware of the imitator. As a
key ingredient, we use apprenticeship learning to model the
optimisation criteria underlying observed behaviour, in order to
frame a correspondent optimal control problem for the imitator.
We then apply local optimal feedback control techniques to
find an appropriate impedance modulation strategy under the
imitator’s dynamics. We test our approach on systems of
varying complexity, including a novel, antagonistic series elastic
actuator and a biologically realistic two-joint, six-muscle model
of the human arm.

I. INTRODUCTION

In recent years, variable impedance actuation has become

increasingly popular in the design and control of novel

robotic mechanisms [10], [4]. Variable impedance actuators

(VIAs) (Fig. 8) promise many benefits for the next generation

of robots, including (i) increased safety in settings where

there is human-robot interaction, (ii) increased dynamic

range (e.g., when throwing, energy may be stored in spring-

like VIAs, before being released explosively for the throw)

and (iii) increased energy efficiency when interacting with

the environment. However, despite these benefits, there are

still a number of challenges associated with deploying such

actuators to the current generation of robots. One major

problem is that of how to control such mechanisms, and in

particular, how to best utilise variable impedance so that the

benefits (such as compliance) are realised, while compromise

on other aspects of performance (such as precision) is

avoided.

A promising approach to finding appropriate impedance

control strategies on robots is to take examples from human

behaviour and attempt to mimic it. The human musculoskele-

tal system, actuated by antagonistic muscles with inherent

visco-elastic properties [7], represents one of the best exam-

ples of a system controlled with variable impedance actua-

tion. A large body of research studying human impedance

modulation exists in the biological literature and, as such,

may be a rich source of inspiration for designing controllers

for robots [6]. However, the difficulty with this is that hu-

man impedance strategies are highly adapted to the specific
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properties of the human body and may not transfer directly to

those of robotic plants. For example, it is well-known that the

human musculoskeletal system suffers from signal-dependant

noise (SDN), that is, noise in the kinematics of movement

in direct proportion to the control signal [5]. To counter the

effects of SDN, humans adapt their impedance in different

ways, depending on the task, e.g., in tasks requiring high

precision, humans tend to increase stiffness by co-contracting

[3]. However, most robotic systems do not suffer from such

noise characteristics (e.g., noise is more commonly constant,

additive and much smaller in magnitude) so direct transfer

of the human impedance strategy may be inappropriate:

maintaining the same level of stiffness on a less noisy

robot would waste energy and reduce compliance without

significantly improving accuracy.

To overcome problems such as these, in this paper, we

suggest a novel approach to the problem of transferring

impedance control strategies across plants with heteroge-

neous dynamics and actuation. Specifically, we employ an

apprenticeship learning (AL) approach [11], [1], whereby we

use recordings of optimal behaviour of a VIA system (such

as a human), and seek optimisation criteria which, under

that system’s dynamics, can reproduce the behaviour. Having

extracted these criteria in the form of a cost function, we then

apply local optimal feedback control (OFC) techniques [12]

to transfer the essential characteristics of the behaviour, to a

new system with a very different dynamics and actuation. In

our experiments, we assess the effectiveness of our approach

for transferring behaviours across plants despite significant

differences in their embodiment.

II. PROBLEM DEFINITION

Our aim is to transfer optimal impedance control strategies

from an expert demonstrator (e) to an apprentice learner

(l) given that the expert and learner have a very different

embodiment1, both in terms of their dynamics and actuation.

Specifically, we assume the expert has state ex ∈ R
n,

controls movement with commands eu ∈ R
m, and has

dynamics
eẋ = ef(ex, eu) ∈ R

n. (1)

Note that the effect of the commands eu on the dynamics

(i.e. the form of ef(·)) depends on the actuation mechanism

of the expert. In particular, we can rewrite (1) as

eẋ = eg(ex, eτ ) ∈ R
n

1In principle, our method avoids making any assumption on the extent to
which the expert and learner plants may differ. However, in order to make
a meaningful comparison between their respective behaviours, we assume
that there is a sufficient overlap in their capabilities, that they may both
achieve similar success at a given task.
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Fig. 1. Correspondence problem between human and robotic actuation
systems. Left: Humans use muscle activations (e.g., utriceps and ubiceps)
to control movement. Right: Robotic systems are controlled with command
signals to the different motors (e.g., umotor1 and umotor2). The torque
generated by those motors depends on the actuators used.

where e
τ = e

τ (ex, eu) is the (in general, state-dependent)

relationship between the expert’s command signal eu and the

torques applied by the expert’s actuators.

