
Learning Motion Dynamics to Catch a Moving Object

Seungsu Kim, Elena Gribovskaya and Aude Billard

Abstract— In this paper, we consider a novel approach to
control the timing of motions when these are encoded with
autonomous dynamical systems (DS). Accurate timing of motion
is crucial if a robot must synchronize its movement with that
of a fast moving object. In previous work of ours [1], we
developed an approach to encode robot motion into DS. Such
a time-independent encoding is advantageous in that it offers
robustness against violent perturbation by adapting on the
fly the trajectory while ensuring high accuracy at the target.
We propose here an extension of the system that allows to
control the timing of the motion while still benefitting from all
the robustness properties deriving from the time-independent
encoding of the DS. We validate the approach in experiments
where the iCub robot learns from human demonstrations to
catch a ball on the fly.

I. INTRODUCTION

Planning human-like robot trajectories for catching rapidly
moving targets is a challenging task. It requires to consider
two closely related problems: (1) predicting accurately the
trajectories of the fast moving object; (2) and fast planning of
precise trajectories for the robot’s end-effector. Estimation of
the dynamics of the moving object relies on accurate sensing
which cannot always be ensured in robotics. This may lead to
a frequent re-estimation of the target’s location as both robot
and object are moving. To compensate for such inaccurate
sensing, one needs to be able to constantly and rapidly re-
estimate the trajectory of the robot’s arm. In this paper, we
address both issues: estimating the motion of the moving
object and replanning of the hand’s trajectories so as to adapt
to sudden temporal and spatial perturbation of the target.

A body of work has been devoted to autonomous control
of fast movements such as catching [2] [3] [4] [5] [6] [7]
and hitting flying objects [8] [9], or juggling [10] [11] [12].
Next, we briefly review these works according to (1) how
they predict trajectories of moving objects and (2) how
they generate the robot’s motions [13]. To catch a moving
object properly, prediction of the trajectory of moving objects
is required. Hong et al [2] and Riley et al [5] model
trajectories of the flying ball as a parabola, and subsequently
recursively estimate the ball’s trajectory through least squares
optimization. Frese et al [4] and Park et al [7] also assume
a parabolic form for the ball trajectories and predict the
latter with Extended Kalman Filters [14]. Hong et al [2]
generate trajectories of specific light-weighted objects using
a generic aerodynamical model. To estimate the coefficient
of this model, they use a wavelet network [15].

LASA Laboratory, EPFL, CH 1015 Lausanne, Switzerland
{seungsu.kim; elena.gribovskaya; aude.billard
} @epfl.ch

Such approaches can accurately estimate the trajectories.
But they rely on determining in advance a model of the
motion of the object. Here we estimate the dynamics of
the moving object using our generic estimator of non-linear
dynamical systems and based on the set of demonstrations.

To generate trajectories for catching moving objects, sev-
eral works use polynomials [2] [3] [6] [8] to satisfy some
boundary values on the trajectory. Zhang et al [3] used 5th
order polynomial to match catching position, velocity and
acceleration. Hong and Slotine [2] use 3rd order polynomials
to match the position/velocity of the end-effector and the
ball. To accurately reproduce the catching motion, they
decelerate the end-effector velocity along the initial path of
the object after catching an object. Namiki et al [6] also
used polynomial equation. The coefficients of the polynomial
are found by resolving an optimization problem, where the
sum of the torques and angular velocities are minimized
so as to satisfy constraints on the initial and final position,
velocity and acceleration of the end-effector. Senoo et al [8]
developed a batting robot based on their high-speed vision
system. They split the control of the robot’s joint so as to
control separately for high-speed swinging while allowing
the remaining degrees of freedom are used for fast adaptation
to perturbation. Again a 5th order polynomial was used for
trajectory generation in joint space.

Another approach to generate a trajectory is imitating
human behaviors. Schaal and Atkeson [10] [11] implemented
robot juggling tasks based on learning human behavior. They
used locally weighted regression to represent a learned model
of the task. Riely et al [5] use the point-to-point movement
representation primitives by programmable pattern genera-
tors (PPGs) [16] which is based on human movements, to
catch vertically falling objects. It can modify the trajectory
on-line for a new target.

