
  

  

Abstract—The design and implementation of mood as an 
affective component for robotic behavior is described in the 
context of the TAME framework – a comprehensive, 
time-varying affective model for robotic behavior that 
encompasses personality traits, attitudes, moods, and emotions. 
Furthermore, a method for continuously adapting TAME’s 
Mood component (and thereby the overall affective system) to 
individual preference is explored by applying Learning 
Momentum, which is a parametric adjustment learning 
algorithm that has been successfully applied in the past to 
improve navigation performance in real-time, reactive robotic 
systems. 

I. INTRODUCTION 
E humans have a complex affective system in which 
various elements come together in an intricate 

interplay to govern how we feel and behave. Personality 
predisposes us to have consistent behaviors in general over an 
extended period of time [1]. We are influenced by mood that 
can be cyclic or situational in nature [2]. We respond 
instantaneously to certain situations through our emotional 
reactions [3], and we also maintain an attitude towards certain 
objects [4].  

Given our strong propensity in anthropomorphizing even 
inanimate objects around us [5], robots possessing a mature 
affective system can only help in capitalizing on this tendency 
for a more natural and effective interaction.  

The focus of this paper is on generation and adaptation of 
Mood, one of four affective components within an integrative 
framework of time-varying affective robotic behavior, 
TAME, described earlier in Moshkina et al. [6]-[8]. The 
Mood component is designed with human-robot interaction in 
mind and provides a method for continuously adapting 
robotic moods (and thereby the overall affective system) to 
individual human preferences through application of 
Learning Momentum [9]-[12]. The latter is a parametric 
adjustment learning algorithm that has been successfully 
applied in the past to improve navigation performance in 
real-time, reactive robotic systems. 
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II. RELATED WORK 
Although research in modeling affective systems abounds 

in the social robotics field [13], mood has received relatively 
little attention due to its subtle influence when compared to 
the personality traits and emotions. Not distinguishing mood 
as a separate affective element often occurs in this literature, 
and the term is sometimes even interchangeably and 
mistakenly used to mean emotions. 

Among the work that actually differentiates mood as a 
separate affective element, there is Breazeal’s robot Kismet 
[14], which uses its drive system to achieve a long-term 
affective state separate from its emotion system. Although 
Kismet’s drive system may be used to simulate mood to some 
extent, it cannot be considered an explicit or complete mood 
element. In Itoh et al.’s mental model [15] for their humanoid 
robot WE-4RII, mood consists of the Pleasantness and 
Activation dimensions. Itoh et al.’s mood model is limited in 
that the Pleasantness dimension is influenced only by 
emotions, and the Activation dimension captures only a 
single biological rhythm as a whole. There is also Kubota’s 
emotional model [16] for a pet robot in which the concepts of 
emotion, mood and feeling are treated separately. Here, 
however, only emotions have influence over mood as well, 
and cyclic characteristics of mood are not noted. Gockley’s 
affective model for social robots [17] has a separate mood 
component that is associated with the emotion and attitude 
components. Mood in Gockley’s model is determined by 
“life” events, and the storyline is arbitrarily encoded by the 
dramatic writers. 

Regarding parametric adaptation, Learning Momentum has 
been applied in the past for robots reactively navigating 
through obstacles and in various environments. It has been 
shown to effectively adapt the behavioral control parameters 
in real-time for improved performance, both in the context of 
single [9], [10] and multi-robot [12] scenarios.  

III. MOOD COMPONENT 
The Mood component is one of four affective phenomena 

modeled in the TAME framework, with the others being 
personality Traits, affective Attitudes, and Emotions. 
Compared to our earlier work [6]-[8], this component has 
been redesigned to specifically target human-robot 
interaction by providing a mechanism for the robot to learn 
mood patterns that are more congruent with human partners. 
Also, with only minor changes (explained below), it has the 
potentials of being a flexible, comprehensive and independent 
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Mood component (outside of the TAME framework) that can 
be easily integrated into other systems in need of this 
affective element. 

