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Static Multi-Contact Inverse Problem for Multiple Humanoid Robo ts
and Manipulated Objects

Karim Bouyarmane and Abderrahmane Kheddar

Abstract— In this paper we solve the static-equilibrium
constrained inverse kinematics problem for a system made of
multiple humanoid robots and manipulated objects given a set
of contacts between any surfaces of the robots, any surfacesof
the manipulated objects, and any surfaces of the environment.
In particular, inter-robots contacts are possible. The contacts
considered here are neither necessarily coplanar, nor necessarily
horizontal, frictional, might be unilateral (support) or bilateral
(grasp). We solve both the geometric variables (configurations)
and the statics variables (contact forces) simultaneously within
one optimization query. In the resulting configurations all the
robots and the manipulated objects are in static equilibrium
under the action of gravity and actuator torques that are
constrained to stay within their bounds. The main focus of
the paper is on the formulation of the problem rather than the
optimization algorithm, as we consider the latter as a black box
that only requires a mathematical model providing algorithms
to compute the values of the objective function, the constraints
functions, and their derivatives. We apply this work to quasi-
static multi-contact legged locomotion planning on irregular
terrain, multi-fingered dexterous manipulation planning, and
collaborative manipulation planning.

I. I NTRODUCTION

Solving the static multi-contact inverse problem is a core
issue in acyclic multi-contact motion planning. Existing
acyclic multi-contact motion planning algorithms [1][2] ex-
plore the workspace environment by growing a stances tree; a
stance being a set of contacts between surfaces of the robot’s
cover and surfaces of the environment. To validate a stance
and add it to the exploration tree, the algorithm needs to
test the feasibility of the stance by finding a configuration
of the robot that realizes the stance. This is what we call
here the stance inverse problem. For a given stanceσ, let us
denoteQ(σ) the solution set of this inverse problem, i.e. the
set of all configurations that geometrically realize the stance.
Q(σ) is a sub-manifold of the configuration space of strictly
lower dimension. Let us denoteF (σ) the subset ofQ(σ)
made of all the configurations that realize the stance while
being in static equilibrium.F (σ) is a closed subset ofQ(σ)
provided with its subspace topology. Forq ∈ F (σ), let us
denoteΛσ(q) the set of all admissible contact forces that
maintain the configuration in static equilibrium. If the stance
is made ofn surface contacts, each surfacei ∈ {1, . . . , n}
being modeled by a polygon withVi vertices, thenΛσ(q) is
a subset ofR3

∑
i
Vi .
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The fundamental problem we would like to solve is to test
the feasibility of a given stanceσ, i.e. to test whether

F (σ) 6= ∅ ? (1)

Then if (1) is true, it would also be convenient to exhibit
one solution, i.e. to solve

find q ∈ F (σ) andλ ∈ Λσ(q). (2)

Last, we would like a more refined version of (2), which
is to minimize a criterion over all the feasible stances
and associated forces, i.e. to solve the following non-linear
constrained optimization problem

min
(q,λ)

obj(q, λ)

subject to

{

q ∈ F (σ)

λ ∈ Λσ(q).

(3)

II. RELATED WORK

A lot of effort has been dedicated to solving inverse
geometric queries on closed kinematic chains in the field of
randomized path planning, e.g. [3][4][5]. Using the notations
introduced in the previous section, these works solve the
query

find a randomq ∈ Q(σ) (4)

with no other constraints, thus without considering static
equilibrium (fixed-base robots). Then, given a particular
q0 ∈ Q(σ), for example as returned by solving the prob-
lem (4), works like [6][7] are concerned with testing the
static equilibrium ofq0, i.e. solving the problem

q0 ∈ F (σ) ? (5)

If the answer to the problem (5) is true, other methods,
e.g. [8], allow to compute optimal contact forces, and thus
solve the following problem

min
λ∈Λσ(q0)

obj(λ). (6)