Along the same line of thought, the Dynamic Motor
Primitive (DMP) offers a dynamical systems based repre-
sentation of motion [17]. Recent work extended the original
DMP formulation to allow a non-zero velocity at the target
and was successfully used for hitting a moving target [9].
However, DMP as well as all the other approaches mentioned
above are time-dependent. This makes these methods very
sensitive to temporal perturbations. I.e., important changes
in the duration of the movement that arise when the distance
from the end effector to the target is reduced or extended,
cannot be handled easily. A heuristic must be used to rescale
in time the clock of the system. This problem has been
largely overlooked in the literature sofar. In [13], we pro-
posed a means to learn time-independent dynamical systems
(autonomous dynamical systems) so as to become robust

to temporal perturbations. Here, we extend this work and
address the problem of controlling the duration of the motion
when encoded in an autonomous DS. Note that neither time-
independent nor time-dependent dynamical systems can be
explicitly controlled for the duration of the motion. Here
we show how our controller can be used to control both
time-dependent DS such as DMP and autonomous dynamical
systems.

Though all the methods discussed above were successfully
applied to the object catching, hitting or juggling, they are
explicitly time-dependent and hence any temporal perturba-
tion after onset of the motion would not be properly handled.

Specifically in this paper, we investigate the problem of
discovering and imposing temporal constraints on motions
encoded with non-linear dynamical systems [1]. We also
demonstrate how our learning framework can be extended
to learn motion of external objects with which the robot
should synchronize. The accurate motion timing is highly
important if a robot has to synchronize with external moving
objects. However, the problem of imposing timing constraints
on arbitrary non-linear DS has received so far little attention,
since this encoding has been mainly applied to spatially
constrained manipulation tasks rather than to tasks requiring
explicit temporal coordination. Here, we investigate control
of timing of a learned dynamical system so as to speed up
or slow down the robot’s motion and hence adhere to precise
temporal constraints.

In previous work of ours, we addressed different aspects of
encoding motions with dynamical systems, specifically: ef-
fective and smooth adaptation in the case of spatio-temporal
perturbations [13], learning of asymptotically stable esti-
mates [18], learning of position and orientation control for
motion generation [1]. The present paper continues research
in this direction and presents new results on learning motions
of both the robot’s end-effector and external objects. This
highlights the ability of the system for continuous spatio-
temporal adaptation and synchronization.

II. DYNAMICAL SYSTEMS WITH TIMING CONSTRAINTS

A. Autonomous dynamical system (DS)

To teach a new skill to a robot, a human demonstrates
it several times. The demonstrated trajectories together
with velocities are encoded with Gaussian Mixture Models
(GMM) through Expectation-Maximization (EM) algorithm.
The learned movements are represented by a first-order
multivariate autonomous dynamical system [1] :

ξ̇ = f̂ (ξ) =
K∑

k=1

hk (ξ)
(

µξ̇
k + Σξ̇ξ

k

(
Σξ

k

)−1 (
ξ − µξ

k

))

(1)
where ξ, ξ̇ are the position and the velocity of the robot’s
end-effector respectively; K is the number of Gaussian
components; µk and Σk are the mean and the covariance
of a kth Gaussian component. hk (ξ) gives a measure of the
influence of the kth Gaussian in generating the data point ξ;
see [1] for details. Controlling point to point robot motion
with an autonomous dynamical system given in [1] requires

to ensure that the so-generated motion is asymptotically
stable at the target of the motion. To verify the stability of
our motion generator, we use the approach suggested in [18].

B. Timing controller
Controlling for the duration of the motion generated

by the dynamical system described in Section II-A is not
straightforward. The total duration can be estimated solely
by running the system until convergence.

We are going to extend the model describe in Section II-A
to allow one to modulate the speed of the motion generated
by the dynamical system in Eq. (1).

While this could easily be achieved with a time-dependent
dynamical system. Here we wish to preserve the time-
independency of the motion generator as it provides appeal-
ing properties for on-the-fly replanning of the trajectory.