Our goal is to transfer behaviour to a learner with a

different embodiment, both in terms of the dynamics and

actuation. For example, we may wish to take control strate-

gies measured from the human arm (actuated by antagonistic

muscles) and apply them to a robotic manipulator (actuated

by VIAs). We denote the learner’s state as lx ∈ R
p,

command signal lu ∈ R
q and dynamics

lẋ = lf(lx, lu) = lg(lx, lτ ) ∈ R
p (2)

where l
τ = l

τ (lx, lu) denotes the torques produced by the

learner’s actuators. Note that, in general, the state and action

space (ex, eu and lx, lu) may differ significantly between

the two plants (for example, for a human expert eu may

correspond to muscle activations whereas for a robot learner
lu may correspond to desired position of a servo-motor).

In addition, lf(·) and ef(·) may also differ, both in terms

of the parameter values (e.g., inertia, link lengths, joint axis

positions and orientations), and the way in which they enter

the dynamics equations.

A. Correspondence Problem

Clearly, these differences in embodiment cause difficulties

when attempting to transfer behaviour and this correspon-

dence problem is particularly severe in the dynamics domain

with differences in actuation. As an example, consider the

problem of transferring the control strategy used by a human

to perform some task (e.g., punching a target) to a robotic

imitator, as illustrated in Fig. 1. Imagine that we are given

a set of recordings of the behaviour (e.g, in the form of

muscle activation profiles) and we wish to use this data to

reproduce the movement on a robotic system. Depending on

the hardware, there are a number of approaches we may take.

Firstly, if there is a close correspondence between the

robot and the human, simplest approach would be to attempt

to directly imitate the behaviour, i.e., define eu ≈ lu. This

may be possible in special cases where the dynamics and

actuation of the robot are especially similar to that of the

human, for instance, if the robot is actuated with artificial

muscles (e.g., McKibben muscles [8]), it may be possible to

directly feed the recorded muscle activations as a command

signal to the robot actuators. Evidently, this approach has

the benefit of simplicity but its applicability is very limited

since such direct correspondence between demonstrator and

imitator is rare.

A second, and by far more common approach, is to do

feature-based imitation of the observed behaviour. The basis

of this approach is to define correspondence between salient

features of the demonstrated behaviour
eψ(ex(t), eu(t))

and certain ‘equivalent’ features of the robot’s behaviour
lψ(lx, lu) [2]. For example, in the example in Fig. 1, these

features might include the stiffness and damping profiles of

the human arm that occur during movement. By drawing an

equivalence between these and the impedance of the robot,

the feature-based approach imitates behaviour by matching

those features as closely as possible during the movement.

The downside of this approach, however, is that it does

not take into account the way in which the features affect

task performance under the dynamics of different plants. For

example, in a point-to-point reaching task, the impedance

profile of the human may be relatively high toward the end

of the movement to ensure that the target is hit accurately

(i.e., to counter the effects of SDN). Naturally, this comes

at the cost of increased energy expenditure, since the human

must co-contract to achieve this. However, for a (less noisy)

robotic imitator, this may not be optimal, since the robot

may be fairly accurate (compared to the human) even at

relatively low impedance. As such, a better strategy for the

robot might be to keep the impedance at a steady, low level

throughout the movement, thereby avoiding unnecessary

energy consumption, but still achieving the task to the desired

level of accuracy.

B. Apprenticeship Learning for Task-based Imitation

To avoid these problems, in this paper we take a different

approach, in which the goal is to imitate the objectives of

the movement, rather than mimicking specific features. Our

approach is based on apprenticeship learning [11], [1], where

the aim is to model the demonstrated behaviour indirectly

in the form of an objective function with respect to which,

the behaviour can be described as optimal. Representing the

behaviour in this way, we can then seek equivalent task goals

for the imitator by defining correspondence at the level of the

objective function that defines the task. Furthermore, having

learnt these objectives, we can then optimise the imitated

behaviour in a way that also takes into account the imitator’s

dynamics.

Specifically, we assume that we are given a set of demon-

strations D of an expert performing a task, in the form of

trajectories through the state-action space of the demonstra-

tor, ex, eu of duration2 T . We assume that these trajectories

can be described as optimal with respect to some (unknown)

objective function

eJ = eh(ex(T )) +

∫ T

0

el(ex, eu, t) dt (3)

where eh(·), el(·) ∈ R are cost functions defined on the state-

action space of the demonstrator. For example, el(ex, eu, t)
may describe the instantaneous work done by the demonstra-

tor’s actuators (e.g., the energy consumed by human muscles

at a given activation). Note that here, since the optimality of

2For simplicity, through the paper we assume finite length trajectories of
equal length. However, as discussed in [1], AL techniques are also readily
extended to infinite horizon tasks.
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the trajectories D depends on the demonstrator’s dynamics
ef(·), the recorded trajectories will not, in general, be optimal

under the dynamics of a different (learner) system
l
f(·),

i.e., {ex̄, eū | ef(·)} 6= {lx̄, lū | lf(·)}. In other words, direct

imitation on the learner plant is, in general, suboptimal when

considering the imitator’s dynamics.