Sequentially solving problems (4) then (5) then (6) gives a
rejection scheme for solving the problem (2). We propose
here another scheme that does not rely on random config-
uration rejection sampling which might be costly especially
in the case of stances made of low number of contacts
where very few geometrically valid configurations are in
static equilibrium. So we decide to solve problem (2) directly
through the problem (3). Both [1] and [2] have chosen this
approach. Our contributions with regard to these two works
is in the modeling of the conditions that defineF (σ) as we



try to remain as general as possible and avoid any strong
hypotheses that could have allowed us to use approxima-
tions on the static equilibrium constraint, by reducing it
for example to the belonging of the ground projection of
the CoM to the support polygon. We also avoid hypotheses
on the rigidity of the robots as we consider the specified
limits on the actuators torques needed in holding the static
configuration. The Iterative Constraint Enforcement method
proposed in [2] considers torques limits only in a post
processing rejection test once the rigid version of the problem
has been solved. Once again we want to avoid this rejection
scheme and input the torques limits constraint directly into
the initial problem. However, both [1] and [2] consider
collision avoidance constraints while, for the time being,
we do not in this paper. Coming work should incorporate
these collision avoidance constraints [9]. A last and original
contribution of this paper is that it solves the inverse stance
problem for a system made of multiple robots and objects,
which is not the case in any of the previous works.

Note that our problem (2), within its staticplanning
context, is different from its dynamiccontrol counterpart.
Precisely, we are not looking for a feasible trajectory, or a
steering method, that takes us from an initial configuration
and tries to reach specified contact locations. As such,
optimization-based iterative inverse kinematics techniques
that rely on constraints prioritization, e.g. [10][11], are not
necessarily suitable for our particular purpose. Here we are
not trying to satisfy constraints at best following a feasible
trajectory, but rather to know whether a constrained solution
exists or not.

III. PROBLEM FORMULATION

For the notations used in this section we refer the reader
to Fig. 1.

We suppose that we have a system ofN robots and objects
indexed by r ∈ {1, . . . , N}. To this set we append an
additional index0 referring to the environment. This way
we have a coherent and unified description for robot-robot
contacts, robot-environment contacts, robot-object contacts,
and finally object-environment contacts. For convenience we
use the termrobot when talking about either an actual robot,
or a manipulated object, or the environment.

A. Optimization variables

The configuration vector for a robotr ∈ {1, . . . , N} takes
the form

qr = (xr, yr, zr, αr, βr, γr, δr, θr,1, θr,2, . . . , θr,jr ),

which is the concatenation of the Cartesian position of the
root body, the unit quaternion representing the orientation of
the root body, and the vectorθr of the jr joint articulations.
jr 6= 0 for an actual robot andjr = 0 for a rigid object.
For a bodyb of the robotr we denoteOr,b(qr) andRr,b(qr)
respectively the origin’s position and the orientation matrix
of the frameTr,b attached to the bodyb. The bodyb = 0
corresponds to the root body ofr.

pr,v,b

Kr,v,b = 3

r = 1, b = 1, v = 3

r = 1, b = 1

r = 0, b = 1

c1

r = 0

r = 3r = 1

r = 2

σ = {c1, c2, c3, c4, c5, c6}
N = 3, n = 6

r = 1, b = 1,

ur,b,v,k

c1c2

c3 c4

c5

c6

r = 1, b = 1

Vr,b = 4

v = 3, k = 2

Fig. 1: Illustration of the different levels of indices usedin
this paper for an example made of 3 robots (4 including the
environment) and a 6 contacts stance.

Let us now start from a stanceσ made ofn contacts

σ = {c1, . . . , cn}.

Each contactci is defined between the surfaceSri1,bi1 rigidly
attached to the bodybi1 of the robotri1 ∈ {1, . . . , N}, and
the surfaceSri2,bi2 rigidly attached to the bodybi2 of the
robotri2 ∈ {0, . . . , N}. A surfaceSr,b is a convex polygon1

with Vr,b vertices

Sr,b = conv
(

{pr,b,1, . . . , pr,b,Vr,b
}
)

.

For each pointpr,b,v fixed in the local frame of the body
b we denotePr,b,v(qr) its position in the world frame and
P 0
r,b,v(θr) its position in the root frame of the robotr.