To provide a means of controlling the timing of the motion
when generated by the autonomous dynamical system given
in Eq. (1), we define a velocity multiplier λ. This multiplier
modifies the original dynamics, by modulating the velocity
mean µξ̇ and the covariance Σξ̇,ξ as follows:

µ̃ξ̇
k = λµξ̇

k (2)

Σ̃ξ̇ξ
k = λΣξ̇ξ

k (3)

ξ̇ = ˆ̃
f (ξ) =

K∑

k=1

hk (ξ)
(

µ̃ξ̇
k + Σ̃ξ̇ξ

k

(
Σξ

k

)−1 (
ξ − µξ

k

))
= λf̂ (ξ)

(4)
To allow for gradual and on the fly adaptation of the

motion’s duration so as to reach a position ξg in a given time
T , we compute our multiplier at each time step as follows:

λti+1 = λti + kp

(
T̂ ti − T

)
− kd

(
T̂ ti − T̂ ti−1

)
(5)

where ti is a time at the ith controlling step, ti+1 =
ti + ∆t, t0 = 0; λti is the velocity multiplier, λt0 = 1;
kp and kd are user defined proportional and derivative gains
that control for the reactivity of the system. T̂ ti is the total
(from the onset to the offset) motion duration as computed at
time ti. T̂ ti is estimated by integrating forward the following
equation starting from j = i till convergence to the attractor.

ξtj+1 = ξtj + λti

L∑

l=1

˙̂
ξ{tj+l∆t′}∆t′ (6)

To ensure stability of the new estimate in Eq. (4) and
avoid trajectory distortions, we reduce the sampling rate for
calculation to ∆t′ = ∆t/L. However, the actual command
is sent to the robot at the rate ∆t. For the experiment, we
set ∆t = 0.02 and L = 10.

Algorithm 1 summarizes the steps followed during the
reproduction.

The trajectories generated by the timing controller in
Eq. (4) and the original controller in Eq. (1) follow the
same Cartesian path, as the multiplier λ equally affects all
components of the state vector ξ. Due to the same reason
and the adaptive integration step in Eq. (6), the stability of
the system in Eq. (4) is also not distorted.

Algorithm 1 Catching a ball
1: —————-Training————————————–
2: [ẋ, ȯ, ρ̇] = f̂(x, o, ρ) ⇐ learn the estimate of the dynam-

ics of the robot’s motion.
3:
4: ẍb = f̂b(ẋb) ⇐ learn the estimate of the ball’s motion.
5: λt0 ⇐ 1.0
6: —————-Motion Generation————————–
7: loop
8: —————-Predicting of the ball motion————–
9: if (ball is detected) then

10: xti

b ⇐ from vision
11: [xb]ti..tN ⇐ generate an estimate of the ball trajec-

tory through f̂b(ẋb); see Sec. III-A.
12:
13: if (ball is catchable) then
14: Determine the catching position and orientation

ξg and the desired motion duration T ; see Sec.
III-B.

15: else
16: Stop and go back to the rest posture.
17: Exit the loop.
18: end if (ball is catchable)
19:
20: end if (ball is detected)
21: —————-Generating the robot motion————–
22: ξ̇ti ⇐ λti f̂(ξti).
23: T̂ ti ⇐ estimate the reaching time by integrating Eq.

(6) till ‖ξtj − ξg‖ < ε.
24: λti+1 ⇐ update the timing constant through Eq. (5)
25: θti ⇐ find the IK solution for ξti+1 ; see Sec. III-D
26: Send θti to the robot and get the feedback from

motors.
27: if (|ξti − ξg| < ε) then
28: Exit the loop.
29: end if
30: end loop

C. DMP with timing controller

In contrast with autonomous DS, duration of motion gener-
ated with a time-dependent dynamical system, such as DMP,
can be computed explicitly, if the time to target is known in
advance before generating the trajectory. However, when the
desired motion’s duration to reach to the target is changed
while in motion, one can no longer find an appropriate τ
to control for the rest of the motion, as the relation is no
longer linear (unless one stops the robot and starts the motion
again from the location of the perturbation; such a stopping
would be brutal and bound to prevent the robot to reach the
target). Hence similarly to time-independent DS, a method
is required to adapt gradually and on the fly to the motion’s
duration.