Instead, we propose to imitate behaviour based on cor-

respondence in the objective functions between expert and

learner. The key to our approach is to define an equivalent

objective function

lJ = lh(lx(T )) +

∫ T

0

ll(lx, lu, t) dt (4)

defined on the learner’s state-action space, where the terms
lh(·), ll(·) ∈ R define cost terms with a meaningful corre-

spondence to those of the expert eh(·), el(·). For example,

if the term el(ex, eu, t) of a human demonstrator represents

the energy consumption of the muscles, one might define
ll(lx, lu, t) as the power consumed by the motors of a robotic

manipulator. The goal of imitation then, is to find the optimal

behaviour for the learner {lx̄, lū} under the dynamics lf(·)
with respect to the equivalent objective function (4).

Note that, similar to feature-based approaches to imitation,

the ease with which we can define correspondent cost

functions (3)-(4) will depend on the specific embodiments

of the two plants. For example, cost terms dependent on

features such as end-effector position may be defined as

exactly correspondent, whereas terms dependent on other

properties such as the applied torque or impedance may

require more complex definitions. However, a major benefit

of our approach is that, often it is much easier to define

correspondence at the level of the task, rather than at the

detailed control level of the plants. For instance, when

imitating human behaviour (Fig. 1), the selection of which

dynamics characteristics to match (e.g., impedance profiles,

torques etc.) in a feature-based imitation approach will

depend critically on the effect those have on the dynamics

of the two plants. In contrast, with task-based imitation,

we only need to specify the salient features (e.g., target

accuracy, energy consumption) and the low-level details of

the behaviour will automatically be handled by optimal

control. In the next section we turn to the implementation

details of our approach.

III. METHOD

A schematic overview of the proposed approach is illustrated

in Fig. 2, showing the processing steps, and the inputs

required at each stage. Reading from the top left, we first

collect demonstrations from an expert (e.g., a human) per-

forming some task. This is fed into a module for appren-

ticeship learning along with information about the expert’s

dynamics. Based on this information, a parametric model of

the expert’s cost function is learnt with parameters ŵ.

The output of this module is then fed to a second module

for optimal feedback control. This takes the learnt parameters

and applies them to a correspondent cost function model.

The OFC module finds the optimal control strategy for the

imitator, with respect to this learnt cost function, using a

model of the imitator dynamics. The resultant controller is

finally sent to the robot for execution. In the following we
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Fig. 2. Schematic of our task-based imitation framework for behaviour
transfer.

briefly describe the details of the AL and OFC components.

A. Multiplicative Weights Apprenticeship Learning

For the AL component, we use an approach called Multi-

plicative Weights Apprenticeship Learning (MWAL) recently

proposed in [11]. The algorithm is based on principles of

adversarial game theory, and as such has been shown to be a

robust method for AL. Furthermore, due to its efficiency it is

well suited for learning in the robotics domain, where state-

action spaces are typically high-dimensional and continuous.

The method works on data that is given as a set of K

trajectories D =
{

(exk
0 ,

euk
0), · · · , (

exk
T ,

euk
T )

}K

k=0
of states

ex and actions eu recorded from the demonstrator with

dynamics (1). These are assumed to be optimal with respect

to a cost function of the form

eJ =

nT
∑

i=1

wi
ehi(

ex(T )) +

∫ T

0

N
∑

i=nT

wi
eli(

ex, eu, t) dt (5)

with unknown weights wi (with wi > 0 ∀ i and
∑

iwi = 1).

Here ehi(·),
eli(·) ∈ R are a set of (known) basis functions:

these may be made up of a set of bases for a generic function

approximator (e.g., Gaussian radial basis functions), or a set

of salient features of the task (e.g., energy or accuracy costs).

The idea behind MWAL is that the weights wi specifying

the importance of the different components of the objective

function (5) can be determined efficiently by comparing the

expected value of the observed behaviour D with that of a

second set of trajectories mD that are optimal with respect

to an estimate of (5) with weights ŵi. Specifically, since the

cost bases
ehi(·),

eli(·) are assumed known, we can estimate

the value of the trajectories in D and mD, with respect to

each of the bases separately. That is, for the ith basis function

ṽi =
1

K

K
∑

k=0

∫ T

0

eli(
exk(t),

euk(t), t) dt (6)

if it is a running cost and

ṽi =
1

K

K
∑

k=0

ehi(
exk(T )) (7)

if it is a terminal cost. We can then compare the difference

in these value estimates to adjust the weights ŵi, by scaling

up those for which the value of the expert trajectories is

lower (indicating a stronger preference to minimise these

components of the cost), and scaling down those for which

the values are higher (indicating the opposite). In successive

iterations, MWAL alternates between solving the forward

optimal control problem under the current estimate of ŵ to

find trajectories mD, and then updating the estimate based on

the difference in estimated values eṽ = (ṽ1, . . . , ṽN )D and
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Algorithm 1 MWAL (modified from [11])

1: Given ex, eu, ef , eli=1···N , D
2: Estimate eṽ = (ṽ1, . . . , ṽN ) from expert trajectories D

for all i. Normalise:
e
v̂ = eṽ/‖eṽ‖.