A. Psychological Foundations 
In the robotics community, mood is often confused with 

emotions, but there are strong psychological grounds giving 
mood the status of a separate affective construct independent 
of emotions. In particular, mood and emotions are known to 
be different in their duration and object specificity. While 
mood’s influence falls in a longer span of time providing an 
affective background, emotions are understood to be “phasic 
perturbations on this background activity” [18]. Watson et al. 
[2] hold a similar view and depict mood as a “stream of affect,” 
where a continuous affective state varies with time. 
Concerning object specificity, mood is seen to have a global 
and diffuse characteristic whereas emotions are narrow and 
specific in that respect [19]–[20]. In our everyday life, 
circumstances that cause emotional elicitations are relatively 
rare [2], and without a separate affective element of mood, it 
is not possible to capture the vicissitudes of affective 
experience that we undergo for most of the time; hence the 
importance of the inclusion of this affective element. 

Mood is often represented along the two dimensions of 
Positive Affect and Negative Affect. Positive Affect is related 
to the level of pleasure and enthusiasm while Negative Affect 
is related to how much an individual is upset or distressed 
[21]. Isen [22] suggests that the two dimensions are 
independent of each other, meaning that a certain level of 
Positive Affect is not necessarily the inverse of the same level 
of Negative Affect. 

From vast relevant literature, Watson et al. [2] summarize 
multiple factors that are believed to influence our overall 
mood. Some factors are cyclic in nature, and different cyclic 
patterns can result from different lifestyle, sociocultural, and 
biological rhythms. Such patterns can be diurnal, weekly, 
seasonal, etc. There are also situational and environmental 
factors influencing mood, such as specific causal events or 
external stimuli. 

Individual differences in mood can be explained in part by 
different personality traits. In particular, dimensions of the 
Five-Factor Model of personality [1], [23], namely, Openness, 
Conscientiousness, Extroversion, Agreeableness, and 
Neuroticism, have been found to correlate with Positive and 
Negative Affect [2]. 

Lastly, on the relationship between emotions and mood, 
Ekman [24] suggests that mood can be generated when a 
person goes through an intense experience of a particular 
emotion for many times within a short period of time.  

B. Representation and Generation of Moods 
A separate mood type (abbreviated as a mood or moods for 

multiple mood types) is defined for each possible factor 
influencing mood generation. That is, there can be one mood 
capturing the diurnal biological rhythm and another mood 
that depends on the weather. 

Given the correlation between the dimensions of mood and 

the dimensions of personality, each mood is represented 
separately along each dimension of the Five-Factor Model as 
follows: 

 
ሬሬሬሬሬሬሬሬሬሬሬԦ݀݋݋݉ ൌ ሾ݉௜ሿ (1) 

 
where i is each dimension of the Five Factor Model, mi is the 
mood intensity value for each dimension i, and -10 ≤ mi ≤ 10 
(-10 signifies extreme Negative Affect, 0 signifies absence of 
mood, and 10 signifies extreme Positive Affect). 

For simplicity, Positive and Negative Affects are 
represented along a single dimension ranging from negative 
to positive real numbers and produce a positive or negative 
bias to each personality dimension. This bias, in turn, evokes 
adjustments in the behavioral parameters and emotion 
generations in the TAME framework [6]–[8]. 

An alternative representation of mood may be drawn along 
the dimension of Positive Affect and Negative Affect. This 
would decouple the relationship between personality and 
mood, rendering the Mood component more independent and 
easing its individual use and integration into other systems 
and architectures in need of this specific affective element. 

There are two broad categories of mood: cyclic or circadian 
(e.g. based on time of the day, day of the week, seasons, etc.) 
and environmentally or situationally induced. 

C. Cyclic (Circadian) Moods 
The cyclic moods, in particular, have been introduced to 

allow the generation of mood-congruent robotic behaviors for 
multiple users. The patterns in cyclic moods are flexibly 
formulated using a configuration file, which is read at system 
run-time. For each cyclic mood, the file contains information 
such as its type, time step (hours, days of the week, days of 
the month, months, or years), the length of cycle, etc. The 
mood intensity value for each personality dimension is 
defined for an arbitrary number of time step points. If a time 
step point does not have any defined values, they are 
computed either using interpolation or a step function, 
depending on which option is selected in the file. When 
moving from one time step point to the next, the transition is 
made smooth through a weighted average filter. 

Moods that have relatively definite and undeviating 
patterns, such as biological (endogenous) circadian rhythms, 

 
 

Fig. 1.  An example cyclic workweek mood. Mood intensity values are 
displayed for the Extroversion dimension of personality with strong 
positive affect on the weekend. 