The timing controller presented in Section II-B can be
used to control for the duration of movement when gener-
ated by DMP as well. DMP is composed of a linear 2nd

IMU Sensors Data glove

Hand Trajectory

Ball Trajectory

Fig. 1: Left: a motion capture set-up used to collect the
training data. Right: the ball was thrown to the catcher from
3 meter distance.

order dynamical system, to which we refer to as f2 and a
modulating term fm (estimated through LWR) [19] and is
given by the following set of equations:

ξ̇ = τ̃
(
f2 (ξg, ξ) + fm

(
ξg − ξt0 , z

))
(7)

ż = −τ̃αzz (8)
τ̃ = λτ (9)

Where τ is a time constant which is correspond to the
inverse of the duration T ∗ of the learned motion, i.e. τ =
1/T ∗; The state ξ = [ξ1; ξ2] consists of the position of each
degree of freedom ξ1 and its velocity ξ2; ξg = [ξg

1 ; 0] is the
target position with zero velocity; αz is a parameter defined
by user.

III. EXPERIMENT: CATCHING A FLYING BALL

To validate the proposed timing controller, we conducted
experiments where the iCub robot was required to catch a
ball on the fly.

To obtain a training data set, a human provided forty
demonstrations of different catching motions using a data
glove and the X-Sens motion capture suit; see Fig. 1. The
captured motions were mapped into the joint angles of the
7 degree of freedom (DOF) arm of the 53 DOF humanoid
robot the iCub in real-time. This provided the teacher with
immediate visual feedback of his actions and verify that the
mapping resulted in the correct motion of the robot.

While capturing human demonstrations we did not record
the ball’s trajectories. Instead, we assumed that the ball’s
velocity vector was opposite to the palm’s direction at the
catching point. With the demonstrated trajectories, we trained
the configuration of the robot’s end-effector in the task
space ξ = [x; o; ρ] together with the corresponding velocities
ξ̇ = [ẋ; ȯ; ρ̇]. Where x ∈ R3, o ∈ R3 , ρ ∈ [0..1] are re-
spectively the Cartesian position, the palm direction, and the
degree of grasping (a normalized one-dimensional variable
characterizing the degree of clench of the robot’s hand; 1.0
corresponds to completely open hand ; 0.0 corresponds to
the predefined grasping configuration).

For making a robot being able to catch a flying object, one
should proceed to: 1) estimate the ball’s dynamics to predict
the timing of the robot’s motion; 2) estimate the duration of

0 0.5 1 1.5 2 2.5 3 0
0.5

1
0.5

1

1.5

2

2.5

3

3.5

4

4.5

y (m)
x (m)

z
(m

)

Testing
Estimated
Training

(a) The ball motion of the catching task observed in
the simulator.

−0.4 −0.2 0 0.2 0.4 0.6 0.8 10

0.5

1
0.08

0.1

0.12

0.14

0.16

0.18

0.2

x (m)y (m)

z
(m

)

Testing
Estimated
Training

(b) The ball motion observed in the real-world rolling
experiment. See 5.

Fig. 2: The dynamics of the ball in the simulated environment
(a) and in the real experiment (b) is learned using our esti-
mate of dynamical system. Training (green dot) and testing
(blue solid) trajectories, superposed with the estimated one
(red dashed).

the robot’s motion and the end-effector configuration at the
catching moment; 3) generate a task-space trajectory of the
motion that satisfies the temporal and spatial constraints; 4)
resolve the inverse kinematics to find a suitable joint angle
configuration. We address these problems as follows.

A. Estimation of the ball’s motion dynamics

The dynamic model of the ball motion can be learned
using our dynamical system estimator described in Section
II-A without attractors :

ẍb = f̂b (ẋb) (10)

where ẋ ∈ R3 and ẍ ∈ R3 are the velocity and acceleration
of a ball in cartesian space respectively.

Encoding with our generic DS provides an efficient way
to model a dynamics of a moving object solely by observing
examples of the object’s displacement in space and without
any prior information on the physical properties of the object
such as its mass, density, etc.