3: Let β =

(

1 +
√

2 log k

M

)

−1

.

4: Initialise mŵi =
1
k

for all i
5: for m = 1, . . . ,M do

6: • Find trajectories mD that optimise J =
∑N

i=1
mŵi

eJi under dynamics eẋ = ef(ex, eu)
7: • Estimate

m
v̂i from trajectories mD for all i

8: • Let m+1ŵi =
mŵiβ

−α(ev̂i−
mv̂i)

9: • Re-normalise ŵ
10: end for

11: Return ŵ

mṽ = (ṽ1, . . . , ṽN )mD . This proceeds until convergence to a

set of weights that, when optimised, reproduces the demon-

strated behaviour D. MWAL is summarised in Algorithm 1,

and full details can be found in [11]). Please note that, for

our implementation, we made two adjustments to the basic

approach described there. These were (i) introduction of a

learning rate parameter, α to adjust the speed of learning, and

(ii) normalisation of the vectors
e
v̂ = eṽ/‖eṽ‖. and

m
v̂ =

mṽ/‖mṽ‖. We found that the latter improved the robustness

of learning especially for the high-dimensional, continuous

systems considered in our experiments. Furthermore, for the

forward optimisation step (Step 6 of Algorithm 1) we use the

ILQG algorithm [12], details of which are described below.

B. Task-based Behaviour Transfer

Having completed the AL stage to find a model of the

demonstrator’s objectives, our next task is to find an appro-

priate behaviour for the imitator. For this, we use local OFC

to optimise an equivalent cost function to that used by the

demonstrator. Specifically, we parametrise the learner’s cost

function as a similar weighted combination of terms

lJ =

nT
∑

i=1

ŵi
lli(

lx(T )) +

∫ T

0

N
∑

i=nT

ŵi
lli(

lx, lu, t) dt. (8)

Here,
lhi(·),

lli(·) ∈ R are a set of basis functions that

correspond to those of the expert (5), and ŵi are the weights

learnt by MWAL in the previous step. At this point a design

decision must be made as to the appropriate correspondence

between the learner’s cost bases lhi(·),
lli(·) and those of

the expert ehi(·),
eli(·). In general, this will depend on the

specific embodiments (dynamics and actuators) of the two

plants. However, as noted in Sec. II-B in practical settings

this is relatively easily resolved (and at worst, is no more

difficult than specifying features eψ(·), lψ(·) for feature-

based imitation). For example, different terms might include

work done by the two plants, or accuracy (e.g., in terms of the

end-effector positions of the two plants). Further examples

are given in the experiments (Sec. IV).

Having defined correspondence in terms of these bases,

and given the learnt weights ŵ, all that remains is to solve

the optimal control problem defined by (8) and (2). Here,

since we are interested in high-dimensional, continuous robot

control problems, our method of choice is local OFC. In the

next section we briefly describe the details.

C. Local Optimal Feedback Control with ILQG

In our framework, solving the forward optimal control

problem enters at two points. First, in the MWAL stage,

the optimal trajectories mD with respect to the estimated

cost function are sought at every iteration for updating the

weights. Second, as discussed above, given the learnt cost

function we seek the optimal movement for the imitator

plant. In both cases we need a technique that (i) can cope

with high-dimensional, non-linear systems and (ii) has high

efficiency (since it is called multiple times during MWAL).

For these reasons, our algorithm of choice is the iterative

local quadratic Gaussian (ILQG) algorithm [12]. The latter

is an efficient, approximate solver of optimal control prob-

lems, based on their local approximation as linear-quadratic-

Gaussian and iterative improvement of solutions around a

nominal trajectory.

Briefly, the ILQG algorithm starts with a time-discretised

initial guess of a control sequence ūj of length T . At

each iteration j this is used to find the corresponding state

sequence x̄j under the deterministic forward dynamics f(·)
via Euler integration. Next, the dynamics are linearly approx-

imated with a Taylor expansion, and, similarly, a quadratic

approximation of the cost function around x̄
j
t and ū

j
t is

made. Both approximations are formulated as deviations

δxj
t = x

j
t−x̄

j
t and δuj

t = u
j
t−ū

j
t from the current trajectory

and therefore form a ‘local’ LQG problem. The latter can be

solved efficiently via a modified Ricatti-like set of equations.