  

are appropriate candidates to be formulated with this scheme. 
The extent of flexibility is substantial since cyclic moods 
differ from individual to individual. An example workweek 
mood (for Extroversion) with hourly time steps is shown in 
Fig. 1. This method allows cyclic adjustment of the mood to 
match (entrain to) a particular user. 

D. Situational and Environmental Moods 
Situational and environmental moods depend on what is 

perceived in the environment (sensory) as well as how 
something is perceived (cognitive). Each piece of such 
information is termed a condition for moods, and the Mood 
component receives the strength value for each condition. For 
example, among various condition information that is 
streaming into the Mood component, assume that the 
“weather” mood is affected by the specific conditions of heat, 
coldness, sunniness, cloudiness, thunders, etc. The robot’s 
sensors would gauge each condition level on the scale of 0 to 
10 and relay the information to the Mood component. 

Each situational and environmental mood is defined using 
a configuration file, which also allows specifying whether or 
not each incoming condition has any influence on the mood. 
All of the relevant and present conditions for a certain mood 
are taken together to yield an averaged influence: 
 

௜ܥܴ ൌ  ௜ܵ  ·  
∑ ሺ ௝ܿ  · ௝ሻேݏ

௝ୀଵ

ܰ  (2) 

 
where RCi is the resultant condition strength value for mood i, 
Si is the overall scaling factor for RCi, N is the number of 
relevant conditions for mood i that are currently present, cj is 
the strength value for condition j, and sj is the scaling factor 
for cj. 
 Using the configuration file, an arbitrary number of 
intervals of the resultant condition strength value can be 
defined for the mood intensity values along the five different 

dimensions. Depending on the interval into which the 
resultant condition strength value falls, the mood would 
obtain the corresponding intensity values as defined in the file. 
Changes in the mood intensity values due to interval 
transitions are smoothed with a weighted average filter. An 
illustrative description of this process is shown in Fig. 2. 

E. Resultant Mood and Its Influence 
All of the moods are combined together to make the 

resultant mood in the following manner: 
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where moodresultant,j is the resultant mood intensity value for 
personality dimension j, N is the total number of moods, wi is 
the strength (weight) of mood i in computing the resultant 
mood, mi,j is the intensity value from mood i for personality j, 
and dpi,j is the dependency information of mood i for 
personality j. 

The strength of each mood (wi) and its dependency (dpi,j) 
information are defined using the configuration file for 
maximum flexibility: wi can range from 0 to ∞, and dpi,j has a 
value in {-1,0,1}, where -1 signifies inverse influence, 0 
signifies absence of influence, and 1 signifies direct 
influence. 

Once the resultant mood is computed, it introduces bias to 
personality: 

 
௜ܯܲ ൌ ௜ܲ ൅ μ ·  ௥௘௦௨௟௧௔௡௧,௜ (4)݀݋݋݉

 
where PMi is the new, biased value for personality dimension 
i, Pi is the original base value for personality i, μ is a scaling 
factor, and moodresultant,i is the resultant mood intensity value 
for personality i. 

A bounding mechanism is in place to make sure the 
influence of moods is kept within certain limiting thresholds 
as defined in the configuration file. 

As described, the Mood component introduces bias to 
personality, which is a component in TAME that determines 
important parameters in generating emotions, namely, Fear 
(F), Disgust (D), Anger (A), Sadness (S), Joy (J), and Interest 
(I). To account for the psychological studies showing 
emotions’ influence on mood, the following equation can be 
used: 

 

݉௜ ൌ ቊ
݉௜,௕௔௦௘ ൅ ݏ ൉ ௞ܧ ,ܫ௞∈ ሼܧ ݂݅   ,   ሽܬ
݉௜,௕௔௦௘ െ ݏ ൉ ௞ܧ ,ܨ௞∈ ሼܧ ݂݅   , ,ܦ ,ܣ ܵሽ (5) 

 
where i is each dimension of personality, mi,base is the base 
mood intensity value for i, s is a scaling factor, and Ek is the 
currently present (or dominant) emotion. 

For further details on the resulting direct and indirect 
influences within the TAME framework and on the  
associated behavioral parameters, the reader is referred to 
[6]-[8]. 

 
 

Fig. 2.  The process of how situational and environmental moods 
obtain their mood intensity values. 