To estimate the ball’s dynamics, a ball was thrown 5 to
6 times with random velocities in the experimental envi-
ronments; and its trajectories were recorded. Once learned,
the system f̂b is used to predict the ball trajectory given its

position at the previous time step. Estimation of the ball’s
trajectory from the learned system f̂b is depicted in Fig. 2.

B. Catch point determination

The robot starts tracking the ball when it is inside of a
pre-defined 3D measuring region. The robot estimates the
trajectory of the ball using the approach discussed in the
previous section. To determine the catching configuration,
the robot first verifies that the ball is catchable, by checking
the intersection line of the estimated ball trajectory and the
workspace of the robot arm. If the ball is catchable, the
catching time and end-effector configuration are chosen so
as to minimize the motion of the end-effector along the
intersected path [4]. The estimated end-effector configuration
at the target ξg is mapped into the attractor of the dynamical
system given by Eq. (4). The desired reaching time (T) in
Eq. (5) is assigned to the estimated catching time.

C. Task-space motion generation

The robot further starts to generate a motion of the end-
effector and the fingers using the suggested approach. When
the robot receives updated information of end-effector catch-
ing configuration and catching time, the timing controller
gradually re-estimates the motion’s duration by integrating
the trajectory forward and properly adapting the velocity
according to Eq. (4) - (6).

D. Inverse Kinematics

Finally, the damped least squares method [20] is used to
convert the generated position and the palm’s direction into
joint angles.

For the fingers motion, we defined the two finger configu-
rations: fully stretched (qfinger

1 ∈ R9) and closed (qfinger
0 ∈

R9). The trajectory of the 9 DOF of fingers was generated
through the following equation with the learned degree of
grasping ρ and the two finger configurations :

qfinger = ρqfinger
1 + (1− ρ) qfinger

0 . (11)

E. Experimental results

The result we have obtained so far in both simulated
and real environments 1, confirm that the iCub endowed
with the proposed DS and its timing controller manages to
catch the ball on the fly successfully; see results in Fig. 4-
6. Though the proposed algorithm generates the task space
motion that should be further converted into joint angles, it
is still sufficiently fast to generated motion in real-time at
the frequency of 50 Hz.

1http://lasa.epfl.ch/˜seungsu/humanoids2010.wmv

−0.05 0 0.05 0.1 0.15−0.2

0

0.2
−0.12

−0.1

−0.08

−0.06

−0.04

−0.02

0

0.02

X (m)

 2nd Goal

 3rd Goal

 1st Goal

Y (m)

Z
 (

m
)

GMR−DS
DMP
training

(a)

0 0.2 0.4 0.6 0.8 1
0.75

0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

Time (sec)

λ

(b)

0 0.2 0.4 0.6 0.8 1 1.2 1.4
−0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

 1st Goal

 2nd Goal

 3rd Goal

Time (sec)

X
 (

m
)

Set 1st Goal

Set 2nd Goal

Set 3rd Goal

(c)

0 0.2 0.4 0.6 0.8 1 1.2 1.4
−0.4

−0.35

−0.3

−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

Time (sec)

X
 v

el
 (

m
/s

)

(d)

0 0.2 0.4 0.6 0.8 1 1.2 1.4
−0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

 1st Goal

 2nd Goal

 3rd Goal

Time (sec)

Y
 (

m
)

(e)

0 0.2 0.4 0.6 0.8 1 1.2 1.4
−0.35

−0.3

−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

Time (sec)

Y
 v

el
 (

m
/s

)

(f)

0 0.2 0.4 0.6 0.8 1 1.2 1.4
−0.12

−0.1

−0.08

−0.06

−0.04

−0.02

0

0.02

 1st Goal

 2nd Goal

 3rd Goal

Time (sec)

Z
 (

m
)

(g)

0 0.2 0.4 0.6 0.8 1 1.2 1.4
−0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Time (sec)

Z
 v

el
 (

m
/s

)

(h)

Fig. 3: We contrast adaptation to strong perturbations when
using our timing control to adapt timing of either the DS (red
solid line) or the DMP (blue dashed line) controllers. Both
systems are trained on human demonstrations of catching
motions (light hashed lines). Spatial and temporal pertur-
bations were introduced by displacing the target twice at
t = 0.2 sec and t = 0.5 sec. The timing controller gains were
set to kp = 0.5 and kd = 0.001. (a, c-h) The new trajectories
generated by DS and DMP reach the target accurately, while
reproducing the demonstrated motion pattern adapting to
spatial and temporal perturbations.