With the solution to these equations, we find a correction

to the control signal δūj which is used to improve the control

sequence for the next iteration: ūj+1(t) = ūj(t) + δūj .

Finally, ūj+1(t) is applied to the system dynamics and

the new total cost along the trajectory is computed. The

algorithm stops once the cost ceases to decrease significantly.

After convergence, ILQG returns a control sequence ū, gains

L̄ and a state sequence x̄ which represents the optimal

trajectory. In our framework, these trajectories are then either

collected as sample data for Step 6 of the MWAL algorithm,

or used for optimal control of the imitator plant, using the

gains to provide local optimal feedback control.

IV. EXPERIMENTS

In this section, we evaluate our task-based imitation ap-

proach in three impedance control scenarios. In the first

two experiments, we conduct simulation studies into be-

haviour transfer from (i) 1-link and (ii) 2-link systems

with antagonistic actuation, to VIA systems with decoupled

control of impedance. We then report experiments in learning

from human demonstrations for behaviour transfer to the

Edinburgh series elastic actuator (SEA) [9].

A. Impedance Modulation on a Single Joint

In our first experiment, we investigate behaviour transfer

from a 1-link system with an antagonistic VIA to another,

similar system with simpler MACCEPA-like actuation [4].

The purpose of this experiment is to evaluate our approach
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Fig. 3. MACCEPA VIA [4] and simplified dynamics model (image taken
from http://mech.vub.ac.be/multibody/topics/maccepa.htm).

on a relatively small system where the ground truth is known,

before scaling up to more complex problems.

As the antagonistic plant, in this experiment we used

a simulation of the Edinburgh SEA (Fig. 8). While full

details about this actuator can be found in [9], here we

briefly discuss the salient features. Inspired by human an-

tagonistic muscles, the Edinburgh SEA uses two motors,

connected to a pair of springs to adjust equilibrium position

and stiffness (and therefore torque) around the joint. The

adjustments in stiffness are achieved by ‘co-contraction’,

that is, simultaneous tensioning of the springs. Specifically,

the joint is controlled by commanding target angles for the

motors eu = (α, β) ∈ R
2 where α, β are the angles shown in

Fig. 8(b). Under the assumption that the motors are infinitely

stiff, the torque τ around the joint is given by

τ(q,u) = ẑT ((F2 − F1)× a) (9)

where a = (a cos q, a sin q, 0)T , ẑ is the unit vector along

the joint rotation axis and F1,F2 are the forces acting along

the springs:

F1 = κ(s1 − s0)
s1

s1
and F2 = κ(s2 − s0)

s2

s2
(10)

(ref. Fig. 8(b)). Here, s0 is the rest length of the springs, κ is

the spring constant, s1 = s1(α, q) and s2 = s2(β, q) are the

vectors CA, and DB respectively (see Fig. 8(b)), and s1 and

s2 their respective lengths. Note that, there is a non-linear

relationship between the latter and the commanded servomo-

tor positions (see [9] for details). Finally, we represent the

state of the joint as ex = (q, q̇) ∈ R
2, i.e., the instantaneous

joint angle and velocity.

To generate examples of optimal behaviour for this plant,

ILQG was used to plan trajectories for a ‘ball hitting’ task.

Specifically, a set of trajectories minimising the objective

eJ = w1(q(T )− q∗)2 − w2q̇(T ) +

∫ T

0

w3τ
2 dt (11)

were planned and executed, where q∗ = 30◦ is the target

angle and τ is the torque applied around the joint. The

weighting of the three terms of (11) respectively correspond

to (i) minimising the distance to the target (ball) at the time

of impact T , (ii) maximising the angular velocity at T , and

(iii) minimising energy consumption during the movement.

The trade-off between these objectives is determined by the

weights wi.

We collected K = 30 such trajectories from random start

states as training data, and used MWAL to estimate the

weights ŵ. To assess learning performance, we repeated this

on 50 such data sets and measured the error in the estimate

during learning. The latter was measured by the l2-norm

difference in the true and estimated weights, i.e.

Ew[w, ŵ] = ‖w− ŵ‖2. (12)
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Fig. 4. Results for the 1-link experiment. Shown are (a) error in weights
against MWAL iteration m (mean±s.d. over 50 trials), (b) optimal command
sequence u for the Edinburgh SEA (thin black) and the MACCEPA-like
joint (thick red), (c) time profile of the actual (solid) and equilibrium position
(dashed lines), stiffness, resultant torque and velocity over time for the two
plants.