At each pointpr,b,v we specify a polyhedral coneCr,b,v

with finite numberKr,b,v of generators that approximate the
friction cone, the axis of which is the inward normal to the
surfaceSr,b

Cr,b,v = pos
(

{ur,b,v,1, . . . , ur,b,v,Kr,b,v
}
)

.

1This is one assumption of our work. Non-convex polygonal surfaces
of the robot are decomposed into a finite set of convex polygons. Non-
polygonal convex surfaces are conservatively approximatedby polygons.
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Fig. 2: In green the minimum area surface’s body, in red the
maximum area surface’s body. The contact forces applied
on a body are drawn in the same color as the body. Before
the contact is established at the solution (top figure), the
forces applied on the red body have their application points
p originally expressed in the local frame of the green body.
To compute the torques resulting from the application of
these forces on the red body we have to consider the virtual
point p′ of the red body’s local frame that instantaneously
coincides withp at every configurationsqri1 andqri2 of the
robots.

The case of a bilateral contact is simply handled by setting

Cr,b,v = R
3,

and, in this case, the vectorsu are simply the three basis
vectors ofTr,b with no positivity constraints on their coeffi-
cients. For each unit vectorur,b,v,k fixed in the local frame
of the bodyb we denoteUr,b,v,k(qr) its coordinates in the
global frame.

We can now introduce the statics variablesλ. We first
suppose without loss of generality (we can permute the
indexes1 and2) that the area of the surfaceSri1,bi1 is less
than the area of the surfaceSri2,bi2 , so that when the contact
ci occurs, at the solution, we can write

Sri1,bi1 ⊂ Sri2,bi2 .

The surface contact, at the solution, is thusSri1,bi1 , and the
continuous surface force distribution over this surface can be
reduced to a finite force distribution over its vertices. At each
vertexpri1,bi1,v, v ∈ {1, . . . , Vri1,bi1}, The resulting contact
force fri1,bi1,v is a non-negative linear combination of the
polyhedral friction cone generators

fri1,bi1,v =

Kri1,bi1,v
∑

k=1

λri1,bi1,v,k Uri1,bi1,v,k(qri1).

The forces applied on the bodybi2 robot ri2 will be, at the
solution, equal to−fri1,bi1,v, applied at the same application
points. See Fig. 2. For each contactci we denoteλi the vector
of (R+)

Kri1,bi1,v made of all theλri1,bi1,v,k

λi = (λri1,bi1,v,1, . . . , λri1,bi1,v,Kri1,bi1,v
).

Finally, the variables of our optimization problem (3) can be
split into:

• geometric variablesq = (qr)r∈{1,...,N}.
• statics variablesλ = (λi)i∈{1,...,n}.

B. Geometric constraints

For each contactci of the stanceσ, a geometric constraint
sets the relative position of the frameTri1,bi1 in the frame
Tri2,bi2 . For each couple(r, b) we choose the frameTr,b so
that its origin is inside the surfaceSr,b and its third basis
vector coincides with the inward normal to the surfaceSr,b.
Let us denote(~xr,b(qr), ~yr,b(qr), ~zr,b(qr)) the coordinates of
the basis vectors ofTr,b in the global frame. A surface
contactci needs the realization of at least the two following
constraints

~zri1,bi1(qri1) + ~zri2,bi2(qri2) = 0 (7)

Ori1,bi1(qri1)
T~zri2,bi2(qri2) = 0. (8)

This leaves us with three degrees of freedom that we
denote(xci , yci , θci), corresponding to the three following
constraints

Ori1,bi1(qri1)
T~xri2,bi2(qri2) = xci (9)

Ori1,bi1(qri1)
T~yri2,bi2(qri2) = yci (10)

~xri1,bi1(qri1)
T~xri2,bi2(qri2) = cos(θci), (11)

which can be fixed as equality constraints if we specify a
fixed contact location or left as inequality constraints if we
wish to realize the contact and leave its location to be decided
by the optimization process as a component of the objective
cost function.