We also applied this method to control for motion duration
in a time-dependent dynamical system encoding, defined by
DMP; see Fig. 3. The controller gradually change λ when
it receive more accurate target position and the motion’s
duration, so as to reach the target on time, whatever the

motion is encoded by our DS or DMP. Since the change is
gradual, it must be sufficiently quick to allow rapid adapta-
tion to displacement. This depends on the gain parameters.
These must be set so as to allow a reasonable acceleration
peak. Note that by controlling only for the end-effector’s
position and by relying on an inverse kinematic controller
for controlling for the joint, this may lead to too large
acceleration peaks at the level of the joints and hence a
conservative approach in the setting of the gains should be
taken. In future work, we will exploit the generalized inverse
kinematics method we developed in [21] for balancing a
controller in joint and cartesian positions.

IV. CONCLUSION

In this paper we exploited the robustness of time-
independent motion encoding through autonomous dynam-
ical systems and developed a method to control for motion
duration while remaining time-independent. The timing con-
troller gradually speeds up or slows down the learned motion
(DS and DMP), and hence adheres to precise temporal
constraints. We validated the approach in the experiment
where the robot iCub successfully catches a ball in motion.

V. ACKNOWLEDGEMENT

This work was supported by EU Projects First-MM (FP7-
ICT-248258) and AMARSI (FP7-ICT-248311).

REFERENCES

[1] Elena Gribovskaya and Aude Billard, “Learning Nonlinear Multi-
Variate Motion Dynamics for Real- Time Position and Orientation
Control of Robotic Manipulators,” in Proceedings of IEEE-RAS
International Conference on Humanoid Robots, 2009.

[2] Won Hong and Jean-Jacques E. Slotine, “Experiments in hand-
eye coordination using active vision,” in The 4th International
Symposium on Experimental Robotics IV, London, UK, 1997, pp. 130–
139, Springer-Verlag.

[3] M. Zhang and M. Buehler, “Sensor-based online trajectory generation
for smoothly grasping moving objects,” in Proceedings of the IEEE
International Symposium on Intelligent Control, 1994, pp. 16–18.

[4] U. Frese, B. Bauml, S. Haidacher, G. Schreiber, I. Schaefer,
M. Hahnle, and G. Hirzinger, “Off-the-shelf vision for a robotic ball
catcher,” in Proceedings of IEEE/RSJ Intl Conf. on Intelligent Robots
and Systems, 2001, vol. 3, pp. 1623–1629.

[5] Marcia Riley and Christopher G. Atkeson, “Robot catching: Towards
engaging human-humanoid interaction,” Auton. Robots, vol. 12, no.
1, pp. 119–128, 2002.

[6] A. Namiki and M. Ishikawa, “Robotic catching using a direct mapping
from visual information to motor command,” in Proceedings of IEEE
Intl Conf. on Robotics and Automation, sept. 2003, vol. 2, pp. 2400 –
2405 vol.2.

[7] Ga-Ram Park, KangGeon Kim, ChangHwan Kim, Mun-Ho Jeong,
Bum-Jae You, and Syungkwon Ra, “Human-like catching motion of
humanoid using evolutionary algorithm(ea)-based imitation learning,”
in Robot and Human Interactive Communication, IEEE International
Symposium on, 27 oct. 2009, pp. 809 –815.

[8] T. Senoo, A. Namiki, and M. Ishikawa, “Ball control in high-speed
batting motion using hybrid trajectory generator,” in Proceedings of
IEEE Intl Conf. on Robotics and Automation, 15-19 2006, pp. 1762
–1767.