Fig. 4(a) shows the weight error Ew over 10 iterations of

the MWAL algorithm with a relatively high learning rate

(α = 50). As can be seen, there was rapid convergence to a

low error, with final error 0.0941± 0.0247.

We then investigated the transfer of this behaviour to a

second, similar plant, but a different actuation. For this,

we selected an actuator where the stiffness and equilibrium

position can be directly controlled, similar to the MACCEPA

joint [4] (see Fig. 3). More specifically, the second plant had

command vector lu = (q0, k)
T ∈ R

2 (where q0 denotes

equilibrium position and k the stiffness) in order to control

the applied torque

τ(q,u) = −k(q0 − q). (13)

For ease of comparison, all other dynamics parameters (e.g.

link length, inertia etc.) were kept identical to those of the

first plant. Note that, for the two plants under consideration,

correspondence in the first two terms of (11) is exact (since

the joints dynamics are identical), but there is a difference

in the functional form of the third term, due to the different

relationships between u and τ . Using the weights learnt with

MWAL, we applied ILQG to find optimal movements for this

plant and compared the results (see Fig. 4).

The first thing that we notice is that at the level of

the commands (Fig. 4(b)), very different strategies appear

to be optimal for the two plants. This reinforces the fact

that, considering the differences in actuation, direct imitation

here is inappropriate. However, looking at Fig. 4(c), we see

that at the behavioural level, there is similarity in several

features of the movement (e.g. the strategy of swinging the

equilibrium position away from the current actual position

to build up energy in the system - see Fig. 4(c), top). The

correspondence is not exact due to the plants’ mechanical

102



Fig. 5. Left: Two-link, six-muscle human arm model; Right: robotic
manipulator with active stiffness control.

differences (e.g., coupling in the Edinburgh SEA prevents

some stiffness values being reached for a given joint angle)

but there is clear qualitative similarity.

To quantitatively assess this, we evaluated the cost accord-

ing to the true weights w for K = 30 trajectories (i) from

the expert (ii) planned by our task-based imitation approach

and (iii) generated by feeding the equilibrium position and

stiffness profiles of the expert trajectories directly as com-

mand sequences for the imitator (i.e., a naive, feature-based

imitation approach where we set lu(t) = (eq0(t),
ek(t)) for

each trajectory). As a result we found that the average cost

of the expert’s trajectories was −1.337±0.058, compared to

−1.507± 0.133 for the naive approach and −2.508± 0.787
with our AL approach. By taking the proposed approach

then, we can potentially find trajectories that far surpass those

of the naive approach in terms of task performance measured

by the expert’s objective function.

B. Impedance Modulation on a Two-joint Human Arm Model

To test scalability, in our second experiment we assess our

method for transferring behaviour between more complex

systems with much higher dimensionality. For this, we aim

to transfer control strategies from a biologically realistic

simulation of the human arm [7] to that of a 2-link robotic

manipulator with active stiffness control, as shown in Fig. 5.

While details of the human arm simulation are described in

[7], we briefly discuss the salient properties. The human arm

is modelled as a two-joint planar rigid body system, actuated

by two pairs of monarticular and one pair of biarticular

antagonistic muscles. The dynamic parameters of the arm are

based on human measurements, including values for muscle

stiffness and viscosity. The arm is controlled by specifying

muscle activations, i.e., eu ∈ R
6, and its state is represented

as ex = (q, q̇)T ∈ R
4 where q ∈ R

2 and q̇ ∈ R
2 denote

joint angular position and velocities. For a given muscle

activation u the applied torques are given by

τ(q, q̇,u) = −ATT(l, l̇,u), (14)

where A is the moment arm, and muscle lengths and

velocities follow the affine relationship l = lm − Aq and

l̇ = −Aq̇. The muscle tension

T(l, l̇,u) = K(u)
(

lr(u)− l
)

−B(u)l̇. (15)

depends on the muscle stiffness K(u) = diag(k0 + gku),
viscosity B(u) = diag(b0 + gbu) and rest lengths lr(u) =
l0 + gru. The elasticity coefficient gk, the viscosity coef-

ficient gb, and the constant gr are given from the muscle

model. The same holds true for k0, b0, and l0, which are
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(b) Joint torques against time.

Fig. 6. Example trajectory for the ‘punching’ task for the two joint plant
when actuated with antagonistic muscles (light red), and direct stiffness
control with the MWAL (thin black) and naive (thick green) controllers.

the intrinsic elasticity, viscosity and rest length for u = 0,

respectively.