  

IV. LEARNING MOMENTUM 
Learning Momentum [9]-[12] can be thought of as a simple 

form of reinforcement learning for online and continuous 
parametric adjustments. The basic concept behind it is that 
you should keep on doing what you are doing if the 
performance is good, and maybe try it a little more for even 
better performance. If the performance is not good, 
something different should be tried. In Learning Momentum, 
there are specific defined rules that govern parametric 
adjustments as well as situational identification 
characteristics that direct the adjustment policies in learning. 

In previous use in reactive robotic systems, a number of 
appropriate and practical situations were pre-defined, which 
would be different depending on the nature of the robot’s task. 
Taking a navigation task for example, a robot could find itself 
steadily moving toward its goal, having little, or no progress 
due to too many obstacles in the vicinity. Using a history of 
its sensor readings, the robot would determine which situation 
it is currently in, and appropriate adjustments would be 
applied to relevant behavioral parameters for that particular 
situation. Continuous adaptation of behavioral parameters in 
this manner was found to effectively reach a satisfactory 
solution. 

For the Mood component, Learning Momentum is applied 
with some variations since the human-robot interaction aspect 
redefines the problem. The judgment of a robot’s affective 
performance is inevitably subjective as viewed by the human 
interacting with it. In order for the robot to make appropriate 
adjustments to its affective performance to better align with 
the user’s desires, the system needs a means to determine the 
human’s satisfaction level or specific preferences. This could 
be achieved through vision or speech recognition technology 
for a more natural and complete robotic system, but for proof 
of concept in this study, a computer graphical user interface 
(GUI) suffices. 

A set of questions are carefully crafted such that a naive 
user can effectively and intuitively convey his/her preference 
in terms of the robot’s mood. For example, a question might 
ask if the user would like the robot’s mood to be more 
positive or negative every morning. On the GUI, the 
questions are presented in a certain order requesting the user’s 
input. When the user is finished with the sequence of 
questions, the responses are translated into a selection of 
low-level parametric adjustment rules that must be applied in 
order to reflect the user’s opinions on the robot’s affective 
performance.  

An arbitrary number of adjustment rules can be flexibly 
formulated and linked to GUI questions with a configuration 
file. Through the file, an adjustment rule is explicitly declared 
with information such as to which specific moods and in 
which specific time step intervals (for cyclic moods) or 
resultant condition strength intervals (for situational and 
environmental moods) the adjustments apply, the adjustment 
values (in ranges) for the various parameters described in 
section III on the Mood component, etc. To generate the 
actual adjustment value applied to each parameter, a random 

value is selected from the defined adjustment range for the 
parameter. To decide on the appropriate adjustment values to 
use in  making a certain mood more positive or negative, the 
psychological data on correlation between mood (positive 
and/or negative affect) and the five personality dimensions 
were taken into consideration [2] and serve as the basis for 
these alterations. 

V. IMPLEMENTATION AND SIMULATIONS 
The TAME framework has been implemented as a separate, 

stand-alone process (referred to as TAME Module) with 
Learning Momentum (referred to as LM Module). The 
influence of emotions on mood is not as yet incorporated in 
the Mood component. TAME Module has been integrated 
within MissionLab1, which is a robotic software toolset with a 
graphical user interface that allows an operator to easily 
create and configure multi-robot missions [25], [26]. As a test 
bed, Aldebaran Robotics’ Nao humanoid platform is used. 
Since details on the software architecture of TAME Module 
and on the complete implementation is beyond the scope of 
this paper, only a brief explanation is provided in this section. 

A. MissionLab Overview 
Using Configuration Editor (cfgEdit), an operator can 

specify a robotic mission using a graphical representation 
called FSA, or finite state acceptor [27]. In FSA 
representation, various behaviors or actions to perform are 
combined together to create a mission, and the transition from 
one behavior to the next is triggered by certain perceptual 
conditions. The resulting mission, after being translated into 
C++, is compiled to make Robot Executable. The compiled 
program, then, can be tested in MissionLab’s simulation 
environment, or it can be deployed on real robotic platforms. 
When the robots are executing the mission, the operator can 
monitor its execution in real-time using mlab GUI display. 
HServer [26] is a hardware abstraction layer separate from 
Robot Executable, and it acts as a control interface to various 
robotics hardware. In MissionLab, HServer enables more 
flexible coordination with different robotic platforms. 

B. Integration with MissionLab 
For the integration, an interface has been added to HServer 

for controlling Nao at the hardware level. Through HServer, 
Robot Executable, which contains the actual control code for 
the robot’s mission, can communicate the necessary control 
commands to Nao for execution. 