[9] Jens Kober, Katharina Mulling, Oliver Kromer, Christoph H. Lampert,
Bernhard Scholkopf, and Jan Peters, “Movement templates for
learning of hitting and batting,” in Proceedings of IEEE Intl Conf.
on Robotics and Automation, May 2010, pp. 853–858.

[10] Stefan Schaal and Christopher G. Atkeson, “Open loop stable control
strategies for robot juggling,” in Proceedings of IEEE Intl Conf. on
Robotics and Automation, 2-6 1993, pp. 913 –918 vol.3.

Fig. 4: Top: A human teacher demonstrates a ball catching motion starting from different configuration of the hand and
palm. The demonstrations are encoded with an autonomous DS, Eq. (4). Bottom: The simulated iCub robot uses the learned
DS to generate a motion (Cartesian position of the end-effector, palm orientation and clench) for catching a ball.

Fig. 5: The iCub has to catch the ball rolling down the slope before the latter falls down. During learning, the robot observes
the motion of the ball rolling along the free slope. During reproduction, several obstacles are set that deform the ball’s
motion. The robot can roughly predict the ball’s trajectory. However it still should continuously adapt both spatially and
temporally to accommodate itself to the perturbed ball’s dynamics.

Fig. 6: The iCub has to catch a ball that bounces on a wire attached to a human hand. Again, the robot learns the motion
of the ball, however, due to variability in the motion of a human pulling the wire, the robot should continuously readapt the
motion while approaching the ball.

[11] Stefan Schaal, Dagmar Sternad, and Christopher G. Atkeson, “One-
handed juggling: A dynamical approach to a rhythmic movement task,”
Journal of Motor Behavior, vol. 28, pp. 165–183, 1996.

[12] A.A. Rizzi and D.E. Koditschek, “Further progress in robot juggling:
solvable mirror laws,” in Proceedings of IEEE Intl Conf. on Robotics
and Automation, 8-13 1994, vol. 4, pp. 2935–2940.

[13] Elena Gribovskaya, Seyed Mohammad Khansari-Zadeh, and Aude
Billard, “Learning Nonlinear Multivariate Dynamics of Motion in
Robotic Manipulators,” International Journal of Robotics Research,
2010.

[14] A. L. Barker, D. E. Brown, and W. N. Martin, “Bayesian estimation
and the kalman filter,” Computers and Mathematics with Applications,
vol. 30, no. 10, pp. 55 – 77, 1995.

[15] Mark Cannon and Jean-Jacques E. Slotine, “Space-frequency localized
basis function networks for nonlinear system estimation and control,”
Neurocomputing, vol. 9, no. 3, pp. 293 – 342, 1995, Control and
Robotics, Part III.

[16] Stefan Schaal and Dagmar Sternad, “Programmable pattern genera-
tors,” in Intl Conf. on Computational Intelligence in Neuroscience,

1998, pp. 48–51.
[17] A.J. Ijspeert, J. Nakanishi, and S. Schaal, “Trajectory formation

for imitation with nonlinear dynamical systems,” in Proceedings of
IEEE/RSJ Intl Conf. on Intelligent Robots and Systems, 2001, vol. 2,
pp. 752 –757 vol.2.

[18] Seyed Mohammad Khansari-Zadeh and Aude Billard, “BM: An
Iterative Method to Learn Stable Non-Linear Dynamical Systems with
Gaussian Mixture Models,” in Proceedings of IEEE Intl Conf. on
Robotics and Automation, 2010.

[19] A.J. Ijspeert, J. Nakanishi, and S. Schaal, “Movement imitation with
nonlinear dynamical systems in humanoid robots,” in Proceedings of
IEEE Intl Conf. on Robotics and Automation, 2002, vol. 2, pp. 1398–
1403.

[20] C. Wampler, “Manipulator inverse kinematic solutions based on
vector formulations and damped least-squares methods,” in IEEE
Transactions on Systems, Man and Cybernetics, 1986, vol. 16, pp.
93–101.

[21] M. Hersch and A. Billard, “Reaching with Multi-Referential Dynam-
ical Systems,” Autonomous Robots, vol. 25, no. 1-2, pp. 71–83, 2008.