For ease of comparison with the 1-link analysis, in this

experiment we chose to investigate behaviour transfer for the

similar, but more complex task of ‘punching’. For this, as a

ground truth, trajectories were collected from the demonstra-

tor that minimised the objective

eJ = w1‖r(T )− r∗‖22 − w2ṙx(T ) +

∫ T

0

w3‖τ‖
2
2 dt (16)

where r = (rx, ry)
T ∈ R

2 is end-effector position, r∗ =
(.2, .45)Tm ∈ R

2 is the position of a target in Cartesian

space and ṙx is the end-effector velocity in the x (left lateral)

direction. The three terms of (16) respectively correspond

to (i) minimising the distance of the end-effector to the

punching target at the time of impact T (i.e., accuracy), (ii)

maximising the velocity of the end-effector at impact, and

(iii) minimising energy consumption during the movement.

The trade-off between these objectives is determined by the

weights w1, w2, and w3. K = 10 such trajectories from

random initial joint configurations were collected under the

arm dynamics. These were then used as training data for

MWAL to estimate the weights ŵ.

We then transferred the behaviour to a simulated robot

with identical kinematics and dynamics, but with different

actuation. Specifically, the robot used active stiffness control

where the command vector is lu = (q0,k)
T ∈ R

6, where

q0 ∈ R
2 corresponds to the equilibrium position of the two

joints and k = (K11,K12,K21,K22)
T ∈ R

4 where Kij

denote the i, jth elements of the joint stiffness matrix K ∈
R

2×2 and the applied torques goes as

τ = −K(q0 − q)−Bq̇ (17)

where B = .06I is a fixed damping matrix. As before,

we assessed performance (i) in terms of the accuracy with
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Fig. 8. Edinburgh SEA hardware and rigid body dynamics model.

which the cost function was learnt, and (ii) in terms of task

performance as measured by the expert’s objective function.

We evaluated this for 20 trials on different data sets.

Our results are as follows. First, looking at the learnt

weights, we found that the average error attained by MWAL

was 0.1682± 0.0151. Considering the increased complexity

and higher dimensionality of the learning problem, we regard

this as good performance. Second, evaluating the task perfor-

mance, we found that over K = 10 trajectories, the average

cost of the expert’s trajectories was −0.186± 0.035, that of

the AL approach was −0.296± 0.013 and that of the naive,

feature-based approach (i.e., directly feeding the expert’s

stiffness and equilibrium positions as robot commands lu(t))
was 0.122 ± 0.121. The reason for the poor performance

of the latter can be seen when plotting out an example

trajectory. In Fig. 6 we show the end-effector positions and

velocities (Fig. 6(a)) and joint torques (Fig. 6(b)). We see that

due to the lower, fixed damping of the robotic plant, the naive

feature-based imitation strategy produces highly unstable

trajectories, with high cost in terms of the integrated torque

(shaded area). On the other hand, by planning appropriate

movements for the robot using the AL approach we get

smooth trajectories that closely match those of the expert.

C. Learning from Human Data

In our final experiment, we applied our approach to learning

from a set of human demonstrations with the goal of trans-

ferring behaviour to the Edinburgh SEA (Fig. 8). For ease of

comparison with the simulation studies, we again chose to

study a task similar to that described in Sec. IV-A, whereby

the demonstrator attempts to hit a target (ball) as hard as

possible while minimising the energy consumed. Our goal is

to learn a model of the human’s objective function in order

to transfer it to the robotic hardware. The experimental setup

is as follows.

For collecting demonstrations, the measurement rig shown

in Fig. 7(a) is used. The rig consists of a hinge joint with a

paddle attached, that is aligned to a ball suspended from a

string. The rig has a handle which the demonstrator grasps to

rotate the joint and hit the ball with the paddle. A magnetic

motion sensor (Flock of Birds, Ascension Tech. Corp.)

is used to measure the angle of the demonstrator’s wrist

(corresponding to the hinge angle) at a 500Hz sampling rate.

Simultaneously, a pair of surface EMG sensors, placed on the

antagonistic muscles of the demonstrator’s forearm measure

the muscle activations of the demonstrator at the same 500Hz

rate. With this setup, we are able to measure trajectories of

the human through state (modelled as ex = (q, q̇) ∈ R
2,

the instantaneous wrist angle and velocity) and action space

(modelled as the muscle activations eu = (a1, a2) ∈ R
2,

measured via EMG).

Using this setup, data was collected from a human at-

tempting to hit the ball (suspended at a point corresponding

to wrist angle q∗ = 34.0◦) as hard as possible with the

paddle, from a series of start positions, given a fixed time

duration in which to complete the movement. Specifically,

3 trajectories were recorded from each of 5 start positions

q = {10, 0,−10,−20,−30}◦, with a fixed duration of 0.2 s.
To reduce the effects of noise and variability in the execution

of the trajectories, the data was preprocessed by (i) smooth-

ing the signals with a Butterworth filter and (ii) temporal

alignment of trajectories around the time of impact with the

ball. The trajectories from each of the start states were then

averaged, and the resultant K = 5 mean trajectories were

then used as training data for the learning.