C. Static equilibrium constraints

We will write N static equilibrium constraints, one for
each robotr ∈ {1, . . . , N}. Let us denoteg the gravity
field vector, mr the total mass of the robot,Cr(qr) the
coordinates of the CoM of the robot in the global frame.
We partition the index setI = {1, . . . , n} of the stance
contactsσ = {c1, . . . , cn} into three different subsets.I1(r)
is the subset ofI made of the contacts in which a surface
from r is involved as the minimum area surface.I2(r) is the
subset ofI made of the contacts in which a surface fromr
is involved as the maximum area surface.I3(r) is the subset
of I made of the contacts in which no surface from the robot
r is involved.

I1(r) = {i | ri1 = r}

I2(r) = {i | ri2 = r}

I3(r) = {i | r 6∈ {ri1, ri2}}.

A fundamental remark in our approach is that the forces
acting on r = ri2 resulting from the contactsi indexed



∑

i∈I1(r)

Vri1,bi1
∑

v=1

fri1,bi1,v −
∑

i∈I2(r)

Vri1,bi1
∑

v=1

fri1,bi1,v +mrg = 0 (13)

∑

i∈I1(r)

Vri1,bi1
∑

v=1

Pri1,bi1,v × fri1,bi1,v −
∑

i∈I2(r)

Vri1,bi1
∑

v=1

Pri1,bi1,v × fri1,bi1,v + Cr ×mrg = 0 (14)

τr +
∑

i∈I1(r)

Vri1,bi1
∑

v=1

Jri1,bi1(qri1 , pri1,bi1,v)
T fri1,bi1,v −

∑

i∈I2(r)

Vri1,bi1
∑

v=1

Jri2,bi2(qri2 , p
′
ri1,bi1,v

)T fri1,bi1,v +

(

∂Cr

∂θr

)T

mrg = 0

(15)

in I2 have their application points(pri1,bi1,v)v fixed in
the frameTri1,bi1 of the other robotri1. To calculate the
torques resulting on the joints ofr = ri2 we thus need to
transform the pointsp in the frameTri2,bi2 . Let us denote
the transformed pointsp′ such that, for eachv,

p′ri1,bi1,v(qri1 , qri2)

= Rri2,bi2(qri2)
T (Pri1,bi1,v(qri1)−Ori2,bi2(qri2)) .

For p ∈ R
3 let us denoteJr,b(qr, p) the following Jacobian

matrix

Jr,b(qr, p)

=
∂
[

Rr,0(qr)
T
(

(

Or,b(qr) +Rr,b(qr)p
)

−Or,0(qr)
)]

∂θr
.

(12)

We can finally write the static stability constraint forr,
which are the constraints (13)-(14)-(15) appearing at the top
of this page, whereτr ∈ R

jr denotes the actuators torques
vector. Equation (15) gives us the expression ofτr as a
function of the optimization variablesq andλ, τr(q, λ), and
allows us to write the inequality constraint on the maximum
torques, denotingτr,µ the µ-th component ofτ ,

∀µ ∈ {1, . . . , jr} |τr,µ(q, λ)| ≤ τr,µ,max. (16)

D. Objective function

The objective function to minimize in problem (3)
obj(q, λ) can be chosen in different ways depending on the
application we are targeting. One typical choice is a quadratic
form

obj(q, λ) = (q − qref)
TA(q − qref) + λTBλ,

if we want to minimize contact forces, or,

obj(q, λ) = (q−qref)
TA(q−qref)+

∑

r

τr(q, λ)
TC τr(q, λ),

if we want to minimize actuators torques,qref being a
reference configuration given manually as an input and used
to drive the solution towards a goal as well as to produce
natural-looking solutions, which is a fundamental concernfor
a humanoid robot. Within the planning context this reference
configuration is taken from a guide path as computed in [12].

A,B,C are positive semi-definite matrices. Practically we
choose diagonal matrices, the coefficients of which are tuned
to weight the different objectives.

IV. GRADIENTS DERIVATIONS

Both state-of-the-art non-linear constrained optimization
algorithms we have used, feasible sequential quadratic pro-
gramming [13] and interior-point filter line-search [14], re-
quire that we provide them with the gradients of the objective
and constraints functions. In this section we give details on
these non-trivial gradient derivations. The gradients of all the
functions with respect toλ are straightforward to derive, let
us focus on the gradients with respect toq.