HServer also continuously receives perceptual data from 
the robot and relays the information to both Robot Executable 
and TAME Module. Robot Executable needs the perceptual 
data for performing certain behaviors and determining when 
to make the transition between behaviors. HServer also 
organizes the perceptual data into stimuli information for the 
Emotion component (or condition information for the Mood 
component) in TAME Module. 
 

1 MissionLab is freely available for research and development and can be 
found at http://www.cc.gatech.edu/ai/robot-lab/research/MissionLab/ 



  

Various configurations for TAME Module, such as the 
actual value for each personality dimension and various 
parameter values used for emotion generation, are defined 
using a configuration file. In assigning values for personality 
dimensions, a study on the Five Factor Model self-reported 
personality scores [28] is used as a guide. 

In Robot Executable, there is a mirror database holding 
TAME Module’s value for each personality and emotion 
dimension (the Mood and Attitude components do not have 
direct influence on the behavioral parameters of the robot). 
Continually being updated by TAME Module at three hertz (to 
ease computational burden), the personality and emotion 
information in Robot Executable, in turn, influences robot’s 
behaviors by changing appropriate behavioral parameters. 

For example, suppose there is a general walk behavior 
designed for Nao with parameters such as general gait speed 
and the amplitude of arm swinging. According to the 
information in the mirrored database, the parameters can be 
changed such that the same walk behavior portrays various 
walking styles with different affective characteristics. 

Through the sequence of questions designed and presented 
in GUI, the user can communicate with LM Module, which in 
turn, adapts the Mood component in TAME Module to the 
user’s preference. A graphical representation of the overall 
integration is shown in Fig. 3. 

C. Simulations 
A series of simulations were run to illustrate how Learning 

Momentum can be used to adapt the Mood component to the 
user’s preference. The simulation settings were simplified so 
that the resulting influence was clear and straightforward to 
observe in a reasonable period of time. In this case, only a 
cyclic daily mood was defined, and the mood influence was 
absent (mood intensity values of all 0s) at the particular time 
step (in the morning) when the Learning Momentum 
interaction began. The dependency information as mentioned 
in (3) (dpi,j) were all set to have direct influence, the scaling 
factor as mentioned in (4) (μ) was set to 1 and the personality 
values were set to the corresponding mean personality scores 

 
 

Fig. 3.  High-level architectural view of the integration of TAME 
Module, LM Module and Nao with MissionLab. 

 
 

 

Fig. 4.  On top is continuous Learning Momentum simulation trials and 
their influence on the mood intensity values for each personality 
dimension: Openness (O), Conscientiousness (C), Extroversion (E), 
Agreeableness (A), and Neuroticism (N). The resulting bias on  
personality is shown on bottom. 

  
 

  
 

 
Fig. 5.  Different affective characteristics for greeting behavior. The 
top images show Nao performing the behavior with high Extroversion 
level, and the bottom images show the behavior with low Extroversion 
level.  



  

as found in [28]. A specific rule was declared in the 
configuration file that would make the cyclic daily mood to 
be more positive in the morning. By repeatedly interacting 
with the question sequence GUI, that specific rule was 
repeatedly made to fire. The weighted filter average was 
configured so that the adjustments made by the rule would 
occur instantly. Using the correlation findings in [2] as a 
guide, the adjustment ranges (in which random adjustment 
values are selected) used to make the mood more positive 
were 0 ~ +0.2 for mOpenness, 0 ~ +0.4 for mConscientiousness, 0 ~ 
+0.8 for mExtroversion, 0 ~ +0.2 for mAgreeableness, and -0.8 ~ 0 for 
mNeuroticism. The simulation results are shown in Fig. 4, and an 
example of resulting changes in a robotic behavior is shown 
in Fig. 5. 

VI. CONCLUSION AND FUTURE WORK 
Based on an integrative affective model for robotic 

behavior, TAME, this paper presents its Mood component. A 
method of continuously adapting the Mood component to 
individual user’s preference is described using a form of 
parametric adjustment termed Learning Momentum, and 
simulation results are provided for proof of concept. A formal 
human-robot interaction study will be conducted in the future 
to investigate humans’ perception of various affective 
behaviors influenced by the Mood component and also to 
ascertain how effectively the component can be adapted to 
tailor the overall affective system (TAME) to individual 
user’s preferences. 
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