Since the MWAL algorithm requires a model of the

expert’s forward dynamics, the human wrist dynamics must

be approximated. For this we used a simplified two-muscle,

single joint model (Fig. 7(b)), with the same hill-like muscle

dynamics as described in the preceding section. This yielded

a forward dynamics model of the form

ẋ = f(x,u, t) = ( q̇, τ(q, q̇,u)/I )T (18)

where τ(q, q̇,u) is the applied torque (as calculated from

(14)-(15) for the two-muscle model) and I is the esti-

mated inertia. In order to find the best possible fit to

the dynamics of our demonstrator, the parameters (i.e.,

I,A, lm, l0, k0, b0, gk, gb, gr) of this model were optimised

with respect to the normalised error between the recorded tra-

jectories D = {(exk
0 ,

euk
0), · · · , (

exk
T ,

euk
T )}

K
k=0 and those

predicted by integrating the model under the same command

sequence D̂ = {( ˆex0
k
, euk

0), · · · , ( ˆexT
k
, euk

T )}
K
k=0.

For estimating the human objective, we again modelled the

cost function in the form (11), and sought the best fit to the

weighting coefficients w1, w2, w3 with MWAL. Note that,

in this experiment, as τ cannot be directly measured during

movement, we used the optimised parametric model (18) to

estimate the torques for the third term. We trained the model

on the K = 5 training trajectories, with a high learning rate

of α = 300 for 20 iterations. Note that, in this experiment,

since the true human cost function is unknown we cannot

explicitly calculate the error (12). Instead, convergence was

measured by examining the magnitude of the weight update
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Fig. 9. Comparison of ball-hitting behaviour of (i) the human demonstrator (top row, light red) against (ii) the robot with direct imitation of the command
sequence (bottom row, thick green) and (iii) the robot executing the optimal trajectory with respect to the learnt objective function (bottom row, thin black).
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(i.e., step 8 in Algorithm 1).

Finally, to evaluate our approach, we used ILQG to find

the optimal controller for the Edinburgh SEA with respect to

the cost function (11) using the learnt weights. Specifically,

we compared the behaviour of the robot (i) when controlled

with the local OFC controller found by ILQG under the

learnt cost function and, (ii) the direct imitation approach

(whereby the human EMG signal is directly fed as commands

to the robot) against the human behaviour. Note that, for the

direct approach, the (normalised) EMG data was scaled to

ensure that the maximum recorded EMG signal (over the

entire data set) corresponded to the maximum admissible

angle of the robot motors. Note also that, since the response

of the robot’s servomotors is significantly lower than than

that of the human (in terms of control frequency and other

delays), control of the robot was scaled in time so that

the command sequence had 0.5 s duration for both of the

approaches compared.

The results are shown in Fig. 9 for an example trajectory

starting at q = 0◦). Looking at the joint angle and velocity

profiles (Fig. 9(b)-(c)), we can see that the strategy used by

the human is to first move the wrist away from the target

before rapidly moving it in the positive direction toward the

target. A similar movement occurs on the robot when using

both the direct and the AL approaches. However, comparing

these, we see that for the direct approach, the amplitude

of the movement is smaller and the velocity at the time of

impact is much smaller. In contrast, the proposed approach

optimises the command sequence for the robot dynamics,

resulting in earlier onset time for the movement, and a much

larger movement of the motors (see Fig. 10(a)). This allows it

to achieves a higher hitting velocity (with the ball travelling

a greater distance) when executed on the robotic hardware.

V. CONCLUSION

In conclusion, we have presented a task-based imitation

learning approach for transfer of behaviour across plants

with highly heterogeneous dynamics and actuation. Our

framework is based on a two-step approach to learning,

where in the first step, a parametric model of the objective

function underlying observed behaviour is learnt using an

apprenticeship learning approach. This enables us to find

a task-based representation of the data in terms of the

objectives minimised. Using this model of the behaviour,

and solving the correspondence problem in terms of the

the components of the objective function, we then apply

local optimal feedback control techniques to find a similarly

optimal behaviour for the imitation, taking into account the

differences in actuation. Our experiments show the effective-

ness of this approach, where the proposed approach actually

exploits the dynamics characteristics of the imitator in order

to out-perform standard feature-based imitation approaches,

and even surpass the task-performance of the expert.

In future work we intend to build on our results and apply

our approach to a number of different impedance control

tasks, and achieve task-based imitation on a range of variable

impedance actuator designs.
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