A. Geometric Jacobians

All the geometric gradients that we need to compute are
down to the expressions of theR3×(7+jr) matrices

∂Or,b(qr)

∂qr
,
∂[Rr,b(qr)u]

∂qr
,

where u is any fixed vector ofR3. The objective here is
to derive these expressions relying only on the kinematic
Jacobian of the bodyb with respect to the root body0 of
the robotr, for which algorithms can be found in standard
textbooks such as [15]. Let us denote this kinematic Jacobian
Jk
r,b ∈ R

3×jr , its µ-th column

J
k,µ
r,b (qr) =

[

ξ
µ
r,b(qr)

ω
µ
r,b(qr)

]

is the concatenation of the linear and angular velocities of
the frameTr,b with respect the the frameTr,0 expressed in
this latter frame, corresponding to a unit velocity of the joint
µ, θ̇r,µ = 1. If ρ denotes the mapping from unit quaternions
to rotation matrices, i.e.

ρ(α, β, γ, δ)

=







2(α2 + β2)− 1 2(βγ − αδ) 2(βδ + αγ)

2(βγ + αδ) 2(α2 + γ2)− 1 2(γδ − αβ)

2(βδ − αγ) 2(γδ + αβ) 2(α2 + δ2)− 1






,



then we can write

∂Or,b(qr)

∂[xr, yr, zr]
= 13×3

∂Or,b(qr)

∂[αr, βr, γr, δr]
=

(

∂ρ

∂α
O0

r,b,
∂ρ

∂β
O0

r,b,
∂ρ

∂γ
O0

r,b,
∂ρ

∂δ
O0

r,b

)

∂Or,b(qr)

∂θr
= Rr,0 ξr,b

∂[Rr,b(qr)u]

∂[xr, yr, zr]
= O3×3

∂[Rr,b(qr)u]

∂[αr, βr, γr, δr]
=

(

∂ρ

∂α
R0

r,bu,
∂ρ

∂β
R0

r,bu, . . . ,
∂ρ

∂δ
R0

r,bu

)

∂[Rr,b(qr)u]

∂θr
=
(

Rr,0

[

ω
µ
r,b × (R0

r,b u)
]

)

µ∈{1,...,jr}
,

where we have used the following notation

R0
r,b = RT

r,0 Rr,b.

B. Torques gradients

Let us now derive the gradient of the constraint (16) for
which the main difficulty resides in the derivation of

J1 =
∂J

µ
ri2,bi2

(

qri2 , p
′
ri1,bi1,v

(qri1 , qri2)
)

∂qri1
,

J2 =
∂J

µ
ri2,bi2

(

qri2 , p
′
ri1,bi1,v

(qri1 , qri2)
)

∂qri2
.

whereJµ
r,b(qr, p) is the µ-th column of the matrix defined

in (12). Let us denoteDqrJ
µ
r,b andDpJ

µ
r,b respectively the

partial derivatives ofJµ
r,b(qr, p) with respect toqr and top.

We can write (we temporarily drop the subscripts ofp′)

J1 = DpJ
µ
ri2,bi2

(qri2 , p
′)
∂p′(qri1 , qri2)

∂qri1
,

J2 = DqrJ
µ
ri2,bi2

(qri2 , p
′) +DpJ

µ
ri2,bi2

(qri2 , p
′)
∂p′(qri1 , qri2)

∂qri2
.

We skip the details of the derivations of

∂p′(qri1 , qri2)

∂qri1
,
∂p′(qri1 , qri2)

∂qri2
,

that can be shown to have similar structures as the geometric
gradients exposed in the previous section IV-A, and we
concentrate on the derivations ofDqrJ

µ
r,b andDpJ

µ
r,b. First,

for DqrJ
µ
r,b, we can write

∂J
µ
r,b

∂[xr, yr, zr]
= O3×3

∂J
µ
r,b

∂[αr, βr, γr, δr]
=

(

∂ρ

∂α
ξ
µ
r,b(p),

∂ρ

∂β
ξ
µ
r,b(p), . . . ,

∂ρ

∂δ
ξ
µ
r,b(p)

)

∂J
µ
r,b

∂θr
= Rr,0

(

∂ξ
µ
r,b(p)

∂θr,ν

)

ν∈{1,...,jr}

,

where
ξ
µ
r,b(p) = ξ

µ
r,b + ω

µ
r,b ×

[

R0
r,b p

]

TABLE I: Some figures

Circus Coll. Ladder
dim(q) 94 101 47
dim(λ) 48 96 48

total dimension 142 197 95
num. of eq. constr. 34 61 27
num. of ineq. const. 80 80 40

num. of iterations 30 42 19
optim. algo. time 0.732s 1.423s 0.280s

func. & grad. eval. time 7.190s 9.515s 1.454s

is the velocity transported from the origin of the frameTr,b

to the pointp, and

∂ξ
µ
r,b(p)

∂θr,ν
=















ων
r,b × ξ

µ
r,b(p) if ν < µ,

ω
µ
r,b × ξ

µ
r,b(p) if ν = µ,

ω
µ
r,b × ξνr,b(p) if ν > µ.

This latter result is a straightforward generalization of the
result published in [16] from serial kinematic chains to
kinematic trees such as a humanoid robot. Now that we have
derivedDqrJ

µ
r,b let us deriveDpJ

µ
r,b. We can simply write

DpJ
µ
r,b = Rr,0 ω̃

µ
r,b R

0
r,b

where ω̃
µ
r,b is the skew-symmetric matrix corresponding to

the vector product byωµ
r,b. This brings our derivations to an

end.

V. RESULTS

We have tested our static stance inverse solver on different
theoretic scenarios in virtual environments involving oneor
two humanoid robots (for the robot we used a model of HRP-
2 [17]) conjointly manipulating objects and taking unilateral
or bilateral contacts, see Fig. 3. Our implementation being
generic and totally transparent to the robot model, any other
robot could have been used with no additional model-specific
implementation effort. Of course some of these scenarios are
not meant to be simulated or executed on real-life robots but
we choose them to illustrate the generality of our approach
from the conceptual point-of-view.

Within multi-contact planning queries made with a planner
similar to [1], no local minima problems were encountered.
This is mainly due to the fact that during the stances
exploration phase, i.e. when growing the search tree, we use
the resulting configuration from the father stance node as an
initial guess for testing a new stance with our solver and add
it to the tree in case of success. Care should thus be taken
only when choosing the very first configuration initializing
the search tree.

Table I gives some figures2 concerning queries on these
scenarios made with the solver [14] on a standard 3.06 GHz
computer. As we can see most of the computation time

2The number of inequality contraints do not include the boundson joints
articulations nor the positivity conditions onλ for unilateral contacts as
these bounds are handled directly as limits on the optimization variables by
the solver.



is spent on functions and gradients evaluations and can be
greatly reduced, given that our current implementation splits
vector constraints into individual scalar constraints andthus
wastes a lot of time in redundant computations that can be
factorized when using vector constraints. However, although
computational time appears to be quite heavy (still being of
same order of magnitude as the times reported in [1][2] for
more complex problems in our case), it allows for solving
multi-contact planning queries in times comparable to those
of the aforementioned state-of-the-art planners, i.e. tens of
minutes in average, while being more generic and handling
a broader range of contact situations.

VI. CONCLUSION AND FUTURE WORK

We provided a formulation for the multiple robots, multi-
ple objects, multiple contacts, static stance inverse problem.
The problem has been written as an optimization problem
in the geometric and statics variables conjointly. Analytical
gradients based on the kinematic Jacobian and its derivatives
have been derived. We have tested our approach on very
high dimensional challenging scenarios for which solutions
were found in a relatively small number of iterations. These
results are currently used in acyclic multi-contact motion
planning for multiple agents. One missing piece of this work
is the collision avoidance constraints, on the implementation
of which we are currently working. A possible extension
of this work is considering deformable bodies of the robots
or the environment. In the longer term, non-static (kinetic)
friction model can also be considered allowing displacement
of the environment objects under the action of contact forces.
We are currently investigating these topics.
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